Introduction to Parallel Computing (CMSC416 / CMSC616)

Parallel CSE Applications

Abhinav Bhatele, Alan Sussman

Announcements

Quiz 3 has been posted

Abhinav Bhatele (CMSC416 / CMSC616)

Contact me

- CMSC416: If you are an undergrad inter Cluster Competitions
- bhatele@cs.umd.edu

Abhinav Bhatele (CMSC416 / CMSC616)

• CMSC416: If you are an undergrad interested in participating in International Student

motions

Abhinav Bhatele (CMSC416 / CMSC616)

Calculate trajectories of atoms and molecules by solving Newton's equations of

- motions
- Force calculations
 - Bonded interactions: bonds, angles, dihedrals
 - Non-bonded interactions: van der Waal's and electrostatic forces

Abhinav Bhatele (CMSC416 / CMSC616)

Calculate trajectories of atoms and molecules by solving Newton's equations of

- motions
- Force calculations
 - Bonded interactions: bonds, angles, dihedrals
 - Non-bonded interactions: van der Waal's and electrostatic forces
- Number of atoms: thousands to millions

Abhinav Bhatele (CMSC416 / CMSC616)

Calculate trajectories of atoms and molecules by solving Newton's equations of

- motions
- Force calculations
 - Bonded interactions: bonds, angles, dihedrals
 - Non-bonded interactions: van der Waal's and electrostatic forces
- Number of atoms: thousands to millions
- Simulation step: ~I femtosecond (10-15 s)

- motions
- Force calculations
 - Bonded interactions: bonds, angles, dihedrals
 - Non-bonded interactions: van der Waal's and electrostatic forces
- Number of atoms: thousands to millions
- Simulation step: ~I femtosecond (10-15 s)
- Used for drug design, materials design

Sequential Algorithm

- At every step, calculate forces on each atom
 - Calculate bonded and short-range forces every step
 - Calculate long-range non-bonded forces every few time steps (using PME or P3M etc.)
- Particle mesh Ewald (PME) summation:
 - Calculate long-range interactions in Fourier space
- Calculate velocities and new positions
- Repeat ...

Atom decomposition:

• Partition the atoms across processes

- Atom decomposition:
 - Partition the atoms across processes
- Force decomposition:
 - Distribute the force matrix to processes
 - Matrix is sparse and non-uniform

- Atom decomposition:
 - Partition the atoms across processes
- Force decomposition:
 - Distribute the force matrix to processes
 - Matrix is sparse and non-uniform
- Spatial decomposition:
 - Assign a region of the 3D simulation space to each process

Hybrid parallelization

- Hybrid of spatial and force decomposition
- Decouple assignment of data and work to processes
- Distribute both atoms and the force calculations to different processes

Neutral territory (NT) methods

Desmond's mid-point method

SC23 Test-of-time award:

Shaw DE, RO Dror, JK Salmon, et al. 2009. "Millisecond-scale molecular dynamics simulations on Anton," In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC09), Portland, OR, USA, pp. 1-11, doi: 10.1145/1654059.1654126

Particle mesh Ewald

- Replace direct force calculations by:
 - Calculate short-range forces in real space
 - Calculate long-range forces in Fourier space
- Create a 3D mesh/grid representing charge densities of atoms
 - Compute a 3D Fast Fourier Transform (FFT)
- FFT computes the discrete Fourier transform (DFT) or inverse DFT
 - Reduces the complexity from $O(N^2)$ to $O(N \log N)$

• Bring all the data to one process

XA

- Bring all the data to one process
- ID or slab decomposition

Abhinav Bhatele (CMSC416 / CMSC616)

2D or pencil decomposition

Measles killed 200,000 in 2020 alone!

LARGE MEASLES OUTBREAKS Global trends in the estimated number of deaths The epidemic in the Democratic Republic of the Congo caused by TB and AIDS, 2000-2018 is the largest single-nation outbreak for decades. Shaded areas represent uncertainty intervals AIDS-related deaths Ukraine Tuberculosis deaths among (2017 - 20)deaths per year HIV-negative people 1.5 >115,000 cases >41 deaths Philippines ď Democratic (2018 - 20)Millions Republic 71,170 cases of the Congo 0.5 841 deaths (2019 - 20)Tuberculosis deaths among 348,158 cases* people living with HIV 6,504 deaths 2000 2009 2018 Madagascar (2018-20) For AIDS, the latest estimates of the number of deaths in 2018 that have been published. 244.675 cases by UNAIDS are available at http://www.unaids.org/en/. For TB, the estimates for 2018 are >1,000 deaths these published in the Global Tuberculosis Report 2019. Deaths from TB among people living with HIV are officially classified as deaths caused by HIV/AIDS in the International Classification of Diseases. Source: Global tuberculosis report 2019. Geneva: World Health Organization, 2019. Data from March 2020. onature *Suspected, not yet officially reported to WHO. Predictions say that 1.66 million

https://www.nature.com/articles/d41586-020-01011-6

DEPARTMENT OF COMPUTER SCIENCE

Abhinav Bhatele (CMSC416 / CMSC616)

people died of tuberculosis in 2020

TERRIBLE TOLL

By the end of July 2020, there had been 646,949 COVID-19 deaths worldwide. In the 32 countries and 4 major cities with relevant data, there were more excess deaths than COVID-19 deaths, suggesting that some COVID-19 deaths are misclassified or that other causes of death have also risen.

Deaths attributed to COVID-19 Excess deaths

*Cumulative deaths from outbreak onset to latest available data, as of 18 August 2020.

onature

https://www.nature.com/articles/d41586-020-02497-w

Measles killed 200,000 in 2020 alone!

LARGE MEASLES OUTBREAKS Global trends in the estimated number of deaths The epidemic in the Democratic Republic of the Congo caused by TB and AIDS, 2000-2018 is the largest single-nation outbreak for decades. Shaded areas represent uncertainty intervals AIDS-related deaths Ukraine (2017 - 20)deaths per year HIV-negative people 1.5 >115,000 cases >41 deaths Philippines ď Democratic (2018 - 20)Millions Republic 71,170 cases of the Congo 0.5 841 deaths (2019 - 20)Tuberculosis deaths among 348,158 cases* people living with HIV 6,504 deaths 2000 2009 2018 Madagascar (2018-20) For AIDS, the latest estimates of the number of deaths in 2018 that have been published. 244.675 cases by UNAIDS are available at http://www.unaids.org/en/. For TB, the estimates for 2018 are >1,000 deaths these published in the Global Tuberculosis Report 2019. Deaths from TB among people living with HIV are officially classified as deaths caused by HIV/AIDS in the International Classification of Diseases. Source: Global tuberculosis report 2019. Geneva: World Health Organization, 2019. Data from March 2020. onature *Suspected, not yet officially reported to WHO.

https://www.nature.com/articles/d41586-020-01011-6

DEPARTMENT OF COMPUTER SCIENCE

Abhinav Bhatele (CMSC416 / CMSC616)

TERRIBLE TOLL

By the end of July 2020, there had been 646,949 COVID-19 deaths worldwide. In the 32 countries and 4 major cities with relevant data, there were more excess deaths than COVID-19 deaths, suggesting that some COVID-19 deaths are misclassified or that other causes of death have also risen

*Cumulative deaths from outbreak onset to latest available data, as of 18 August 2020.

onature

Predictions say that 1.66 million people died of tuberculosis in 2020

https://www.nature.com/articles/d41586-020-02497-w

Societal challenge

- Controlling the spread of infectious diseases is important
- Computational and mathematical modeling of epidemics important to assist governments in responding to outbreaks
- Made challenging due to:
 - increased and denser urbanization
 - increased local and global travel
 - increasingly immuno-comprised population

Approach: individual-based simulation

- Agent-based modeling to simulate epidemic diffusion
- Models agents (people) and interactions between them
- People interact when they visit the same location at the same time
- These "interactions" between pairs of people are represented as "visits" to locations
- Use a bi-partite graph of people and locations or a people-people interactivity graph

Serial algorithm

- At each timestep (typically a day):
 - Determine which people visit which locations
 - "Send" people to those locations
 - At each location "interactions" happen and transmission happens
 - Update people's states at the end of the day and continue
- people's susceptibility, movements etc.

• Interventions (vaccinations, school closures) can be added on certain days to change

Abhinav Bhatele (CMSC416 / CMSC616)

Hybrid time-stepped and discrete-event simulation

https://sitn.hms.harvard.edu/flash/special-edition-on-infectiousdisease/2014/an-introduction-to-infectious-disease/ Abhinav Bhatele (CMSC416 / CMSC616)

Hybrid time-stepped and discrete-event simulation

Hybrid time-stepped and discrete-event simulation

https://sitn.hms.harvard.edu/flash/special-edition-on-infectiousdisease/2014/an-introduction-to-infectious-disease/ Abhinav Bhatele (CMSC416 / CMSC616)

Hybrid time-stepped and discrete-event simulation

Hybrid time-stepped and discrete-event simulation

while d < num days: for each person: Send visit messages to locations

for each location: Process all visit messages Run discrete event simulation Send interaction messages

for each person: Process interactions Update disease state

Normal (5.1) : 35%

Parallel simulation is challenging

- Size and scale of the social contact network (6 billion agents for a global simulation)
 - Unstructured networks and complicated dependencies lead to high communication cost
- Individuals and their behaviors are not identical
- Co-evolving epidemics, public policies and agent behaviors make it impossible to apply standard model reduction techniques

Parallel implementation: Loimos

- All the people and locations are distributed among all processes
- DES computation can be done locally in parallel
- Communication when sending visit and infection messages
- Uses Charm++, a message-driven model

Application software stack

- Parallel programming model / runtime:
 - MPI, OpenMP, Charm++, CUDA, ...
- Libraries
 - Data and visualization libraries (mesh management, simulation output)
 - I/O libraries
 - Math/numerical libraries
 - Graph partitioning, load balancing ...

Why use libraries?

- No need to reinvent the wheel
 - Libraries are highly optimized, have fewer bugs
- Avoids significant effort to write, optimize and maintain code
- Makes code more portable

Popular Libraries

- Data/visualization and I/O libraries
 - I/O: HDF5, pNetCDF, ADIOS
- Numerical libraries:
 - Fast Fourier transforms: FFTW
 - Dense linear algebra: BLAS, LAPACK, Intel MKL
 - Solvers for sparse systems: Hypre, PETSc, Trilinos
- Graph partitioning/load balancing:
 - METIS, Scotch, Zoltan, Chaco

https://events.prace-ri.eu/event/176/contributions/38/attachments/154/305/HPC_libraries.pdf

Domain-specific languages/frameworks

- Structured grids: SAMRAI, Chombo, AMREx
- Unstructured grids: MFEM, Quinoa

The *n*-body problem

- Simulate the motion of celestial objects interacting with one another due to gravitational forces
- Naive algorithm: $O(n^2)$
 - Every body calculates forces pair-wise with every other body (particle)

- Naive approach: Assign n/p particles to each process
- Other approaches?

- Naive approach: Assign n/p particles to each process
- Other approaches?

https://en.wikipedia.org/wiki/Z-order_curve

- Naive approach: Assign n/p particles to each process
- Other approaches?

http://datagenetics.com/blog/march22013/ https://en.wikipedia.org/wiki/Z-order_curve

- Naive approach: Assign n/p particles to each process
- Other approaches?

http://datagenetics.com/blog/march22013/

https://en.wikipedia.org/wiki/Z-order_curve

http://charm.cs.uiuc.edu/workshops/charmWorkshop2011/slides/CharmWorkshop2011_apps_ChaNGa.pdf

Abhinav Bhatele (CMSC416 / CMSC616)

• Let us consider a two-dimensional space with bodies/particles in it

• Let us consider a two-dimensional space with bodies/particles in it

• Let us consider a two-dimensional space with bodies/particles in it

Different parallelization methods

- Tree codes: Barnes-Hut simulations
- Fast multipole methods (FMM): Greengard and Rokhlin
- Particle mesh methods
- Particle-particle particle-mesh (P³M) methods

Barnes-Hut simulation

- Represent the space containing the particles as an oct-tree
- Pairwise force calculations for nearby particles
- For tree nodes that are sufficiently far away, approximate the particles in the node by a single large particle at the center of mass
- O(N logN) algorithm

https://en.wikipedia.org/wiki/Barnes-Hut simulation

Fast multipole methods

- Use multipole expansion for distant particles
- distant particles are similar
- Reduces the time complexity further to O(n)

Abhinav Bhatele (CMSC416 / CMSC616)

• Takes advantage of the fact that for nearby particles, multipole-expanded forces from

Particle-particle particle-mesh methods

- Explicit calculation of forces on nearby particles
- Fourier-based Ewald summation for calculating potentials on a grid
- Smoothed particle hydrodynamics

UNIVERSITY OF MARYLAND