Introduction to Parallel Computing (CMSC416 / CMSCé16)

Message Passing and MPI

Abhinav Bhatele, Alan Sussman

UNIVERSITY OF

MARYLAND

Announcements

e Assignment | is posted, due on Sep 18 |1:59 pm

 Resource for OpenMP: https://computing.linl.gov/tutorials/openMP

e Assignment 0.2 is also posted but not due until Sep 24 | [:59 pm

* |f you have questions about this assighment, hold off working on it until the topic is covered in class

® Resources for learning MPI:

e https://mpitutorial.com

o https://rookiehpc.org

S Dpp A\RTMENT OF ,
:r COIMPUTEROSCIENCE Abhinav Bhatele,Alan Sussman (CMSC416 / CMSC616)

https://computing.llnl.gov/tutorials/openMP
https://mpitutorial.com
https://rookiehpc.org

Distributed memory programming models

® Each process only has access to its own local memory / address space

® When it needs data from remote processes, it has to send/receive messages

Process 0 /‘

Process |

Time N S —

‘;\g(urp

ﬁ, COMPUTER SCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616) 3

Message passing

® Each process runs in its own address space

* Access to only their memory (no shared data)

e Use special routines to exchange data among processes

Process 0
Process | .\A
Process 2 /’ '

Process 3 '

Time

RYALS 152

~ COMPUTER SCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Message passing programs

® A parallel message passing program consists of independent processes

* Processes created by a launch/run script

® Each process runs the same executable, but potentially different parts of the program,
and on different data

e Often used for SPMD style of programming

S DEPARTMENT OF /
g8 COMPUTER SCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616) 5

Message passing history

® PVM (Parallel Virtual Machine) was developed in 1989-1993

e MPI forum was formed in 1992 to standardize message passing models and MPI 1.0
was released in 1994

o v2.0 — 1997
e v3.0— 2012
e v4.0 — 2021

S Dpp A\RTMENT OF ,
'f"éf:‘f:.;?i: COM[’UTEI{OSCIENCE Abhinav Bhatele,Alan Sussman (CMSC416 / CMSC616)

Message Passing Interface (MPI)

® |tis an interface standard — defines the operations / routines needed for message
passing

® Implemented by vendors and academics for different platforms

e Meant to be “portable”: ability to run the same code on different platforms without modifications

® Some popular open-source dimplementations are MPICH, MVAPICH, OpenMPI

* Vendors often implement their own versions optimized for their hardware: Cray/HPE, Intel

S DEPARTMENT OF ,
"_‘%R.bg‘ COMPUTER SCIENCE Abhinav Bhatele,Alan Sussman (CMSC416 / CMSC616)

Hello world in MPI

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]) {
int myrank, numpes;
MPI Init(&argc, &argv);

MPI Comm rank(MPI COMM WORLD, &myrank)j;
MPI Comm size(MPI COMM WORLD, &numpes);
printf("Hello world! I'm %d of %d\n", myrank, numpes);

MPI Finalize();
return O;

}

S DEPARTMENT OF ,
@ COMPUTER SCIENCE Abhinav Bhatele,Alan Sussman (CMSC416 / CMSC616)

Compiling and running an MPI program

o Compiling:

mpicc -0 hello hello.c
® Running:

mpirun -n 2 ./hello

j_*-,'afki'r*% D .PAR. .L . e e .
g8 COMPUTER SCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Process creation / destruction

® int MPI Init(int argc, char **argv)
¢ |nitializes the MPI execution environment
@ int MPI Finalize(void)

e Jerminates the MPIl execution environment

S DEPARTMENT OF :
'T"én?;.;ii: COMPUTEROSCIENCE Abhinav Bhatele,Alan Sussman (CMSC416 / CMSC616)

10

Process identification

® int MPT Comm size(MPI Comm comm, 1nt *size)
* Determines the size of the group associated with a communicator

¢ int MPI Comm rank(MPI Comm comm, 1nt *rank)

* Determines the rank (ID) of the calling process in the communicator

e Communicator — a set of processes identified by a unique tag

* Default communicator: MPI COMM WORLD

RYALS 152

A& DEPARTMENT OF .
g8 COMPUTER SCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Announcements

e Assignment 0.2 is posted and due on Sep 24 | [:59 pm

e Assighment | autograder changes:

* We tweaked the autograder a bit so that it does not report scores out of 90

e Reminder: your solutions will be run by us on zaratan to verify correctness

® Final exam date and time: Dec | | 6:30-8:30 pm

* In the respective classrooms:|IRB 0318 and 1116

RYALS 152

AR DEPARTMENT OF /
g8 COMPUTER SCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

12

Send a blocking pt2pt message

int MPI Send(const void *buf, int count,\MPI Datatype datatype,
int dest, int tag, MPI Comm comm)

buf:address of send buffer

count: number of elements in send buffer
datatype: datatype of each send buffer element
dest: rank of destination process

tag: message tag

comm: commuhnicator

S Dpp A\RTMENT OF ,
";,f»i;;.b{;;“ COM[’UTEI{OSCIENCE Abhinav Bhatele,Alan Sussman (CMSC416 / CMSC616)

|3

Send a blocking pt2pt message

int MPI Send(const void *buf, int count,\MPI Datatype datatype,
int dest, int tag, MPI Comm comm)

Between a pair

buf:address of send buffer
of processes

count: number of elements in send buffer
datatype: datatype of each send buffer element
dest: rank of destination process

tag: message tag

comm: commuhnicator

S DEPARTMENT OF :
:r COM[’UTEI{OSCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

|3

Receive a blocking pt2pt message

int MPI Recv(void *buf, int count, MPI Datatype datatype, 1int
source, 1nt tag, MPI Comm comm, MPI Status *status)

buf:address of receive buffer

count: maximum number of elements in receive buffer
datatype: datatype of each receive buffer element
source: rank of source process

tag: message tag

comm: communicator

status: status object

SHE DEPARTMENT OF ,
".;,f»h,;.b{;;" COM[’UTEI{OSCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

| 4

MPI| Status object

typedef struct MPI Status {
int count;
int cancelled;
int MPI SOURCE:
® Represents the status of the received message int MPI_TAG;
int MPI ERROR;
} MPI Status, *PMPI Status;

® count: number of received entries
e MPlI_SOURCE: source of the message
e MPI_TAG: tag value of the message

e MPI_ERROR: error associated with the message

\-"'. 0Sry

~ COMPUTER SCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

::::::

Semantics of point-to-point communication

® A receive matches a send if certain arguments to the calls match

* What is matched: source, tag, communicator

* |f the datatypes and count don’t match, this could lead to memory errors and correctness issues

e |f a sender sends two messages to a destination, and both match the same receive,
the second message cannot be received if the first is still pending

* “No-overtaking” messages

e Always true when processes are single-threaded

® Tags can be used to disambiguate between messages in case of non-determinism

e DEPARTMENT OF .
g8 COMPUTER SCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616) 16

Semantics of point-to-point communication

® A receive matches a send if certain arguments to the calls match Between a pair

of processes
* What is matched: source, tag, communicator

* |f the datatypes and count don’t match, this could lead to memory errors and correctness issues

e |f a sender sends two messages to a destination, and both match the same receive,
the second message cannot be received if the first is still pending

* “No-overtaking” messages

e Always true when processes are single-threaded

® Tags can be used to disambiguate between messages in case of non-determinism

S DEPARTMENT OF /
KA COMPUTER SCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616) 6

Simple send/receive in MPI

int main(int argc, char *argv[]) {

MPI Comm rank(MPI_ COMM WORLD, &myrank);

int data;
1f (myrank == 0) {

data = 7;
MPI Send(&data, 1, MPI INT, 1, 0, MPI COMM WORLD);
} else 1f (myrank == 1) {

MPI Recv(&data, 1, MPI INT, O, O, MPI COMM WORLD, MPI STATUS IGNORE);
printf ("Process 1 received data %d from process 0\n", data);

S DEPARTMENT OF ,
@ COMPUTER SCIENCE Abhinav Bhatele,Alan Sussman (CMSC416 / CMSC616)

~~~~~~



Basic MPl Send and MPI Recv

e MPl Send and MPI_Recv routines are blocking

* Only return when the buffer specified in the call can be used again
e Send: Returns once sender can reuse the buffer

e Recv: Returns once data from Recyv is available in the buffer

Process 0 . . Pl_send
' MPI_Recv
Process | .
Time —— 77— "
* DEPARTMENT OF Abhinav Bhatele,Alan Sussman (CMSC416 / CMSC616) .

%) COMPUTER SCIENCE



Basic MPl Send and MPI Recv

e MPl Send and MPI_Recv routines are blocking

* Only return when the buffer specified in the call can be used again
e Send: Returns once sender can reuse the buffer

e Recv: Returns once data from Recyv is available in the buffer

Process 0 . ' . Pl_send
' MPI_Recv
Process | . '
Time —— 77— "
> DEPARTMENT OF Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616) .

)" COMPUTER SCIENCE



Basic MPl Send and MPI Recv

e MPl Send and MPI_Recv routines are blocking

* Only return when the buffer specified in the call can be used again
e Send: Returns once sender can reuse the buffer

e Recv: Returns once data from Recyv is available in the buffer

Process 0 . ' . Pl_send
Deadlock!
' MPI_Recv
Process | . '
Time —— 77— 7"
> DEPARTMENT OF Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616) .

)" COMPUTER SCIENCE



Basic MPl Send and MPI Recv

e MPl Send and MPI_Recv routines are blocking

* Only return when the buffer specified in the call can be used again
e Send: Returns once sender can reuse the buffer

e Recv: Returns once data from Recyv is available in the buffer

Process 0 ' ' . MPl_end
Deadlock!
' MPI_Recv
Process | . '
Time —— 77— "
> DEPARTMENT OF Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616) .

)" COMPUTER SCIENCE



Example program

int main(int argc, char *argv[]) {

MPI Comm rank(MPI COMM WORLD, &myrank);

1f (myrank & 2 ==
data = myrank;
MPI Send(&data,
} else {
data = myrank *
MPI Recv(&data,

printf ("Process

“@ DEPARTMENT OF
se COMPUTER SCIENCE

0) A
1, MPI INT, myrank+l, 0, ...);

2 ;
1, MPI INT, myrank-1, 0, ...); TJime

%d received data %d\n”, myrank, data);

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

rank =0
rank = 1
rank = 2
rank = 3

19



Example program

0 rank = 0 data= 0

int main(int argc, char *argv[]) {

I rank = 1 data = 2
MPI Comm rank(MPI COMM WORLD, &myrank);
if (myrank % 2 == 0) { 2 rank = 2 data = 2
data = myrank;
MPI Send(&data, 1, MPI INT, myrank+l, 0, ...); 3 rank=3 data=6
} else {

data = myrank * 2;

: -
MPI Recv(&data, 1, MPI INT, myrank-1, 0, ...); T1ime

printf("Process %d received data %d\n”, myrank, data);

"3
e

S DEPARTMENT OF .
@ COMPUTER SCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)



Example program

0 rank = 0 data= 0

int main(int argc, char *argv[]) {

I rank = 1 data = 2
MPI Comm rank(MPI COMM WORLD, &myrank);
if (myrank % 2 == 0) { 2 rank = 2 data = 2
data = myrank;
MPI Send(&data, 1, MPI INT, myrank+l, 0, ...); 3 rank=3 data=6
} else {

data = myrank * 2;

: -
MPI Recv(&data, 1, MPI INT, myrank-1, 0, ...); T1ime

printf("Process %d received data %d\n”, myrank, data);

-------
"3
e

S DEPARTMENT OF ,
@ COMPUTER SCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)



Example program

0 rank = 0 data= 0

int main(int argc, char *argv[]) {

I rank = 1 data = 2
MPI Comm rank(MPI COMM WORLD, &myrank);
if (myrank % 2 == 0) { 2 rank = 2 data = 2
data = myrank;
MPI Send(&data, 1, MPI INT, myrank+l, 0, ...); 3 rank=3 data=6
} else {

data = myrank * 2;

: -
MPI Recv(&data, 1, MPI INT, myrank-1, 0, ...); T1ime

printf("Process %d received data %d\n”, myrank, data);

-------
"3
e

S DEPARTMENT OF ,
@ COMPUTER SCIENCE Abhinav Bhatele,Alan Sussman (CMSC416 / CMSC616)



Example

program

int main(int argc, char *argv[]) {

MPI Comm rank(MPI COMM WORLD, &myrank);

1f (myrank & 2 ==
data = myrank;
MPI Send(&data,
} else {
data = myrank *
MPI Recv(&data,

printf ("Process

}

""""""

“@ DEPARTMENT OF
me COMPUTER SCIENCE

0) A
1, MPI INT, myrank+l, 0, ...);

2 ;
1, MPI INT, myrank-1, 0, ...); TJime

%d received data %d\n”, myrank, data);

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

rank =0
rank = 1
rank = 2
rank = 3

data= 0
data = 2
data = 2
data =6

data=0
data=0
data = 2
data = 2

19



MPI| communicators

e Communicator represents a group or set of processes numbered O, ... , n-|

e |dentified by a unique “tag” assigned by the runtime

® Every program starts with MPl_COMM_WORLD (default communicator)

e Defined by the MPI runtime, this group includes all processes

e Several MPI routines to create sub-communicators
e MPI_Comm_ split
e MPI Cart create

e MPI_Group incl

S DEPARTMENT OF /
g8 COMPUTER SCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

20



MPI datatypes

e Can be a pre-defined one: MPI_INT, MPI_CHAR, MPI_DOUBLE, ...

® Derived or user-defined datatypes:

* Array of elements of another datatype

® struct datatype to accommodate sending multiple datatypes together

e DEPARTMENT OF .
g8 COMPUTER SCIENCE Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

21



UNIVERSITY OF

MARYLAND



