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Automatic Differentiation (AD)

l A method to get exact derivatives efficiently, 
by storing information as you go forward that 
you can reuse as you go backwards
– Takes code that computes a function and uses 

that to compute the derivative of that function

– The goal isn’t to obtain closed-form solutions, but 
to be able to write a program that efficiently 
computes the derivatives.
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Differentiation and Programming

Example (Math)
x =?
y =?
a =  x y
b =  sin(x )
z =  a +  b

Example (code) 
(Code)
x = ?
y = ?
a = x * y  
b = sin (x)  
z = a +  b
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Forward Mode AD

M. C. Lin

• To translate using the rules we simply replace each 
primitive operation in the original program by its 
differential analogue

• The order of computation remains unchanged: if a 
statement K is evaluated before another statement L, then 
the differential analogue of K is evaluated before the 
analogue statement of L

• This is Forward-mode Automatic Differentiation
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Backward AD:
Reversing the Chain Rule

M. C. Lin
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Visualizing Dependencies

M. C. Lin

• Differentiating in reverse can be quite mind-bending: instead of 
asking what input variables an output depends on, we have to ask 
what output variables a given input variable can affect.

• We can see this visually by drawing a dependency graph of the 
expression:
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Gradient Descent

l Define total loss as                                                      for 
some loss function l, dataset D, and model g, with learnable 
parameters Ɵ

l Define how many passes over the data to make (each one 
known as an Epoch)

l Define a learning rate ƞ
Gradient Descent updates the parameters Ɵ by moving them in 
the direction of the negative gradient with respect to the total 
loss L by the learning rate ƞ multiplied by the gradient:
 for each Epoch:

M. C. Lin
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Gradient Descent

l Gradient Descent has  good statistical properties 
(very low variance)

l But is very data inefficient (particularly when data 
has many similarities)

l Doesn’t scale to effectively infinite data (e.g. with 
data augmentation)

M. C. Lin
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Stochastic Gradient Descent (SGD)

l Define loss function l, dataset D, and model g, with learnable 
parameters Ɵ

l Define how many passes over the data to make (each one 
known as an Epoch)

l Define a learning rate ƞ
Stochastic Gradient Descent (SGD) updates the parameters 
Ɵ by moving them in the direction of the negative gradient with 
respect to the loss of a single item l  by the learning rate ƞ, 
multiplied by the gradient:
           for each Epoch:

M. C. Lin
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Stochastic Gradient Descent (SGD)

l Stochastic Gradient Descent has poor statistical 
properties (very high variance)

l Why works?  
– We don’t need to check all the training examples to get 

an idea about the direction of decreasing slope.  By 
analyzing only 1 example at a time and following its 
slope (gradient), we can reach a point very close to the 
actual minimum

l Not computationally efficient enough (poor 
utilization of resources w.r.t. vectorization)

M. C. Lin
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Mini-Batch Stochastic Gradient Descent

l Define a batch size b
l Define batch loss                                                         as for 

some loss function l  & model g with learnable parameters Ɵ. 
Db is a subset of dataset D of cardinality b

l Define how many passes (Epochs) over the data to make
l Define a learning rate ƞ
Mini-batch Stochastic Gradient Descent (SGD) updates parameters Ɵ 
by moving them in the direction of the negative gradient with respect to 
the loss of a mini-batch Db, L b by the learning rate ƞ, multiplied by the 
gradient:
 

M. C. Lin
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Mini-Batch Stochastic Gradient Descent

l Mini-batch Stochastic Gradient Descent has 
reasonable statistical  properties (much lower 
variance than SGD)
l Allows for computationally efficiency (good 
utilization of resources)
l Ultimately we would normally want to make our 
batches as big as possible for lower variance gradient 
estimates, but:

– Must still fit in RAM (e.g.  on the GPU)
– Must be able to maintain throughput (e.g. pre-processing 

on the CPU;  data transfer time)

M. C. Lin
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Learning Rates

l Choice of learning rate is extremely important
l But we have to reason about the ‘loss landscape’

– Most convergence analysis of optimization algorithms assumes 
a convex loss landscape

• Easy to reason about
• Can be shown that (S)GD will converge to the optimal solution for 

a variety of learning rates
• Can give insights into potential problems in the non-convex case

– Deep Learning is highly non-convex
• Many local minima
• Plateaus
• Saddle points
• Symmetries (permutation, etc)
• Certainly no single global minima

M. C. Lin
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Accelerated Gradient Methods

l Accelerated gradient methods use a leaky average 
of the gradient,  rather than the instantaneous 
gradient estimate at each  time  step

l A physical analogy would be one of the 
momentum a ball picks up  rolling down a hill...

l This helps address the *GD failure modes, but also 
helps avoid getting stuck in local minima

M. C. Lin
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Momentum I

l It’s common for the ‘leaky’ average (the 
‘velocity’, vt ) to be a weighted average of the 
instantaneous gradient gt and the past velocity1:

    where                  is the ‘momentum’

1There are quite a few variants – here the PyTorch variant

M. C. Lin
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Momentum II

l The momentum method allows to accumulate 
velocity in directions of low curvature that 
persist across multiple iterations

l This leads to accelerated progress in low 
curvature directions compared to gradient 
descent

M. C. Lin
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MB-SGD with Momentum

l Learning with momentum on iteration t (batch at 
t denoted by b(t)) is given by:

               is a good choice for the momentum 
parameter

    
M. C. Lin
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SGD with Momentum - potentially 
better convex convergence
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Learning Rates

l In practice you want to decay your learning rate over 
time 

l Smaller steps will help get closer to the minima
l But don’t do it too early, else might get stuck

l Something of an art  form!

M. C. Lin
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Reduce LR on Plateau

l Common Heuristic approach:
– if the loss hasn’t improved (within some tolerance) 

for k epochs then drop the LR by a  factor of 10
l Remarkably powerful!

M. C. Lin

22

Cyclic Learning Rates

l Worried about getting stuck in a  non-optimal local  
minima?
l Cycle the learning rate up and down (possibly 
annealed), with a different LR on each batch

l See https://arxiv.org/abs/1506.01186

M. C. Lin
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More Advanced Optimizers

l Adagrad
– Decrease learning rate dynamically per weight.
– Squared magnitude of the gradient (2nd moment) used to adjust how 

quickly progress is made - weights with large gradients are compensated 
with a smaller learning rate.

– Particularly effective for sparse features.
l RMSProp

– Modify Adagrad to decouple learning rate from gradient magnitude scaling
– Incorporates leaky averaging of squared gradient magnitudes
– LR would typically follow a predefined schedule

l Adam
– Essentially takes all the best ideas from RMSProp and SDG+Momentum
– Bias corrected momentum and second moment estimation
– It might still diverge (or be non optimal, even in convex settings)...
– LR is still a hyperparameter (you might still schedule) M. C. Lin
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Take-away Messages

l The loss landscape of a deep network is complex 
to understand (and is far from convex)
l If you’re in a  hurry to get results use Adam
l If you have time, then use SGD (with momentum) 
and work on tuning learning rates
l If you’re implementing something from a paper, 
then follow what they did!

For more about Numerical Optimization: CMSC 764

M. C. Lin
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