
Name:

1

M. C. Lin

CMSC 838B & 498Z:
Differentiable Programming

Tues/Thur 12:30pm – 1:45pm
http://www.cs.umd.edu/class/fall2023/cmsc838b

Ming C. Lin
IRB 5162

lin@cs.umd.edu
http://www.cs.umd.edu/~lin

Office Hours: After Class or By Appointment

1

M. C. Lin

Optimization by Following Gradients

l Fundamentally, we’re interested in machines that
we train by optimizing parameters

l How do we select these parameters?

l In differentiable programming, we often define an
objective function that we minimize (or maximize)
with respect to (w.r.t.) these parameters
l That is, we’re looking for points at which the

gradient of the objective function is zero
 w.r.t the parameters

2

http://www.cs.umd.edu/class/fall2023/cmsc838b

Name:

2

M. C. Lin

Optimization by Following Gradients

l Gradient based optimization is a big field.
– First order methods, second order methods,

subgradient methods...
l With Differentiable Programming, we’re primarily
interested in the first-order methods1.
– Primarily using variants of gradient descent: a function

F (x) has a minima2 (or a saddle-point) at a point x = a
where a is given by applying an+1 = an −α∇F (an) until
convergence from some initial point a0

1Second-order gradient optimizers are potentially better,
but for systems with many variables are currently
impractical as they require computing the Hessian.
2not necessarily global or unique

3

M. C. Lin

What Are Gradients?

l The derivative in 1D
l The gradient of a straight line is
l For an arbitrary real-valued function, f(a), we can

approximate the derivative, f’(a) using the gradient of
the secant line defined by (a, f (a)) and a point a small
distance, h, away (a + h, f (a + h)): f’(a) ≈

l This expression is ‘Newton’s Difference Quotient’
l As h becomes smaller, the approximated derivative

becomes more accurate. Take the limit as h →0, we have

∆y
∆X

f(a+h)−f(a)
 h

4

Name:

3

M. C. Lin

What Are Gradients?

The derivative of y = x 2 from first principles

5

M. C. Lin

Numerical Approximation of Derivatives

l For numerical computation of derivatives it is
better to use a “centralized” definition:

l The bit inside the limit is known as the
”symmetric difference quotient”
l For small values of h, this has less error than

the standard one-sided difference quotient

f I(a) = limh→0 f (a+h)−f (a−h)f '(a) = limh→0 f (a+h)−f (a−h)
 2hf '(a) = limh→0 f (a+h)−f (a−h)

 2h

6

Name:

4

M. C. Lin

What Are Gradients?

l If you are going to use difference quotients to
estimate derivatives you need to be aware of potential
rounding errors due to floating point representations

l Calculating derivatives this way using less than 64-
bit precision is rarely going to be useful. (Numbers
are not represented exactly, so even if h is
represented exactly, x +h will probably not be)
l You need to pick an appropriate h – too small and
the subtraction will have a large rounding error!

f I(a) = limh→0 f (a+h)−f (a−h)f '(a) = limh→0 f (a+h)−f (a−h)
 2hf '(a) = limh→0 f (a+h)−f (a−h)

 2h

7

M. C. Lin

What Are Gradients?

l Deep learning is all about optimizing deeper
functions; functions that are compositions of other
functions:
 e.g. z = f ◦ g (x) = f (g (x))

l The chain rule of calculus tells us how to
differentiate compositions of functions:
 dz = dz dy
 dx dy dx

8

Name:

5

M. C. Lin

What Are Gradients?

Or, derive from the first principle:

9

M. C. Lin

Vector Functions

l For a vector function, y (t), this can be split
into its constituent coordinate functions:

y (t) = (y1(t), . . . , yn(t))
l The derivative is a (tangent) vector:
 y I(t) = (y1I (t), . . . , ynI (t)), which consists
 of the derivatives of the coordinate functions
l Equivalently, if the limit exists, then

10

Name:

6

M. C. Lin

Functions of Multiple Variables:
Partial Differentiation

l What if the function we’re trying to deal with has multiple
variables3 (e.g. f (x, y) = x 2 + xy + y 2)?
– This expression has a pair of partial derivatives, = 2x + y and = x + 2y ,

computed by differentiating with respect to each variable x and y whilst
holding the other(s) constant.

l Generally partial derivative of a function f (x1, . . . , xn) at a
point (a1, . . . , an) is given by:

l The vector of partial derivatives of a scalar-value multivariate
function, f (x1, . . . , xn) at a point (a1, . . . , an), can be arranged
into a vector, gradient of f @ a.

l For a vector-valued multivariate functions, the partial derivatives
form a matrix is called the Jacobian

11

M. C. Lin

Functions of Vectors and Matrices:
Partial Differentiation

For the kinds of functions (and programs) that we’ll look
at optimizing in this course have a number of typical
properties:

– They are scalar-valued
– We’ll look at programs with multiple losses, but

ultimately we can just consider optimizing with respect
to the sum of the losses.

– They involve multiple variables, which are often
wrapped up in the form of vectors or matrices, and
more generally tensors.

– How will we find the gradients of these

12

Name:

7

M. C. Lin

Chain Rule for Vectors

l Suppose that x ∈ Rm, y ∈ Rn, g maps from Rm to Rn

and f maps from Rn to R.
l If y = g (x) and z = f (y), then

l Equivalently, in vector notation:

 here ∂y is the nxm Jacobian matrixs
 ∂x

13

M. C. Lin

Chain Rule for Tensors
l Conceptually, the simplest way to think about gradients of

tensors is to imagine flattening them into vectors, computing
the vector-valued gradient and then reshaping the gradient
back into a tensor.

l In this way we’re still just multiplying Jacobians by gradients.
More formally, consider gradient of a scalar z with respect to
a tensor X to be denoted as ∇Xz .

l Indices into X now have multiple coordinates, but we can
generalize by using a single variable i to represent the
complete tuple of indices.

l For all index tuples i, (∇Xz)i gives

l Thus, if Y = g (X) and z = f (Y) then

14

Name:

8

M. C. Lin

Example: ∇W f (XW)

Let D = XW where the rows of X ∈ Rn×m

contain some fixed features, and W ∈ Rm×h

is a matrix of weights.

Also let L = f (D) be some scalar function of
D that we wish to minimize

What are the derivatives of L with respect to
the weights W ?

15

M. C. Lin

Example: ∇W f (XW)

16

Name:

9

M. C. Lin

Example: ∇W f (XW)

Putting every together, we have:

As we’re summing over multiplications of scalars, we can
change the order:

and note that the sum over i is doing a dot product with
row u and column v if we transpose Xiu to Xu

T
i :

We can then see that if we want this for all values of W
it simply generalizes to:

17

M. C. Lin

What Does a Gradient Do?

l In your early calculus lessons you likely had it
hammered into you that gradients represent rates of
change of functions.
l This is of course totally true...
l But, it isn’t a particularly useful way to think about the
gradients of a loss with respect to the weights of a
parameterized function.
l The gradient of the loss with respect to a parameter
tells you how much the loss will change with a small
perturbation to that parameter.

18

Name:

10

M. C. Lin

Singular Value Decomposition

l Let’s now change direction and look at using some
differentiation and Singular Value Decomposition
(SVD).
l For complex A :

 A = UΣV∗

where V∗ is the conjugate transpose of V

For real A:

 A = UΣV T

19

M. C. Lin

Singular Value Decomposition

l SVD has many uses:
 Computing the Eigendecomposition:

Eigenvectors of AAT are columns of U, Eigenvectors of ATA are
columns of V ,
and the non-zero values of Σ are the square roots of the non-zero
eigenvalues of both AAT and ATA.

l Dimensionality reduction
 ...use to compute PCA

l Computing the Moore-Penrose Pseudoinverse
for real A: A+ = V Σ+UT where Σ+ is formed by taking the reciprocal of
every non-zero diagonal element and transposing the result.

l Low-rank approximation and matrix completion
if you take the ρ columns of U, and the ρ rows of V T corresponding to
the ρ largest singular values, you can form the matrix Aρ = UρΣρVρ

T

which will be the best rank-ρ approximation of the original A in terms
of the Frobenius norm.

20

Name:

11

M. C. Lin

Computing SVD using Gradients

l There are many standard ways of computing the SVD:
– e.g. ‘Power iteration’, or ‘Arnoldi iteration’ or ‘Lanczos algorithm’

coupled with the ‘Gram-Schmidt process’ for
orthonormalization

l but, these don’t necessarily scale up to really big
problems
– e.g. computing the SVD of a sparse matrix with 17770 rows, 480189

columns and 100480507 non-zero entries!
– this corresponds to the data provided by Netflix when they

launched the Netflix Challenge in 2006.
l OK, so what can you do?

– The ‘Simon Funk’ solution: realise that there is a really simple (and
quick) way to compute the SVD by following gradients...

21

M. C. Lin

Computing SVD using Gradients

l One of the definitions of rank- SVD of a matrix A is that it
minimises reconstruction error in terms of the Frobenius norm

l Without loss of generality we can write SVD as a 2-matrix
decomposition A = ˆUˆVT by rolling in the square roots of
to both ˆU and ˆV :

Then we can define the decomposition as finding:

22

Name:

12

M. C. Lin

Deriving a gradient-descent solution to SVD

23

M. C. Lin

Deriving a gradient-descent solution to SVD

24

