CMSC 838B \& 498Z:
 Differentiable Programming

Tues/Thur 12:30pm - 1:45pm
http://www.cs.umd.edu/class/fall2023/cmsc838b

Ming C. Lin
IRB 5162
lin@cs.umd.edu
http://www.cs.umd.edu/~lin
Office Hours: After Class or By Appointment

Optimization by Following Gradients

- Fundamentally, we're interested in machines that we train by optimizing parameters
- How do we select these parameters?
- In differentiable programming, we often define an objective function that we minimize (or maximize) with respect to (w.r.t.) these parameters
- That is, we're looking for points at which the gradient of the objective function is zero w.r.t the parameters

Optimization by Following Gradients

- Gradient based optimization is a big field.
- First order methods, second order methods, subgradient methods...
- With Differentiable Programming, we're primarily interested in the first-order methods ${ }^{1}$.
- Primarily using variants of gradient descent: a function $F(x)$ has a minima ${ }^{2}$ (or a saddle-point) at a point $x=a$ where a is given by applying $a_{n+1}=a_{n}-\alpha$ VF (an) until convergence from some initial point ao
${ }^{1}$ Second-order gradient optimizers are potentially better, but for systems with many variables are currently impractical as they require computing the Hessian.
${ }^{2}$ not necessarily global or unique

What Are Gradients?

- The derivative in 1D
- The gradient of a straight line is ΔX
- For an arbitrary real-valued function, $f(a)$, we can approximate the derivative, $f^{\prime}(a)$ using the gradient of the secant line defined by $(a, f(a))$ and a point a small distance, h, away $(a+h, f(a+h)): f^{\prime}(a) \approx \frac{f(a+h)-f(a)}{h}$
- This expression is 'Newton's Difference Quotient'
- As h becomes smaller, the approximated derivative becomes more accurate. Take the limit as $h \rightarrow 0$, we have

$$
\frac{d f}{d a}=f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

What Are Gradients?

The derivative of $y=x^{2}$ from first principles

$$
\begin{aligned}
& y=x^{2} \\
& \frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& \frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{x^{2}+h^{2}+2 h x-x^{2}}{h} \\
& \frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{h^{2}+2 h x}{h} \\
& \frac{d y}{d x}=\lim _{h \rightarrow 0}(h+2 x) \\
& \frac{d y}{d x}=2 x
\end{aligned}
$$

Numerical Approximation of Derivatives

- For numerical computation of derivatives it is better to use a "centralized" definition:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h}
$$

- The bit inside the limit is known as the
"symmetric difference quotient"
- For small values of h, this has less error than the standard one-sided difference quotient

What Are Gradients?

- If you are going to use difference quotients to estimate derivatives you need to be aware of potential rounding errors due to floating point representations
- Calculating derivatives this way using less than 64bit precision is rarely going to be useful. (Numbers are not represented exactly, so even if h is represented exactly, $x+h$ will probably not be)
- You need to pick an appropriate h - too small and the subtraction will have a large rounding error!

7

What Are Gradients?

- Deep learning is all about optimizing deeper functions; functions that are compositions of other functions:
e.g. $z=f \circ g(x)=f(g(x))$
- The chain rule of calculus tells us how to differentiate compositions of functions:

$$
\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}
$$

What Are Gradients?

$$
\begin{aligned}
z & =x^{4} \\
z & =\left(x^{2}\right)^{2}=y^{2} \quad \text { where } \quad y=x^{2} \\
\frac{d z}{d x} & =\frac{d z d y}{d y d x}=(2 y)(2 x)=\left(2 x^{2}\right)(2 x)=4 x^{3}
\end{aligned}
$$

Or, derive from the first principle:

$$
\begin{aligned}
& z=x^{4} \\
& \frac{d z}{d x}=\lim _{h \rightarrow 0} \frac{(x+h)^{4}-x^{4}}{h} \\
& \frac{d z}{d x}=\lim _{h \rightarrow 0} \frac{h^{4}+4 h^{3} x+6 h^{2} x^{2}+4 h x^{3}+x^{4}-x^{4}}{h} \\
& \frac{d z}{d x}=\lim _{h \rightarrow 0} h^{3}+4 h^{2} x+6 h x^{2}+4 x^{3}=4 x^{3}
\end{aligned}
$$

Vector Functions

- For a vector function, $y(t)$, this can be split into its constituent coordinate functions:

$$
y(t)=\left(y_{1}(t), \ldots, y_{n}(t)\right)
$$

- The derivative is a (tangent) vector:
$y^{\prime}(t)=\left(y_{1}{ }^{\prime}(t), \ldots, y_{n}{ }^{\prime}(t)\right)$, which consists of the derivatives of the coordinate functions
- Equivalently, if the limit exists, then

$$
\boldsymbol{y}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\boldsymbol{y}(t+h)-\boldsymbol{y}(t)}{h}
$$

Functions of Multiple Variables: Partial Differentiation

- What if the function we're trying to deal with has multiple variables ${ }^{3}$ (e.g. $f(x, y)=x^{2}+x y+y^{2}$)?
- This expression has a pair of partial derivatives, $=2 x+y$ and $=x+2 y$, computed by differentiating with respect to each variable x and y whilst holding the other(s) constant.
- Generally partial derivative of a function $f\left(x_{1}, \ldots, x_{n}\right)$ at a point $\left(a_{1}, \ldots, a_{n}\right)$ is given by:
$\frac{\partial f}{\partial x_{i}}\left(a_{1}, \ldots, a_{n}\right)=\lim _{h \rightarrow 0} \frac{f\left(a_{1} \ldots, a_{i}+h, \ldots, a_{n}\right)-f\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)}{h}$.
- The vector of partial derivatives of a scalar-value multivariate function, $f\left(x_{1}, \ldots, x_{n}\right)$ at a point (a_{1}, \ldots, a_{n}), can be arranged into a vector, gradient of f @ a.
$\nabla f\left(a_{1}, \ldots, a_{n}\right)=\frac{\partial f}{\partial x_{1}}\left(a_{1}, \ldots, a_{n}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(a_{1}, \ldots, a_{n}\right)$
- For a vector-valued multivariate functions, the partial derivatives form a matrix is called the Jacobian

Functions of Vectors and Matrices: Partial Differentiation

For the kinds of functions (and programs) that we'll look at optimizing in this course have a number of typical properties:

- They are scalar-valued
- We'll look at programs with multiple losses, but ultimately we can just consider optimizing with respect to the sum of the losses.
- They involve multiple variables, which are often wrapped up in the form of vectors or matrices, and more generally tensors.
- How will we find the gradients of these

Chain Rule for Vectors

- Suppose that $x \in \mathrm{R}^{m}, y \in \mathrm{R}^{n}, g$ maps from R^{m} to R^{n} and f maps from $\mathbf{R}^{\boldsymbol{n}}$ to \mathbf{R}.
- If $y=g(x)$ and $z=f(y)$, then

$$
\frac{\partial z}{\partial x_{i}}=\sum_{j} \frac{\partial z}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{i}}
$$

- Equivalently, in vector notation:

$$
\nabla_{x} z=\left(\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}}\right)^{T} \nabla_{y^{z}}
$$

here $\frac{\partial y}{\partial x}$ is the $n x m$ Jacobian matrixs

Chain Rule for Tensors

- Conceptually, the simplest way to think about gradients of tensors is to imagine flattening them into vectors, computing the vector-valued gradient and then reshaping the gradient back into a tensor.
- In this way we're still just multiplying Jacobians by gradients. More formally, consider gradient of a scalar z with respect to a tensor X to be denoted as $\nabla_{x} z$.
- Indices into X now have multiple coordinates, but we can generalize by using a single variable i to represent the complete tuple of indices.
- For all index tuples $i,(\nabla x z) i$ gives $\frac{\partial z}{\partial X_{i}}$
- Thus, if $Y=g(\mathrm{X})$ and $z=f(\mathrm{Y})$ then $\nabla_{\mathbf{X}} \mathbf{z}=\sum_{j}\left(\nabla_{\mathbf{X}} \mathrm{Y}_{j}\right) \frac{\partial z}{\partial Y_{j}}$

Example: $\boldsymbol{\nabla}_{\boldsymbol{w}} \boldsymbol{f}(X W)$

Let $D=X W$ where the rows of $X \in \mathrm{R}^{n \times m}$ contain some fixed features, and $W \in \mathrm{R}^{m \times h}$ is a matrix of weights.

Also let $L=f(D)$ be some scalar function of

 D that we wish to minimizeWhat are the derivatives of L with respect to the weights W ?

15

Example: $\boldsymbol{\nabla}_{w} f(X W)$

- Start by considering a specific weight, $W_{u v}: \frac{\partial \mathcal{L}}{\partial W_{u v}}=\sum_{i, j} \frac{\partial \mathcal{L}}{\partial D_{i j}} \frac{\partial D_{i j}}{\partial W_{u v}}$.
- We know that $\frac{\partial D_{i j}}{\partial W_{u v}}=0$ if $j \neq v$ because $D_{i j}$ is the dot product of row i of \boldsymbol{X} and column j of \boldsymbol{W}.
- Therefore, we can simplify the summation to only consider cases where $j=v: \sum_{i, j} \frac{\partial \mathcal{L}}{\partial D_{i j}} \frac{\partial D_{i j}}{\partial W_{u v}}=\sum_{i} \frac{\partial \mathcal{L}}{\partial D_{i v}} \frac{\partial D_{i v}}{\partial W_{u v}}$.
- What is $\frac{\partial D_{i v}}{\partial W_{u v}}$?

$$
\begin{aligned}
D_{i v} & =\sum_{k=1}^{q} X_{i k} W_{k v} \\
\frac{\partial D_{i v}}{\partial W_{u v}} & =\frac{\partial}{\partial W_{u v}} \sum_{k=1}^{q} X_{i k} W_{k v}=\sum_{k=1}^{q} \frac{\partial}{\partial W_{u v}} X_{i k} W_{k v} \\
\therefore \frac{\partial D_{i v}}{\partial W_{u v}} & =X_{i u}
\end{aligned}
$$

Example: $\boldsymbol{\nabla}_{w} \boldsymbol{f}(X W)$

Putting every together, we have: $\frac{\partial \mathcal{L}}{\partial W_{u v}}=\sum_{i} \frac{\partial \mathcal{L}}{\partial D_{i v}} X_{i u}$
As we're summing over multiplications of scalars, we can change the order:

$$
\frac{\partial \mathcal{L}}{\partial W_{u v}}=\sum_{i} X_{i u} \frac{\partial \mathcal{L}}{\partial D_{i v}}
$$

and note that the sum over i is doing a dot product with row u and column v if we transpose $X_{i u}$ to $X_{u}{ }^{T}{ }_{i}$:

$$
\frac{\partial \mathcal{L}}{\partial W_{u v}}=\sum_{i} X_{u i}^{\top} \frac{\partial \mathcal{L}}{\partial D_{i v}}
$$

We can then see that if we want this for all values of W it simply generalizes to: $\frac{\partial \mathcal{L}}{\partial \boldsymbol{W}}=\boldsymbol{X}^{\top} \frac{\partial \mathcal{L}}{\partial \boldsymbol{D}}$.

What Does a Gradient Do?

- In your early calculus lessons you likely had it hammered into you that gradients represent rates of change of functions.
- This is of course totally true...
- But, it isn't a particularly useful way to think about the gradients of a loss with respect to the weights of a parameterized function.
- The gradient of the loss with respect to a parameter tells you how much the loss will change with a small perturbation to that parameter.

Singular Value Decomposition

- Let's now change direction and look at using some differentiation and Singular Value Decomposition (SVD).
- For complex A :

$$
A=U \Sigma V^{*}
$$

where V^{*} is the conjugate transpose of V
For real A :

$$
A=U \Sigma V^{\top}
$$

Singular Value Decomposition

- SVD has many uses:

Computing the Eigendecomposition:
Eigenvectors of $A A^{T}$ are columns of U, Eigenvectors of $A^{T} A$ are columns of V,
and the non-zero values of Σ are the square roots of the non-zero eigenvalues of both $A A^{T}$ and $A^{T} A$.

- Dimensionality reduction
...use to compute PCA
- Computing the Moore-Penrose Pseudoinverse
for real A : $A^{+}=V \Sigma^{+} U^{\top}$ where Σ^{+}is formed by taking the reciprocal of every non-zero diagonal element and transposing the result.
- Low-rank approximation and matrix completion
if you take the ρ columns of U, and the ρ rows of V^{\top} corresponding to the ρ largest singular values, you can form the matrix $A_{\rho}=U_{\rho} \Sigma_{\rho} V_{\rho}{ }^{T}$
which will be the best rank- ρ approximation of the original A in terms of the Frobenius norm.
M. C. Lin

Computing SVD using Gradients

- There are many standard ways of computing the SVD:
- e.g. 'Power iteration', or 'Arnoldi iteration' or 'Lanczos algorithm' coupled with the 'Gram-Schmidt process' for orthonormalization
- but, these don't necessarily scale up to really big problems
- e.g. computing the SVD of a sparse matrix with 17770 rows, 480189 columns and 100480507 non-zero entries!
- this corresponds to the data provided by Netflix when they launched the Netflix Challenge in 2006.
- OK, so what can you do?
- The 'Simon Funk' solution: realise that there is a really simple (and quick) way to compute the SVD by following gradients...
M. C. Lin

21

Computing SVD using Gradients

- One of the definitions of rank- SVD of a matrix A is that it minimises reconstruction error in terms of the Frobenius norm
- Without loss of generality we can write SVD as a 2-matrix decomposition $A={ }^{\wedge} U^{\wedge} V^{\top}$ by rolling in the square roots of $\boldsymbol{\Sigma}$ to both ${ }^{\wedge} \mathrm{U}$ and ${ }^{\wedge} \mathrm{V}$:

$$
\hat{\boldsymbol{U}}=\boldsymbol{U} \boldsymbol{\Sigma}^{0.5} \text { and } \hat{\boldsymbol{V}}^{\top}=\boldsymbol{\Sigma}^{0.5} \boldsymbol{V}^{\top}
$$

Then we can define the decomposition as finding:

$$
\min _{\hat{\boldsymbol{U}}, \hat{\boldsymbol{V}}}\left(\left\|\boldsymbol{A}-\hat{\boldsymbol{U}} \hat{\boldsymbol{V}}^{\top}\right\|_{\mathrm{F}}^{2}\right)
$$

Deriving a gradient-descent solution to SVD

Start by expanding our optimisation problem:

$$
\begin{aligned}
\min _{\hat{\boldsymbol{U}}, \hat{\boldsymbol{V}}}\left(\left\|\boldsymbol{A}-\hat{\boldsymbol{U}} \hat{\boldsymbol{V}}^{\top}\right\|_{F}^{2}\right) & =\min _{\hat{\boldsymbol{U}}, \hat{\boldsymbol{V}}}\left(\sum_{r} \sum_{c}\left(A_{r c}-\hat{U}_{r} \hat{V}_{c}\right)^{2}\right) \\
& =\min _{\hat{\boldsymbol{U}}, \hat{\boldsymbol{V}}}\left(\sum_{r} \sum_{c}\left(A_{r c}-\sum_{p=1}^{\rho} \hat{U}_{r p} \hat{V}_{c p}\right)^{2}\right)
\end{aligned}
$$

Let $e_{r c}=A_{r c}-\sum_{p=0}^{\rho} \hat{U}_{r p} \hat{V}_{c p}$ denote the error. Then, our problem becomes:

$$
\text { Minimise } J=\sum_{r} \sum_{c} e_{r c}^{2}
$$

We can then differentiate with respect to specific variables $\hat{U}_{r q}$ and $\hat{V}_{c q}$

Deriving a gradient-descent solution to SVD

Start by expanding our optimisation problem:

$$
\begin{aligned}
\min _{\hat{\boldsymbol{U}}, \hat{\boldsymbol{V}}}\left(\left\|\boldsymbol{A}-\hat{\boldsymbol{U}} \hat{\boldsymbol{V}}^{\top}\right\|_{\mathrm{F}}^{2}\right) & =\min _{\hat{\boldsymbol{U}}, \hat{\boldsymbol{V}}}\left(\sum_{r} \sum_{c}\left(A_{r c}-\hat{U}_{r} \hat{V}_{c}\right)^{2}\right) \\
& =\min _{\hat{\boldsymbol{U}}, \hat{\boldsymbol{V}}}\left(\sum_{r} \sum_{c}\left(A_{r c}-\sum_{p=1}^{\rho} \hat{U}_{r p} \hat{V}_{c p}\right)^{2}\right)
\end{aligned}
$$

Let $e_{r c}=A_{r c}-\sum_{p=0}^{\rho} \hat{U}_{r p} \hat{V}_{c p}$ denote the error. Then, our problem becomes:

$$
\text { Minimise } J=\sum_{r} \sum_{c} e_{r c}^{2}
$$

We can then differentiate with respect to specific variables $\hat{U}_{r q}$ and $\hat{V}_{c q}$
M. C. Lin

