
Name:

1

M. C. Lin

CMSC 838B & 498Z:
Differentiable Programming

Tues/Thur 12:30pm – 1:45pm
http://www.cs.umd.edu/class/fall2023/cmsc838b

Ming C. Lin
IRB 5162

lin@cs.umd.edu
http://www.cs.umd.edu/~lin

Office Hours: After Class or By Appointment

1

M. C. Lin

Introduction to Learning

l Unsupervised Learning - discover a good internal 
representation of the input
l Supervised Learning - learn to predict an output when 
given an input vector
l Reinforcement Learning - learn to select an action to 
maximize the  expectation of future rewards  (payoff)
l Self-supervised Learning - learn with targets induced by a 
prior on the unlabelled training data
l Semi-supervised Learning - learn with few labelled 
examples and  many unlabelled ones

2

http://www.cs.umd.edu/class/fall2021/cmsc838b


Name:

2

M. C. Lin

Unsupervised Learning

not provided with any pre-assigned labels or scores for training data

3

M. C. Lin

Supervised Learning

“Stacked hourglass networks for human  pose estimation” 
by Newell, Alejandro, Kaiyu Yang, and Jia Deng.  ECCV 2016.  

4



Name:

3

M. C. Lin

Types of Supervised Learning

l Regression: The machine is asked to predict k numerical 
values given some input.  The machine is a function 

    f: Rn ➝ Rk

l Classification: The machine is asked to specify which of 
k categories some input belongs to:
– Multiclass classification - target is one of the k classes 
– Multilabel classification - target is some number of the 

k classes
– In both cases, the machine is a function 
    f: Rn ➝ {1 … k}.  But, it is most common for the     
    learning algorithm to actually learn f: Rn ➝ Rk

5

M. C. Lin

Reinforcement Learning

https://simple.wikipedia.org/wiki/Reinforcement_learning

• a set of environment and agent states, S
• a set of actions, A, of the agent
• Pa(s,s’) is probability of transition at time t from states s to s’ under action a
• Ra(s,s’) is the immediate reward after transition from s to s’ with action a

6



Name:

4

M. C. Lin

Self-Supervised Learning

1. Pretext task solved based on pseudo-labels to initialize network weights 
2. Complex downstream task (e.g. speech recognition) that computes the   
    actual task to be performed with supervised or unsupervised learning
*Not necessarily require explicit data labeling/classified by human 

7

M. C. Lin

Semi-Supervised Learning

8



Name:

5

M. C. Lin

Generative Models

l Many unsupervised and self-supervised models can 
be classed as ‘Generative Models’

l Given unlabelled data X, a unsupervised generative 
model learns P[X]:
– Could be direct modelling of the data (e.g. Gaussian 

Mixture Models)
– Could be indirect modelling by learning to map the 

data to a parametric distribution in a lower 
dimensional space (e.g. a VAE’s Encoder) or by 
learning a mapping from a parameterized distribution 
to the real data space (e.g. a VAE Decoder or GAN)

l These are characterised by an ability to ‘sample’ the 
model to `create’ new data

9

M. C. Lin

Generative vs. Discriminative Models

For classification, use different statistical modeling:

l Discriminative models learn the boundary between 
classes. A (probabilistic) discriminative model is a 
model of the conditional probability of the target Y 
given an observation X: P[Y|X]

l Generative models of labelled data model the 
distribution of individual classes. Given an observable 
variable X and a target variable Y , a generative model 
is a statistical model that tries to model P[X|Y] & P[Y] 
in order to model the joint probability distribution 
P[X,Y]

10



Name:

6

M. C. Lin

How Supervised Learning Often Works

l Start by choosing a model-class, ŷ = f(x;W),  
where the model-class f  is a way of using 
some numerical parameters, W, to map each 
input vector x to a predicted output ŷ

l Learning means adjusting the parameters to 
reduce the discrepancy between the true 
target output y on each training case and the 
output ŷ, predicted by the model

11

M. C. Lin

Artificial Neural Network

Without loss of generality, we can write the above as: 
ŷ = g( f(x;W(1)); W(2)) = g(W(2) f(W(1)x)), where f and g 
are activation functions

12



Name:

7

M. C. Lin

Terminology

l Learning: adaptation of the network to better handle a task 
by considering sample observations, e.g. adjusting the 
weights (and optional thresholds) of the network to improve 
the accuracy of the result (e.g. error rates ➝ 0)

l Propagation function computes the input to a neuron from 
the outputs of its predecessor neurons and their 
connections as a weighted sum. A bias term can be added 
to the result of the propagation.

l Organization: the neurons are typically organized into 
multiple layers, esp. in DNN

l Hyperparameter: a constant parameter whose value is set 
before the learning process begins. The values of 
parameters are derived via learning, e.g. learning rate  
(stepsize), the number of hidden layers, batch size, etc

13

M. C. Lin

Activation Function

l To find the output of the neuron, first we take the weighted 
sum of all the inputs, weighted by the weights of 
the connections from the inputs to the neuron. 

l We add a bias term to this sum. This weighted sum is 
sometimes called the activation. 

l This weighted sum is then passed through a (usually 
nonlinear) ’activation function’ to produce the output. 

l The initial inputs are external data, such as images and 
documents. The ultimate outputs accomplish the task, such 
as recognizing an object in an image.

14



Name:

8

M. C. Lin

Common Activation Functions

15

Final layer activations

l What form should the final layer function g take?
l It depends on the task (and on the chosen loss function)...

– For regression it is typically linear (e.g. identity), but you might 
choose others if you say wanted to clamp the range of the network.

– For binary classification (MLP has a single output), use Sigmoid
– For multilabel classification, typically one would choose Sigmoid
– For multiclass classification, typically use the Softmax function:

M. C. Lin

16



Name:

9

M. C. Lin

Loss Functions

l The choice of loss function depends on the task (e.g. 
classification, regression, or something else)

l The choice also depends on the activation function of the 
last layer 
– For numerical reasons, often the activation is computed directly 

within the loss rather than being part of the model
– Some classification losses require raw outputs (e.g. a linear layer) of 

the network as their input
• These are often called unnormalized log probabilities or logits
• An example would be hinge-loss used to create a Support Vector Machine that 

maximizes the margin -- e.g.: lhinge (^y; y) = max(0; 1 - y * ^y) with a true label, y ∊ 
{-1; 1} for binary classification

l There are many different loss functions we might encounter 
(MSE, Cross-Entropy, KL-Divergence, huber, L1 (MAE), 
CTC, Triplet, ...) for different tasks

17

M. C. Lin

Cost Function (measure of discrepancy)

l Mean Squared Error (MSE) loss for a single data point (here 
assumed to be a vector, but equally applicable to a scalar:

l lMSE (^y; y) is the predominant choice for regression problems 
with linear activation in the last layer

l For a classification problem with Softmax or Sigmoidal (or 
really anything non-linear) activations, MSE can cause slow 
learning, especially if predictions are very far off the targets
– Gradients of lMSE are proportional to the difference in target and 

predicted multiplied by the gradient of the activation function
– The Cross-Entropy loss function is generally a better choice here

18



Name:

10

M. C. Lin

Multiclass classification w/ Softmax Outputs

l Softmax can be thought of making the K outputs of the 
network mimic a probability distribution

l The target label y could also be represented as a distribution 
with a single 1 and zeros everywhere else. e.g. they are 
“one-hot encoded”

l In such a case, the obvious loss function is the negative log 
likelihood of the Categorical distribution (aka Multinoulli, 
Generalized Bernoulli, Multinomial with one sample):

19

M. C. Lin

Gradient Descent

l Define total loss as 
     for some loss function l, dataset D and model g with 
     learnable parameters ⊝
l Define how many passes over the data to make (each one 

known as an Epoch)
l Define a learning rate 𝓃
l Gradient Descent updates the parameters ⊝ by moving 

them in the direction of the negative gradient with respect to 
the total loss L  by learning rate 𝓃 multiplied by the gradient:

 for each Epoch:

20



Name:

11

M. C. Lin

Stochastic Gradient Descent

l Define loss function l, dataset D and model g with 
     learnable parameters ⊝
l Define how many passes over the data to make (each one 

known as an Epoch)
l Define a learning rate 𝓃
l Stochastic Gradient Descent updates the parameters 
⊝ by moving them in the direction of the negative gradient 
with respect to the loss of a single item l  by the learning rate 
𝓃 multiplied by the gradient:

 for each Epoch:

21


