Automatic Differentiation (AD)

- A method to get exact derivatives efficiently, by storing information as you go forward that you can reuse as you go backwards
 - Takes code that computes a function and uses that to compute the derivative of that function
 - The goal isn’t to obtain closed-form solutions, but to be able to write a program that efficiently computes the derivatives.

Differentiation and Programming

Example (Math)

\[
\begin{align*}
x &= ? \\
y &= ? \\
a &= xy \\
b &= \sin(x) \\
z &= a + b
\end{align*}
\]

Example (Code)

\[
\begin{align*}
x &= ? \\
y &= ? \\
a &= x \times y \\
b &= \sin(x) \\
z &= a + b
\end{align*}
\]
Forward Mode AD

- To translate using the rules we simply replace each primitive operation in the original program by its differential analogue

- The order of computation remains unchanged: if a statement K is evaluated before another statement L, then the differential analogue of K is evaluated before the analogue statement of L

- This is *Forward-mode Automatic Differentiation*

Backward AD:
Reversing the Chain Rule

\[
\frac{\partial s}{\partial u} = \sum_i \frac{\partial w_i}{\partial u} \frac{\partial s}{\partial w_i}
\]

\[
x = ? \\
y = ? \\
a = x \cdot y \\
b = \sin(x) \\
z = a + b
\]

\[
\frac{\partial s}{\partial z} = ?
\]

\[
\begin{align*}
\frac{\partial s}{\partial b} &= \frac{\partial b}{\partial z} \frac{\partial s}{\partial b} \\
\frac{\partial s}{\partial a} &= \frac{\partial a}{\partial z} \frac{\partial s}{\partial a} \\
\frac{\partial s}{\partial y} &= \frac{\partial y}{\partial a} \frac{\partial s}{\partial y} \\
\frac{\partial s}{\partial x} &= \frac{\partial x}{\partial a} \frac{\partial s}{\partial x} + \frac{\partial b}{\partial x} \frac{\partial s}{\partial b} \\
&= y \frac{\partial s}{\partial a} + \cos(x) \frac{\partial s}{\partial b} \\
&= (y + \cos(x)) \frac{\partial s}{\partial z}
\end{align*}
\]
Visualizing Dependencies

• Differentiating in reverse can be quite mind-bending: instead of asking what input variables an output depends on, we have to ask what output variables a given input variable can affect.

• We can see this visually by drawing a dependency graph of the expression:

\[
\begin{align*}
\sin \quad x \quad \cdot \\
\quad b \quad a \\
+ \quad z \\
\end{align*}
\]

Gradient Descent

• Define total loss as \(\mathcal{L} = \sum_{(x,y) \in D} \ell(g(x, \theta), y) \) for some loss function \(\ell \), dataset \(D \), and model \(g \), with learnable parameters \(\theta \)

• Define how many passes over the data to make (each one known as an Epoch)

• Define a learning rate \(\eta \)

Gradient Descent updates the parameters \(\theta \) by moving them in the direction of the negative gradient with respect to the total loss \(\mathcal{L} \) by the learning rate \(\eta \) multiplied by the gradient:

for each Epoch:

\[
\theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}
\]
Gradient Descent

- Gradient Descent has good statistical properties (very low variance)
- But is very data inefficient (particularly when data has many similarities)
- Doesn’t scale to effectively infinite data (e.g. with data augmentation)

Stochastic Gradient Descent (SGD)

- Define loss function ℓ, dataset D, and model g, with learnable parameters θ
- Define how many passes over the data to make (each one known as an Epoch)
- Define a learning rate η

Stochastic Gradient Descent (SGD) updates the parameters θ by moving them in the direction of the negative gradient with respect to the loss of a single item ℓ by the learning rate η, multiplied by the gradient:

$$\text{for each Epoch: for each } (x, y) \in D: \quad \theta \leftarrow \theta - \eta \nabla_{\theta} \ell$$
Stochastic Gradient Descent (SGD)

- Stochastic Gradient Descent has poor statistical properties (very high variance)
- Why works?
 - We don't need to check all the training examples to get an idea about the direction of decreasing slope. By analyzing only 1 example at a time and following its slope (gradient), we can reach a point very close to the actual minimum
- Not computationally efficient enough (poor utilization of resources w.r.t. vectorization)

Mini-Batch Stochastic Gradient Descent

- Define a batch size b
- Define batch loss $\mathcal{L}_b = \sum_{(x,y) \in D_b} \ell(g(x, \theta), y)$ as for some loss function ℓ & model g with learnable parameters θ. D_b is a subset of dataset D of cardinality b
- Define how many passes (Epochs) over the data to make
- Define a learning rate η

Mini-batch Stochastic Gradient Descent (SGD) updates parameters θ by moving them in the direction of the negative gradient with respect to the loss of a mini-batch D_b, \mathcal{L}_b by the learning rate η, multiplied by the gradient: partition the dataset D into an array of subsets of size b

for each Epoch:

for each $D_b \in partitioned(D)$:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}_b$$
Mini-Batch Stochastic Gradient Descent

- Mini-batch Stochastic Gradient Descent has reasonable statistical properties (much lower variance than SGD)
- Allows for computationally efficiency (good utilization of resources)
- Ultimately we would normally want to make our batches as big as possible for lower variance gradient estimates, but:
 - Must still fit in RAM (e.g. on the GPU)
 - Must be able to maintain throughput (e.g. pre-processing on the CPU; data transfer time)

Learning Rates

- Choice of learning rate is extremely important
- But we have to reason about the ‘loss landscape’
 - Most convergence analysis of optimization algorithms assumes a convex loss landscape
 - Easy to reason about
 - Can be shown that (S)GD will converge to the optimal solution for a variety of learning rates
 - Can give insights into potential problems in the non-convex case
 - Deep Learning is highly non-convex
 - Many local minima
 - Plateaus
 - Saddle points
 - Symmetries (permutation, etc)
 - Certainly no single global minima
Accelerated Gradient Methods

- Accelerated gradient methods use a *leaky* average of the gradient, rather than the instantaneous gradient estimate at each time step.

- A physical analogy would be one of the momentum a ball picks up rolling down a hill...

- This helps address the *GD failure modes, but also helps avoid getting stuck in local minima.

Momentum I

- It’s common for the ‘leaky’ average (the ‘velocity’, v_t) to be a weighted average of the instantaneous gradient g_t and the past velocity1:

$$v_t = \beta v_{t-1} + g_t$$

where $\beta \in [0, 1]$ is the ‘momentum’

1There are quite a few variants – here the PyTorch variant.
Momentum II

- The momentum method allows to accumulate velocity in directions of low curvature that persist across multiple iterations.

- This leads to accelerated progress in low curvature directions compared to gradient descent.

MB-SGD with Momentum

- Learning with momentum on iteration t (batch at t denoted by $b(t)$) is given by:

$$
\begin{align*}
\mathbf{v}_t &\leftarrow \beta \mathbf{v}_{t-1} + \nabla \theta \mathcal{L}_{b(t)} \\
\theta_t &\leftarrow \theta_{t-1} - \eta \mathbf{v}_t
\end{align*}
$$

$\beta = 0.9$ is a good choice for the momentum parameter.
SGD with Momentum - potentially better convex convergence

Learning Rates

- In practice you want to decay your learning rate over time
- Smaller steps will help get closer to the minima
- But don't do it too early, else might get stuck
- Something of an art form!
Reduce LR on Plateau

- Common Heuristic approach:
 - if the loss hasn’t improved (within some tolerance) for \(k \) epochs then drop the LR by a factor of 10
- Remarkably powerful!

Cyclic Learning Rates

- Worried about getting stuck in a non-optimal local minima?
- Cycle the learning rate up and down (possibly annealed), with a different LR on each batch
- See https://arxiv.org/abs/1506.01186
More Advanced Optimizers

- **Adagrad**
 - Decrease learning rate dynamically per weight.
 - Squared magnitude of the gradient (2nd moment) used to adjust how quickly progress is made - weights with large gradients are compensated with a smaller learning rate.
 - Particularly effective for sparse features.

- **RMSProp**
 -Modify Adagrad to decouple learning rate from gradient magnitude scaling
 - Incorporates leaky averaging of squared gradient magnitudes
 - LR would typically follow a predefined schedule

- **Adam**
 - Essentially takes all the best ideas from RMSProp and SDG+Momentum
 - Bias corrected momentum and second moment estimation
 - It might still diverge (or be non optimal, even in convex settings)...
 - LR is still a hyperparameter (you might still schedule)

Take-away Messages

- The loss landscape of a deep network is complex to understand (and is far from convex)
- If you’re in a hurry to get results use Adam
- If you have time, then use SGD (with momentum) and work on tuning learning rates
- If you’re implementing something from a paper, then follow what they did!

For more about Numerical Optimization: CMSC 764