
Name:

2

M. C. Lin

Automatic Differentiation (AD)

l A method to get exact derivatives efficiently,
by storing information as you go forward that
you can reuse as you go backwards
– Takes code that computes a function and uses

that to compute the derivative of that function

– The goal isn’t to obtain closed-form solutions, but
to be able to write a program that efficiently
computes the derivatives.

3

Differentiation and Programming

Example (Math)
x =?
y =?
a = x y
b = sin(x)
z = a + b

Example (code)
(Code)
x = ?
y = ?
a = x * y
b = sin (x)
z = a + b

4

Name:

3

Forward Mode AD

M. C. Lin

• To translate using the rules we simply replace each
primitive operation in the original program by its
differential analogue

• The order of computation remains unchanged: if a
statement K is evaluated before another statement L, then
the differential analogue of K is evaluated before the
analogue statement of L

• This is Forward-mode Automatic Differentiation

5

Backward AD:
Reversing the Chain Rule

M. C. Lin

6

Name:

4

Visualizing Dependencies

M. C. Lin

• Differentiating in reverse can be quite mind-bending: instead of
asking what input variables an output depends on, we have to ask
what output variables a given input variable can affect.

• We can see this visually by drawing a dependency graph of the
expression:

7

Gradient Descent

l Define total loss as for
some loss function l, dataset D, and model g, with learnable
parameters Ɵ

l Define how many passes over the data to make (each one
known as an Epoch)

l Define a learning rate ƞ
Gradient Descent updates the parameters Ɵ by moving them in
the direction of the negative gradient with respect to the total
loss L by the learning rate ƞ multiplied by the gradient:
 for each Epoch:

M. C. Lin

8

Name:

5

Gradient Descent

l Gradient Descent has good statistical properties
(very low variance)

l But is very data inefficient (particularly when data
has many similarities)

l Doesn’t scale to effectively infinite data (e.g. with
data augmentation)

M. C. Lin

9

Stochastic Gradient Descent (SGD)

l Define loss function l, dataset D, and model g, with learnable
parameters Ɵ

l Define how many passes over the data to make (each one
known as an Epoch)

l Define a learning rate ƞ
Stochastic Gradient Descent (SGD) updates the parameters
Ɵ by moving them in the direction of the negative gradient with
respect to the loss of a single item l by the learning rate ƞ,
multiplied by the gradient:
 for each Epoch:

M. C. Lin

10

Name:

6

Stochastic Gradient Descent (SGD)

l Stochastic Gradient Descent has poor statistical
properties (very high variance)

l Why works?
– We don’t need to check all the training examples to get

an idea about the direction of decreasing slope. By
analyzing only 1 example at a time and following its
slope (gradient), we can reach a point very close to the
actual minimum

l Not computationally efficient enough (poor
utilization of resources w.r.t. vectorization)

M. C. Lin

11

Mini-Batch Stochastic Gradient Descent

l Define a batch size b
l Define batch loss as for

some loss function l & model g with learnable parameters Ɵ.
Db is a subset of dataset D of cardinality b

l Define how many passes (Epochs) over the data to make
l Define a learning rate ƞ
Mini-batch Stochastic Gradient Descent (SGD) updates parameters Ɵ
by moving them in the direction of the negative gradient with respect to
the loss of a mini-batch Db, L b by the learning rate ƞ, multiplied by the
gradient:

M. C. Lin

12

Name:

7

Mini-Batch Stochastic Gradient Descent

l Mini-batch Stochastic Gradient Descent has
reasonable statistical properties (much lower
variance than SGD)
l Allows for computationally efficiency (good
utilization of resources)
l Ultimately we would normally want to make our
batches as big as possible for lower variance gradient
estimates, but:

– Must still fit in RAM (e.g. on the GPU)
– Must be able to maintain throughput (e.g. pre-processing

on the CPU; data transfer time)

M. C. Lin

13

Learning Rates

l Choice of learning rate is extremely important
l But we have to reason about the ‘loss landscape’

– Most convergence analysis of optimization algorithms assumes
a convex loss landscape

• Easy to reason about
• Can be shown that (S)GD will converge to the optimal solution for

a variety of learning rates
• Can give insights into potential problems in the non-convex case

– Deep Learning is highly non-convex
• Many local minima
• Plateaus
• Saddle points
• Symmetries (permutation, etc)
• Certainly no single global minima

M. C. Lin

14

Name:

8

Accelerated Gradient Methods

l Accelerated gradient methods use a leaky average
of the gradient, rather than the instantaneous
gradient estimate at each time step

l A physical analogy would be one of the
momentum a ball picks up rolling down a hill...

l This helps address the *GD failure modes, but also
helps avoid getting stuck in local minima

M. C. Lin

16

Momentum I

l It’s common for the ‘leaky’ average (the
‘velocity’, vt) to be a weighted average of the
instantaneous gradient gt and the past velocity1:

 where is the ‘momentum’

1There are quite a few variants – here the PyTorch variant

M. C. Lin

17

Name:

9

Momentum II

l The momentum method allows to accumulate
velocity in directions of low curvature that
persist across multiple iterations

l This leads to accelerated progress in low
curvature directions compared to gradient
descent

M. C. Lin

18

MB-SGD with Momentum

l Learning with momentum on iteration t (batch at
t denoted by b(t)) is given by:

 is a good choice for the momentum
parameter

M. C. Lin

19

Name:

10

SGD with Momentum - potentially
better convex convergence

20

Learning Rates

l In practice you want to decay your learning rate over
time

l Smaller steps will help get closer to the minima
l But don’t do it too early, else might get stuck

l Something of an art form!

M. C. Lin

21

Name:

11

Reduce LR on Plateau

l Common Heuristic approach:
– if the loss hasn’t improved (within some tolerance)

for k epochs then drop the LR by a factor of 10
l Remarkably powerful!

M. C. Lin

22

Cyclic Learning Rates

l Worried about getting stuck in a non-optimal local
minima?
l Cycle the learning rate up and down (possibly
annealed), with a different LR on each batch

l See https://arxiv.org/abs/1506.01186

M. C. Lin

23

Name:

12

More Advanced Optimizers

l Adagrad
– Decrease learning rate dynamically per weight.
– Squared magnitude of the gradient (2nd moment) used to adjust how

quickly progress is made - weights with large gradients are compensated
with a smaller learning rate.

– Particularly effective for sparse features.
l RMSProp

– Modify Adagrad to decouple learning rate from gradient magnitude scaling
– Incorporates leaky averaging of squared gradient magnitudes
– LR would typically follow a predefined schedule

l Adam
– Essentially takes all the best ideas from RMSProp and SDG+Momentum
– Bias corrected momentum and second moment estimation
– It might still diverge (or be non optimal, even in convex settings)...
– LR is still a hyperparameter (you might still schedule) M. C. Lin

24

Take-away Messages

l The loss landscape of a deep network is complex
to understand (and is far from convex)
l If you’re in a hurry to get results use Adam
l If you have time, then use SGD (with momentum)
and work on tuning learning rates
l If you’re implementing something from a paper,
then follow what they did!

For more about Numerical Optimization: CMSC 764

M. C. Lin

25

