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Optimization by Following Gradients

l Fundamentally, we’re interested in machines that 
we train by optimizing parameters

l How do we  select these parameters?

l In differentiable programming, we often define an  
objective function that we minimize (or maximize) 
with respect to (w.r.t.) these parameters
l That is, we’re looking for points at which the 

gradient of the objective function is zero  
 w.r.t  the parameters
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Optimization by Following Gradients

l Gradient based optimization is a big field.
– First order methods, second  order methods, 

subgradient methods...
l With Differentiable Programming, we’re primarily 
interested in the first-order methods1.
– Primarily using variants of gradient descent:  a  function 

F (x ) has  a minima2  (or a  saddle-point) at a  point x  = a  
where a is given by applying an+1 = an −α∇F (an) until 
convergence from some initial point a0

1Second-order gradient optimizers are potentially better, 
but for systems with many  variables are  currently 
impractical as  they require computing the Hessian.
2not necessarily global or unique
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What Are Gradients?

l The derivative in 1D 
l The gradient of a straight line is
l For an arbitrary real-valued function, f(a), we can 

approximate the derivative, f’(a)  using the gradient of 
the secant line defined by (a, f (a)) and a  point a  small 
distance, h, away (a + h, f (a + h)): f’(a) ≈

l This expression is ‘Newton’s Difference Quotient’
l As h becomes smaller, the approximated derivative 

becomes more accurate. Take the limit as h →0, we have 

∆y
∆X

f(a+h)−f(a)
        h
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What Are Gradients?

The derivative of y  = x 2  from first principles
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Numerical Approximation of Derivatives

l For numerical computation of derivatives it  is 
better to use a “centralized” definition: 

l The bit inside the limit is known as the     
”symmetric difference quotient”
l For small values of h, this has less error  than 

the standard one-sided difference quotient

f I(a) =  limh→0 f (a+h)−f (a−h)f '(a) =  limh→0 f (a+h)−f (a−h)
                                 2hf '(a) =  limh→0 f (a+h)−f (a−h)

                                 2h
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What Are Gradients?

l If you are going to use difference quotients to 
estimate derivatives you need to be aware of potential 
rounding errors due to floating point representations

l Calculating derivatives this way using less than 64-
bit precision is rarely going to be useful. (Numbers 
are not represented exactly, so even if h is 
represented  exactly, x +h will probably not be)
l You need to pick an appropriate h – too small and 
the subtraction will have a large rounding error!

f I(a) =  limh→0 f (a+h)−f (a−h)f '(a) =  limh→0 f (a+h)−f (a−h)
                                 2hf '(a) =  limh→0 f (a+h)−f (a−h)

                                 2h
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What Are Gradients?

l Deep learning is all about optimizing deeper 
functions; functions that are compositions of other 
functions:  
 e.g. z = f ◦ g (x ) = f (g (x ))

l The chain rule of calculus tells us how to 
differentiate compositions of  functions:
 dz = dz dy
 dx      dy dx
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What Are Gradients?

Or, derive from the first principle:
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Vector Functions

l For a vector function, y (t), this can be  split 
into its constituent coordinate functions:

y (t) = (y1(t), . . . , yn(t))
l The derivative is a (tangent) vector:
 y I(t) = (y1I (t), . . . , ynI (t)), which consists 
   of the derivatives of the  coordinate functions
l Equivalently, if the limit exists, then
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Functions of Multiple Variables:  
Partial Differentiation

l What if the function we’re trying to deal with has multiple 
variables3  (e.g. f (x, y ) =  x 2 +  xy +  y 2)?
– This expression  has  a  pair of partial derivatives, =  2x + y and = x + 2y , 

computed by differentiating with respect to each variable x  and y  whilst 
holding the other(s) constant.

l Generally partial derivative of a function f (x1, . . . , xn) at a 
point  (a1, . . . , an) is given by:

l The vector of partial derivatives of a  scalar-value  multivariate 
function, f (x1, . . . , xn) at a point (a1, . . . , an), can be arranged 
into a vector, gradient of f @ a.

l For a vector-valued multivariate functions, the partial derivatives 
form a matrix is called the Jacobian
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Functions of Vectors and Matrices:  
Partial Differentiation

For the kinds of functions (and programs) that we’ll look 
at optimizing in this course have a number of typical 
properties:

– They are scalar-valued
– We’ll look at programs with multiple losses, but 

ultimately we can just consider optimizing with respect 
to the sum  of the  losses.

– They involve multiple variables, which are often 
wrapped up in the  form of vectors or matrices, and 
more generally  tensors.

– How will we  find the gradients  of  these
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Chain Rule for Vectors

l Suppose that x ∈ Rm, y ∈ Rn, g maps from Rm  to Rn  

and f maps from Rn  to R.
l If y = g (x ) and z = f (y ), then

l Equivalently, in vector notation:

    here ∂y  is the nxm Jacobian matrixs
          ∂x
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Chain Rule for Tensors
l Conceptually, the simplest way to think about gradients of 

tensors is to imagine flattening them into vectors, computing 
the vector-valued gradient and  then reshaping the gradient 
back into a  tensor.

l In this way  we’re still just multiplying Jacobians by gradients.  
More formally, consider gradient of a  scalar z  with respect to 
a tensor X to be  denoted as  ∇Xz .

l Indices into X now have multiple coordinates, but we can 
generalize by  using a  single variable i to represent the 
complete tuple of  indices.

l For all index tuples i, (∇Xz )i  gives

l Thus, if Y = g (X) and z = f (Y) then
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Example: ∇W f (XW ) 

Let D = XW where the rows of X ∈ Rn×m  

contain some fixed features, and W ∈ Rm×h  

is a  matrix of weights.

Also let L = f (D) be some scalar function of 
D that we  wish to minimize

What are  the derivatives of  L with respect to 
the weights W ?
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Example: ∇W f (XW ) 
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Example: ∇W f (XW ) 

Putting every together, we have:

As we’re summing over multiplications of scalars, we can 
change the order:

and note that the sum over i is doing a  dot product with 
row u  and column v  if we  transpose Xiu  to Xu

T
i  :

We  can then see  that if we  want this for all values  of W 
it simply generalizes to:
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What Does a Gradient Do?

l In your early calculus lessons you likely had it 
hammered into you that gradients represent rates of 
change of functions.
l This is of course  totally true...
l But, it isn’t a particularly useful way to think about the 
gradients of a  loss  with respect to the weights of a  
parameterized function.
l The gradient of the loss with respect to a parameter 
tells you  how much the loss will change with a small 
perturbation to that parameter.
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Singular Value Decomposition 

l Let’s now change direction and look at using some 
differentiation and Singular Value Decomposition 
(SVD).
l For complex A :

   A = UΣV∗  

where V∗  is the conjugate transpose of V

For real A:

    A = UΣV T
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Singular Value Decomposition 

l SVD has  many uses:
    Computing the Eigendecomposition:

Eigenvectors of AAT are columns of U,  Eigenvectors of ATA are  
columns of V ,
and the non-zero values of Σ are the square roots of the non-zero  
eigenvalues  of both AAT and  ATA.

l Dimensionality reduction
 ...use to compute PCA

l Computing the Moore-Penrose Pseudoinverse
for real A: A+ = V Σ+UT where Σ+ is formed by taking the reciprocal  of 
every  non-zero diagonal element and transposing the   result.

l Low-rank approximation and matrix  completion
if you take the ρ columns of U, and the ρ rows of V T corresponding to  
the ρ largest singular values, you can form the matrix Aρ = UρΣρVρ

T  

which will be the best rank-ρ approximation of the original A in terms  
of the Frobenius norm.
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Computing SVD using Gradients

l There are many standard ways of computing the SVD:
– e.g. ‘Power iteration’, or ‘Arnoldi iteration’ or ‘Lanczos algorithm’ 

coupled with the ‘Gram-Schmidt process’ for 
orthonormalization

l but, these don’t necessarily scale up to really big 
problems
– e.g. computing the SVD of a sparse matrix with 17770 rows, 480189 

columns and 100480507 non-zero entries!
– this corresponds to the data provided by Netflix when they 

launched the Netflix Challenge in 2006.
l OK, so what can you do?

– The ‘Simon Funk’ solution: realise that there is a really simple (and 
quick) way to compute the SVD by following gradients...
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Computing SVD using Gradients

l One of the definitions of rank- SVD of a matrix A is that it
minimises reconstruction error in terms of the Frobenius norm

l Without loss of generality we can write SVD as a 2-matrix
decomposition A = ˆUˆVT by rolling in the square roots of 
to both ˆU and ˆV : 

Then we can define the decomposition as finding:
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Deriving a gradient-descent solution to SVD
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Deriving a gradient-descent solution to SVD

24


