QEXLSITP

>0 University of Maryland College Park

Q Department of Computer Science
ARYLAS CMSC131 Spring 2024
Exam #3

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE):

STUDENT ID (e.g. 123456789):

Instructions

e Please print your answers and use a pencil.

e Do not remove the staple from the exam. Removing it will interfere with the Gradescope scanning process.

e To make sure Gradescope can recognize your exam, print your name, write your directory id at the bottom of pages with the text
Directoryld, provide answers in the rectangular areas provided, and do not remove any exam pages. Even if you use the provided
extra pages for scratch work, they must be returned with the rest of the exam.

This exam is a closed-book, closed-notes exam, with a duration of 50 minutes and 100 total points.

Your code must be efficient.

Multiple choice questions have only one answer unless indicated otherwise.

You don’t need to use meaningful variable names; however, we expect good indentation.

Grader Use Only
#1		Problem #1 (Short Answers - 2pts each)		16
#2		Memory Map		24
#	Coding	60		
Total		Total	100	

Problem #1 (Short Answers — 2 pts each)

1. (2 pts) If a Java interface has a(n)

method, the class that implements the interface can use the

code without re-writing the method definition.

2. (2 pts) A field in a Java interface will be public, static, and

3. (2 pts) A Stack is an example of a(n)

data type.

For 4 and 5, assume:

ArraylList <String> myList = new ArrayList<>();

myList.add("Bob"); myList.add("Tom"); myList.add("Joe") ;

4. (2 pts) Use a for-each loop to print out all names. Your code should work even if there are more than 3 names. Use any library

method(s) needed.

5. (2 pts) Use a traditional for loop to print out all names. Your code should work even if there are more than 3 names. Use any

library method(s) needed.

Assume the following 4 files all in the same package. Use the code below for questions 6 to 8.

public interface Student ({
public void takeExam() ;
}

public class StudentHistory implements Student{
public void takeExam() {
System.out.println("write the date");
}
}

public class StudentCS implements Student({
public void takeExam() {
System.out.println("write code") ;
}
public void takeExam(int x) {
System.out.println("overload") ;
}
}

public class Driver {
public static void main(String[] args) {

/*HERE*/

6. Assume the following code replaces the /*HERE*/ comment in the driver:

If the code above will not compile, write NC. If it will compile, but throw an exception, write CE. If it will compile and run,

write the output.

Student cs = new StudentCS();
cs.takeExam(3) ;

SAME EXACT CODE AS PAGE 1. JUST DUPLICATED ON THIS PAGE

public interface Student ({
public void takeExam() ;
}

public class StudentHistory implements Student{
public void takeExam() {
System.out.println("write the date");
}
}

public class StudentCS implements Student({
public void takeExam() {
System.out.println("write code") ;
}
public void takeExam(int x) {
System.out.println("overload") ;

}

}

public class Driver {
public static void main(String[] args) {

/*HERE*/

7. Assume the following code replaces the /*HERE*/ comment in the driver:

If the code above will not compile, write NC. If it will compile, but throw an exception, write CE. If it will compile and run,

write the output.

Student cs = new StudentHistory() ;
((StudentCS)cs) . takeExam(3) ;

8. Assume the following code replaces the /*HERE* / comment in the driver:

If the code above will not compile, write NC. If it will compile, but throw an exception, write CE. If it will compile and run,

write the output.

Student s = new StudentHistory() ;
s = new StudentCS() ;
s.takeExam() ;

Directory id:

Problem #2 (Memory Map — 24 pts)

Draw a memory map for the following program up to the point in the program execution indicated by the comment /*HERE*/.
Indicate where each frame starts and ends in the stack. Remember not to draw the frame for methods that would have finished by the
time we reach the stopping point (/* HERE */). Just write null in the box for args.

public class MemMaps ({

public static void aMethod(int[][] input) {
int[][] myVar = input;
input[1] [1] +=7;
input = new int[][] {{1,2}, {3,4}};
myVar [1][1] =myVar [0][1]+ input[O0][O0] ;
/* HERE */

}

public static void main(String[] args) {
args = null;
int []J[] twoD = { {5,6,7}, {8,2}};
aMethod (twoD) ;

STACK HEAP STATIC

args

Problem #3 (Coding — 60 pts)

Complete the implementation of a class called WordList that represents a list of words. A WordList has a 1-D array (strArray
instance variable). There is also a character static field that is counted twice when you code up the compareTo. You are given
all the code of the WordList and only need to complete the following 3 methods: getStringArray, getCharArray2D, and
compareTo. The only library methods you can use when you code up the three methods are: 1ength field of an array,
length() and charAt() from the String class, and Integer . compare method with 2 arguments. You will lose a significant
number of points for using any other library methods. Using local primitive variables, creating arrays (both 1 and 2D), and using
looping constructs of your choice are all allowed.

import java.util.Arrays;

public class WordList implements Comparable<WordList> {
private static char character;
private String[] strArray;

public WordList (String[] strArray) {
//makes a local copy for the class. You cannot use Arrays.copyOf in your code

this.strArray = Arrays.copyOf (strArray,strArray.length);
}

public static void setCharacter (char character) {
WordList.character = character;

}

public String[] getStringArray () {
//YOUR CODE IS ANSWER TO P3 #1

}

public char[][] getCharArray2D() {
//YOUR CODE IS ANSWER TO P3 #2
}

@Override

public int compareTo (WordList other) {
//YOUR CODE IS ANSWER TO P3 #3

}

@Override
public String toString() {
return "WordList{" +
"character=" + character +
", strArray=" + Arrays.toString(strArray) +
l}l;

}

public static void main(String[] args) {

String[] arrayl = {"banana", "apple", "orange"}; //Your compareTo count should be 22
String[] array2 = {"pear", "grape", "peach"}; // Your compareTo count should be 17
s L} L} . -

WordList.setCharacter('a') ; Output of the main method

WordList objl = new WordList (arrayl) ;

WordList obj2 = new WordList(array2?); WordList{character=a, strArray=[banana, apple, orange]}
WordList{character=a, strArray=[pear, grape, peach]}

System.out.println(objl) ; 1

System.out.println(obj2) ; 0
-1

System.out.println(objl.compareTo (obj2)) ; [b, a, n, a, n, a]

System.out.println(objl.compareTo (objl)) ; [a, P, P, 1, e]

System.out.println(obj2.compareTo (objl)) ; [o, £, a, n, g, e]

char[][] charArray2D = objl.getCharArray2D() ;
for (char[] row : charArray2D) {
System.out.println (Arrays.toString(row)) ;

}

} Directory id:

1. The purpose of the getStringArray() is to return a copy of the strArray instance field without causing a privacy leak.
You decide if it should be a reference copy, a shallow copy, or a deep copy. We are looking for the most efficient
implementation.

public String[] getStringArray() {

2. The getCharArray2D() will return a 2D array that has as many rows as strArray has string elements. Each row i will
reference a 1D character array that has one character per element of the string located at index i of strArray. For simplicity,
assume when this method is called that strArray is not an empty array, and that none of the elements of strArray are null or
the empty string.

public char[][] getCharArray2D() {

7 Directory id:

3. To compare 2 WordList objects, count the number of characters in all of the strings referenced by the elements of strArray of each object
(don’t assume same length for each object’s strArray). However, count instances of character twice in your count. Return 0 if both the
current object and argument have an equal count, 1 if the current object has a greater count, and -1 if the current object has a smaller count. For
simplicity, assume when this method is called that strArray of each object is not an empty array, and that none of the elements of strArray are
null or the empty string. Not required, but you can write one private helper method to cut down on code duplication in compareTo. Write the
private method definition after compareTo and call it in compareTo.

public int compareTo (WordList other) ({

