
Parallel CSE Applications
Abhinav Bhatele, Alan Sussman

Introduction to Parallel Computing (CMSC416 / CMSC616)



Abhinav Bhatele (CMSC416 / CMSC616)

Announcements

• Quiz 3 has been posted
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Contact me

• CMSC416: If you are an undergrad interested in participating in International Student 
Cluster Competitions

• bhatele@cs.umd.edu
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Molecular Dynamics
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motions
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Molecular Dynamics

• Calculate trajectories of atoms and molecules by solving Newton’s equations of 
motions

• Force calculations

• Bonded interactions: bonds, angles, dihedrals

• Non-bonded interactions: van der Waal’s and electrostatic forces

• Number of atoms: thousands to millions

• Simulation step: ~1 femtosecond (10-15 s)

• Used for drug design, materials design
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Sequential Algorithm

• At every step, calculate forces on each atom

• Calculate bonded and short-range forces every step

• Calculate long-range non-bonded forces every few time steps (using PME or P3M etc.)

• Particle mesh Ewald (PME) summation:

• Calculate long-range interactions in Fourier space 

• Calculate velocities and new positions

• Repeat …
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Traditional approaches to parallelization

• Atom decomposition:

• Partition the atoms across processes

• Force decomposition:

• Distribute the force matrix to processes

• Matrix is sparse and non-uniform

• Spatial decomposition:

• Assign a region of the 3D simulation space to each process
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Fig. 1. A biomolecular simulation box (only two dimensions shown) split into cells of size 16⇥ 16⇥ 16 Å (extreme left). Each processor holds one such
cell containing approximately 400 atoms. When there are fewer atoms per processor (say 50), the three dimensions are further split to give cells of size
8⇥ 8⇥ 8 Å (center). When there are around 6 atoms per processor, each dimension is reduced to one-fourth the original size (extreme right).

and computation, at every time step, each node sends positions
and velocities of the atoms to its communicating neighbors and
once it has received its incoming messages, calculates forces
on its atoms. The expression for the time per step of an MD
computation is:
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Substituting the expression for T from equation (III.3) in
equation (III.2),
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For the weak scaling analysis, putting in the values of ratio
of atoms to processors, N/Pc = 100 and tc = 10�10 seconds,
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Figure 2 plots the values of ts and tw based on the
equation above for different values of ⌘. For the case of
perfect efficiency, MD simulations do not put a considerable
requirement on the per-processor communication bandwidth.
However, it does require that the network latencies be small.
If we look at the case of ⌘ = 0.125, the application would
require a latency of below a microsecond and a per-processor
communication bandwidth of 2 GB/s. It is also important to
mention that our analysis assumes serialization of messages
put on the network by a node arising from all of its 1024
cores. We expect that for future machines, multiple cores on a
node will be able to inject messages on the network in parallel.

B. Memory requirements

MD codes have a relatively small memory footprint since
the number of atoms on each core is small (between 5 to
400). However at the start of each time step, when atoms
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Fig. 2. Latency and bandwidth requirements for MD (weak scaling)

are received by the processing cores, the amount of memory
needed increases. This is proportional to the total number
of messages received by each core (75 for the case above).
The size of each message is equal to N/Pc multiplied by
the memory requirements for the atom data structure. The
information about each atom sent in the message is the
charge on the atom and its position. Hence the increase in
memory consumption at the beginning of each time is equal
to 75 ⇥ (N/Pc) ⇥ 32 bytes = 0.23 MB. However, even this
transient memory usage in MD simulations is not significant.

C. Smaller problem sizes

An important observation is that building a 107 billion
atom molecular system and doing useful science with it, will
be a challenge for biophysicists. Simulating such a large
system to observe anything meaningful will require long
simulations (milliseconds to seconds). The largest classical
MD simulations done so far involve up to 3 million atoms,
a five orders of magnitude difference. Hence, many scientists
will still simulate systems smaller than 107 billion atoms and
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Hybrid parallelization

• Hybrid of spatial and force decomposition

• Decouple assignment of data and work to 
processes

• Distribute both atoms and the force 
calculations to different processes
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Neutral territory (NT) methods

• Desmond’s mid-point method
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Figure 1.  Assignment of particle pairs to interaction boxes in the midpoint 
method.  In this figure, the boxes are square with side length b, and R = 1.5b.  
Each pair of particles separated by a distance less than R is connected by a 
dashed line segment, with the “x” at its center indicating the box which will 
compute the interaction of that pair. 
 
to the box in which a set of particles interact as their 
interaction box.  Figure 1 illustrates the assignment of particle 
pairs to interaction boxes implied by the midpoint method.  
Two particles that lie in the same box necessarily interact in 
that box, but particles that lie in different boxes may interact 
either in the box in which one of them resides (e.g., particles 2 
and 3) or in a box in which neither resides (e.g., particles 1 
and 5 or particles 3 and 4). 

In the midpoint method, the volume of space from which a 
given process must “import” particle data that ordinarily 
resides within other processes (its import region) includes 
only points within a distance R/2 of its home box, because if 
the distance between two particles is less than R and one of 
them lies more than a distance R/2 from the home box, their 
midpoint must lie outside the home box.  This import region is 
shown in Figure 2(a) for a two-dimensional system. 

For comparison, Figure 2(b) shows the import region of a 
particular traditional spatial decomposition method in which 
the box that interacts two particles is always the home box of 
one or both particles.  In this method, the particles interact 
within the home box of the particle with the smaller x-
coordinate, unless the home boxes of the two particles are in 
the same vertical column, in which case the particles interact  

 

 
Figure 2.  Import regions of (a) the 2-D midpoint method and (b) the 2-D 
analog of the HS method, where R = 1.5b.  In each case, the interaction box is 
light gray and the import region is dark gray. 
 

within the home box of the particle with the smaller y- 
coordinate.  The import region includes half the space within a 
distance R of the home box.  This method is the 2-D analog of 
the HS method defined in our recent publications [6, 43]. 

When the midpoint or HS methods are used for an MD 
simulation, or any other application that requires computation 
of the total force on each particle, each interaction box must 
“export” a force contribution to each of the particles in its 
import region after it has computed the interactions assigned 
to it.  A method in which each process computes all force 
contributions for each particle in its home box would avoid 
the need for such force export, but it would have twice the 
import volume of the HS method and would require that each 
interaction between particles in different boxes be computed 
twice. 

Communication Volume.  Assuming uniform particle 
density, the amount of particle data that must be transferred 
into each process during particle import and out of each 
process during force export is proportional to the volume of 
the import region.  We therefore use the volume of the import 
region (the import volume) as a measure of communication 
bandwidth requirements of a parallelization method.  
Assuming cubical boxes of side length b, we can express the 
import volumes of the 3-D HS and midpoint methods 
(Vimport,HS and Vimport,midpoint, respectively) in terms of αR = R/b 
as: 

Vimport,HS       = b3 (2/3 παR
3 + 3/2 παR

2 + 3αR) 
Vimport,midpoint = b3 (1/6 παR

3
 + 3/4 παR

2 + 3αR). 
A large value of αR implies a high degree of parallelism, as 

b is determined by the number of processes used for 
simulation as well as the size of the global cell.  The import 
volume of the midpoint method is always smaller than that of 
the HS method, with the difference growing in both relative 
and absolute terms as αR grows.  For a more detailed 
comparison of the import volumes of various parallelization 
methods, see [5] and [6]. 

Parallelization of Other Calculations.  The midpoint 
method also applies to interactions that involve sets of three or 
more particles:  the interaction between a set of m particles is 
computed on the box that contains their midpoint, defined as 
the center of the smallest sphere that contains all m particles.  
Desmond uses the midpoint method to parallelize computation 
of the bonded terms, which typically involve two, three, or 
four particles.  Each of these terms is evaluated on the box 
containing an easily computed, approximate midpoint of the 
particles involved.  For parameters associated with typical 
biomolecular force fields, this requires no additional 
communication because all particle positions needed for the 
computation of each bonded term are already included in the 
midpoint method import region associated with the pairwise 
nonbonded computations [5]. 

Similarly, no additional communication is typically required 
for the charge spreading or force interpolation operations 
associated with PME and k-GSE because the particles to be 
communicated already lie in the midpoint method’s import 
region [5]. The same holds for the constraint calculations 
performed in Desmond.  Under the HS method, these 
operations would require additional communication. 
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Match efficiency of NT method 
Subboxes per box 

 
1×1×1 2×2×2 4×4×4 

8 Å 25% 40% 51% 
16 Å 12% 25% 40% 

Box 
side 

length 32 Å 4% 12% 25% 
 
Table 3: Match efficiency of the NT method for several box sizes, each 
divided into 1 (1×1×1), 8 (2×2×2), or 64 (4×4×4) subboxes.  These figures 
assume a 13-Å cutoff radius. 

 
 
Figure 3: (a–c) Import regions associated with several parallelization 
methods for range-limited pairwise interactions.  (a) In the NT method, 
each node computes interactions between atoms in a tower region and 
atoms in a plate region.  The asymmetry of the plate region reflects the fact 
that the interaction between a pair of particles need only be computed 
once, yielding equal and opposite forces on both particles.  (b) In a more 
traditional parallelization method, each node computes interactions be-
tween atoms in its home box and atoms in a larger “half-shell” region, 
which includes the home box.  (c) A variant of the NT method used for 
charge spreading and force interpolation.  A larger, symmetrical plate 
region is required because these calculations involve interactions between 
particles and mesh points rather than between pairs of particles.  (d–f) 
Adapting the NT method to Anton.  (d) The original NT method, for a 
chemical system larger than that of (a).  (e) The use of subboxes leads to 
an expansion of the plate region, because the union of the subbox plates is 
larger than the original plate.  (f) On Anton, the import region consists of 
whole subboxes. 

leads to a more communication-efficient implementation, an  
advantage that grows asymptotically as the level of parallelism 
increases.  In addition, because the two sets of atoms to be inter-
acted are closer in size in the NT method, the ratio of computation 
to communication bandwidth within each HTIS is higher, so the 
NT method uses on-chip communication resources more effec-
tively.  The NT method is one of a number of neutral territory 
methods—parallelization schemes in which the interaction between 
two atoms may be computed by a node on which neither resides [2, 
3, 11, 19, 29]. 

In the absence of appropriate countermeasures, one efficiency-
limiting factor associated with the NT method arises from the fact 
that not all atoms in the tower need to interact with all atoms in the 
plate; many atom pairs, for example, exceed the cutoff radius.  In 
order to achieve high PPIP utilization, each PPIP is thus fed by 
eight match units, which consider pairs of atoms and determine 
whether they may be required to interact.  A given plate atom can 
be tested against eight tower atoms in a single cycle, with pairs that 
pass this test moving through a concentrator that feeds the PPIP 
input queue.  As long as the average number of such pairs per cycle 
per PPIP is at least one, the PPIPs will approach full utilization.   

As the chemical system size increases, the NT method’s match 
efficiency (defined as the ratio of necessary interactions to pairs of 
atoms considered) falls to a point where even eight match units 
cannot keep a PPIP occupied (Table 3).  We address this issue by 

dividing each home box into a regular array of subboxes, and 
applying the NT method separately to each one.  The use of 
subboxes significantly increases match efficiency and thus PPIP 
utilization (Table 3), at the cost of slightly enlarging a node’s total 
import region (Figure 3e).  The effective import region is enlarged 
further (Figure 3f) to take advantage of Anton’s multicast mecha-
nism, which sends all atoms in a given subbox to the same set of 
nodes.  

A variant of the NT method is also used to parallelize the charge 
spreading and force interpolation operations, with the HTIS com-
puting interactions between atoms in the tower and mesh points in 
the plate.  Because of the asymmetric nature of these interactions, 
the plate region must be enlarged relative to that used for range-
limited interactions (Figure 3c).  In addition, mesh point positions 
are regular and fixed, so each node can simply compute them 
locally rather than importing them.  To perform charge spreading, 
for example, each node imports position data for atoms in the 
tower, computes interactions with mesh points in the plate, and 
then exports a charge for each of these mesh points.  Because the 
tower region that must be imported for the range-limited force 
computation always includes the charge-spreading tower region, no 
additional atom position communication is required.    

3.2.2 FFT 
In order to evaluate long-range electrostatic forces, Anton must 
perform two sequentially dependent FFTs: a forward FFT followed 
by an inverse FFT.  With our choice of Ewald parameters, the mesh 
on which these FFTs is computed is small—just 32×32×32 for a 
cubical chemical system 40–80 Å on a side, with only 64 mesh 
points stored on each of Anton’s 512 nodes.  As such, the actual 
FFT computation is relatively inexpensive, and most of the FFT 
time is due to communication.  Although Anton’s toroidal inter-
connect is optimized for local communication, the three-
dimensional FFT can still be parallelized effectively using a 
straightforward decomposition into sets of one-dimensional FFTs 
oriented along each of the three axes.  This parallelization strategy 
involves sending a large number of messages (hundreds per node); 
alternative strategies that reduce the number of messages but use 
greater communication volume generally perform better on com-
modity clusters [2, 14].  Computation of the FFT on Anton is de-
scribed in more detail in a separate paper [36]. 

3.2.3 Bond Terms and Correction Forces 
In contrast to range-limited forces, which are computed between 
pairs of atoms dynamically selected according to their current 
positions, each bonded force term (bond term) is specified prior to 

SC23 Test-of-time award:
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“Millisecond-scale molecular dynamics simulations 
on Anton,” In Proceedings of the Conference on High 
Performance Computing Networking, Storage and 
Analysis (SC09), Portland, OR, USA, pp. 1-11, doi: 
10.1145/1654059.1654126
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Particle mesh Ewald

• Replace direct force calculations by:

• Calculate short-range forces in real space

• Calculate long-range forces in Fourier space

• Create a 3D mesh/grid representing charge densities of atoms

• Compute a 3D Fast Fourier Transform (FFT)

• FFT computes the discrete Fourier transform (DFT) or inverse DFT

• Reduces the complexity from O(N2) to O(N log N)
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Parallelization of PME (3D FFT)
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Parallelization of PME (3D FFT)

10

• Bring all the data to one process
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Parallelization of PME (3D FFT)

10

• Bring all the data to one process

• 1D or slab decomposition
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Parallelization of PME (3D FFT)
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• 2D or pencil decomposition
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Measles killed 200,000 in 2020 alone!

12

https://www.nature.com/articles/d41586-020-01011-6

Predictions say that 1.66 million 
people died of tuberculosis in 2020

https://www.nature.com/articles/d41586-020-02497-w
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Societal challenge

• Controlling the spread of infectious diseases is important

• Computational and mathematical modeling of epidemics important to assist 
governments in responding to outbreaks

• Made challenging due to:

• increased and denser urbanization

• increased local and global travel

• increasingly immuno-comprised population
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Approach: individual-based simulation

• Agent-based modeling to simulate epidemic diffusion

• Models agents (people) and interactions between them

• People interact when they visit the same location at the same time

• These “interactions” between pairs of people are represented as “visits” to locations

• Use a bi-partite graph of people and locations or a people-people interactivity graph

14
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Serial algorithm

• At each timestep (typically a day):

• Determine which people visit which locations

• “Send” people to those locations

• At each location “interactions” happen and transmission happens

• Update people’s states at the end of the day and continue

• Interventions (vaccinations, school closures) can be added on certain days to change 
people’s susceptibility, movements etc.

15
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Combination of network theory and discrete-
event simulations

• Hybrid time-stepped and discrete-event simulation

16
https://sitn.hms.harvard.edu/flash/special-edition-on-infectious-

disease/2014/an-introduction-to-infectious-disease/
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Combination of network theory and discrete-
event simulations

• Hybrid time-stepped and discrete-event simulation

16

Contact model at each location

https://sitn.hms.harvard.edu/flash/special-edition-on-infectious-
disease/2014/an-introduction-to-infectious-disease/
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Combination of network theory and discrete-
event simulations

• Hybrid time-stepped and discrete-event simulation
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Contact model at each location

https://sitn.hms.harvard.edu/flash/special-edition-on-infectious-
disease/2014/an-introduction-to-infectious-disease/

Model for human transmission



Abhinav Bhatele (CMSC416 / CMSC616)

Combination of network theory and discrete-
event simulations

• Hybrid time-stepped and discrete-event simulation
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Contact model at each location

Disease model for each person
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Figure 1: Probabilistic timed transition system (PTTS) showing states and transmissions that represent transmission con�gu-
rations in a simpli�ed model for the COVID-19 disease.

written on top of an asynchronous task-based parallel runtime. This
framework allows us to simulate the population of California in
0.530 seconds per simulated day and the entire US population in
3.425 seconds per simulated day when running on 8,192 compute
cores. Our work makes the following important contributions:

• The design and implementation of a scalable and modular
parallel simulation framework for modeling contagion pro-
cesses and intervention scenarios.

• A �exible and user-friendly input format based on Google’s
Protocol Bu�ers (Protobuf) library [14] to represent disease
models, population datasets, and intervention scenarios.

• Demonstration of the scalability of the code on multiple HPC
platforms both in strong and weak scaling scenarios.

• Demonstration of themodeling capabilities of Loimos by sim-
ulating individual-based (stay-at-home) and location-based
(school closure) interventions.

2 ALGORITHM FOR CONTAGION DIFFUSION
An alternative approach to coupled-rate equations uses a combina-
tion of network theory, discrete event simulations, and agent-based
modeling to study epidemics in large urban areas. In this approach,
both individuals in the population (referred to as “agents”) and
interactions between pairs of them are modeled, in order to simu-
late epidemic di�usion in social contact networks. The main idea
is that a better understanding of the characteristics of the social
contact network can give better insights into disease dynamics and
intervention strategies - like vaccination and quarantines - which
can be used in the epidemic simulation. In this section, we describe
both the serial and parallel versions of the algorithm implemented
in Loimos.

2.1 Serial Algorithm
The general form of our problem can be stated informally as fol-
lows. The input to the algorithm is a time-varying bipartite graph
of people and locations representing people-people interactions at
various locations. An edge between a person, ? , and a location, ✓ ,
represents the potential for an interaction between ? and any other
person with an edge to ✓ , visiting ✓ at the same time as ? . Each per-
son carries with them a probabilistic timed �nite state automaton

that represents their current health state and transitions to other
states. Time is considered to be discrete, and state transitions are
probabilistic. The simulation is best described as iterations of dis-
crete time steps, each time step involving the following update step:
each person updates their state in the automaton based on their
interactions with other individuals at the visited locations in the
current time step. By using di�erent automata for di�erent diseases
(referred to as disease models, Section 2.1.1), various contagion
processes can be simulated. The transmission of disease between
two individuals in contact is governed by a transmission model
(Section 2.1.2). Whether two individuals visiting the same location
come into contact is governed by a contact model (Section 2.1.3)
and simulated using a discrete-event simulation executed serially
at each location within each time step (Section 2.1.4).

2.1.1 Disease Model and Finite State Automaton. A person’s health
state is managed using a �nite state automaton that represents a
probabilistic timed transition system (PTTS). Each (health) state is
connected with a set of exit states which the person can transition
to probabilistically. A state can have an empty set of exit states,
as in the recovered or removed state of the classical SEIR disease
model. At any given time, a person is in exactly one health state.
Immediately after entering a new heath state, a person will select an
exit state to transition to next according to the transition probability
distribution associated with their current state. Each such transition
has an associated dwell time distribution, which determines how
long the person will remain in the state they just entered. In other
words, people move between health states over time according to
the transition and dwell time probability distributions.

Di�erent diseases can be modeled by PTTSs with di�erent sets
of states and di�erent transitions between states. Transitions can
happen between some of the states in the disease model as a result
of a person having contact with another person, as described in
Section 2.1.2. Figure 1 shows a simpli�ed version of the PTTS used
for simulations in this paper.

2.1.2 Transmission Model. In general, certain health states are re-
ferred to as susceptible and as infectious, as are the people in those
states. Disease transmission can result from contacts between in-
fectious and susceptible individuals at a location. The transmission
model takes as input the contact network between all infectious

2

https://sitn.hms.harvard.edu/flash/special-edition-on-infectious-
disease/2014/an-introduction-to-infectious-disease/

Model for human transmission
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Combination of network theory and discrete-
event simulations

• Hybrid time-stepped and discrete-event simulation
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Contact model at each location
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Figure 1: Probabilistic timed transition system (PTTS) showing states and transmissions that represent transmission con�gu-
rations in a simpli�ed model for the COVID-19 disease.

written on top of an asynchronous task-based parallel runtime. This
framework allows us to simulate the population of California in
0.530 seconds per simulated day and the entire US population in
3.425 seconds per simulated day when running on 8,192 compute
cores. Our work makes the following important contributions:

• The design and implementation of a scalable and modular
parallel simulation framework for modeling contagion pro-
cesses and intervention scenarios.

• A �exible and user-friendly input format based on Google’s
Protocol Bu�ers (Protobuf) library [14] to represent disease
models, population datasets, and intervention scenarios.

• Demonstration of the scalability of the code on multiple HPC
platforms both in strong and weak scaling scenarios.

• Demonstration of themodeling capabilities of Loimos by sim-
ulating individual-based (stay-at-home) and location-based
(school closure) interventions.

2 ALGORITHM FOR CONTAGION DIFFUSION
An alternative approach to coupled-rate equations uses a combina-
tion of network theory, discrete event simulations, and agent-based
modeling to study epidemics in large urban areas. In this approach,
both individuals in the population (referred to as “agents”) and
interactions between pairs of them are modeled, in order to simu-
late epidemic di�usion in social contact networks. The main idea
is that a better understanding of the characteristics of the social
contact network can give better insights into disease dynamics and
intervention strategies - like vaccination and quarantines - which
can be used in the epidemic simulation. In this section, we describe
both the serial and parallel versions of the algorithm implemented
in Loimos.

2.1 Serial Algorithm
The general form of our problem can be stated informally as fol-
lows. The input to the algorithm is a time-varying bipartite graph
of people and locations representing people-people interactions at
various locations. An edge between a person, ? , and a location, ✓ ,
represents the potential for an interaction between ? and any other
person with an edge to ✓ , visiting ✓ at the same time as ? . Each per-
son carries with them a probabilistic timed �nite state automaton

that represents their current health state and transitions to other
states. Time is considered to be discrete, and state transitions are
probabilistic. The simulation is best described as iterations of dis-
crete time steps, each time step involving the following update step:
each person updates their state in the automaton based on their
interactions with other individuals at the visited locations in the
current time step. By using di�erent automata for di�erent diseases
(referred to as disease models, Section 2.1.1), various contagion
processes can be simulated. The transmission of disease between
two individuals in contact is governed by a transmission model
(Section 2.1.2). Whether two individuals visiting the same location
come into contact is governed by a contact model (Section 2.1.3)
and simulated using a discrete-event simulation executed serially
at each location within each time step (Section 2.1.4).

2.1.1 Disease Model and Finite State Automaton. A person’s health
state is managed using a �nite state automaton that represents a
probabilistic timed transition system (PTTS). Each (health) state is
connected with a set of exit states which the person can transition
to probabilistically. A state can have an empty set of exit states,
as in the recovered or removed state of the classical SEIR disease
model. At any given time, a person is in exactly one health state.
Immediately after entering a new heath state, a person will select an
exit state to transition to next according to the transition probability
distribution associated with their current state. Each such transition
has an associated dwell time distribution, which determines how
long the person will remain in the state they just entered. In other
words, people move between health states over time according to
the transition and dwell time probability distributions.

Di�erent diseases can be modeled by PTTSs with di�erent sets
of states and di�erent transitions between states. Transitions can
happen between some of the states in the disease model as a result
of a person having contact with another person, as described in
Section 2.1.2. Figure 1 shows a simpli�ed version of the PTTS used
for simulations in this paper.

2.1.2 Transmission Model. In general, certain health states are re-
ferred to as susceptible and as infectious, as are the people in those
states. Disease transmission can result from contacts between in-
fectious and susceptible individuals at a location. The transmission
model takes as input the contact network between all infectious

2
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Model for human transmission

while d < num_days:
for each person:
Send visit messages to locations

for each location:
Process all visit messages
Run discrete event simulation
Send interaction messages

for each person:
Process interactions
Update disease state
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Parallel simulation is challenging

• Size and scale of the social contact network (6 billion agents for a global simulation)

• Unstructured networks and complicated dependencies lead to high communication cost

• Individuals and their behaviors are not identical

• Co-evolving epidemics, public policies and agent behaviors make it impossible to 
apply standard model reduction techniques

17
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Parallel implementation: Loimos

• All the people and locations are 
distributed among all processes

• DES computation can be done locally in 
parallel

• Communication when sending visit and 
infection messages

• Uses Charm++, a message-driven model
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Figure 3: All person and location objects are partitioned
across chares. People chares send visit messages to location
chares and receive interaction messages in response.

receive visit events, compute the set of interactions which occur
on their locations, and send interaction messages back to people
chares (lines 13-16, 18, and 19-21 of Algorithm 2, respectively). Note
that the tasks depend on a two-phase message exchange between
the people and location chares; people chares send visit messages
to location chares, and location chares respond with interaction
messages. This pattern is responsible for almost all of the commu-
nication in Loimos.

In addition to these chare arrays which handle the bulk of the
communication and computation, we have two other Charm++ ob-
jects that play a substantial role in our implementation of Loimos.
The �rst is the main chare, which is responsible for parsing com-
mand line input to the program and handles the overarching control
structure. The main chare is responsible for starting each time step,
as well as detecting when each of the message exchanges has com-
pleted so that the next phase of the program can begin (as no single
location or people chare can know if all other chares are done
sending it messages), and synchronization at the end of each time
step.

The other important object is a node group, which we use to
hold information regarding the disease model. In Charm++, a node
group is an object which is instantiated once for each node the
program is run on, and it avoid having to keep redundant copies of
shared information in memory on one node, while also minimizing
inter-node communication.

3.3 Implementation of Di�erent Models
The various models described in Section 2.1 are implemented in a
modular fashion to enable replacing them with alternative models
easily.

3.3.1 Disease Model. We implement the disease model as a timed
�nite-state machine. User agents begin in an entry state which
can be predetermined based on data attributes such as age. User
agents will remain in this initial state unless they are exposed by
another infectious agent. We seed the infection by selecting groups
of locations in de�ned clusters. All location in a cluster are disease

sources. When healthy people visit a seeding location, they are
randomly infected with a set probability. This seeding continues
for a small number of con�gurable days. By default, clusters are
selected such that 0.1% locations are seeders for 3 days and 1%
of susceptible people visiting those location on a given day are
infected.

Once agents have been exposed, they transition to a contact
state. Agents will continue to make timed transitions based on
con�gurable distributions for each state. Note that this graph may
be cyclic as agents can be re-infected upon recovery.

The bulk of the important information regarding the disease
model is stored in the textproto �le read in as input, as discussed
in Section 3.1. Once that information is in memory, a single copy is
stored on each node via a Charm++ node group. From there, both
location and people chares can access its information as needed.
These data are mainly used for calculating infection propensities
(on location chares) and health state transition for those already
infected (on people chares).

When using real input data, we also can optionally use infor-
mation about individual people, like their ages, to change their
potential health states. In essence, given an disease model �le with
multiple connected components in the state-transition graph, we
can choose which component each person’s disease states will be a
part of by branching based on one of their attributes. This allows
us to capture the di�erent ways in which a disease could impact
di�erent segments of the population.

3.3.2 Transmission Model. Recall from Section 2.1.2 that there are
three main parts of the transition model: computing the propensity
for given interaction to cause an infection, determining if a person
was infected during one of their interactions in a given time step,
and determining which interaction caused their infection (if they
were in fact infected). In Loimos, the �rst step is computed by
location chares immediately after the interaction is identi�ed, and
then sent to the appropriate people chare when the location chare
is �nished processing the visit it occurred during. The second two
steps are then computed on the appropriate people chare.

3.3.3 Contact Model. We implemented two di�erent types of con-
tact model in our code. The �rst is the<8=/<0G/U model discussed
in Section 2.1.3. This involves reading in the maximum simultane-
ous visits from the location input �le, and computing the appropri-
ate contact probability for each location at the start of a run based
on this value. Note that this only works when we are in fact reading
in data from an input �le. To handle this, we implemented our sec-
ond contact model, in which every location has the same contact
probability. By default, Loimos uses this constant probability model
for all runs, but we provide the option to select the <8=/<0G/U
model at runtime during a run on real data.

3.3.4 Discrete-event Simulation. In implementing the visit model,
we made two key optimizations: �rst, we only keep track of co-
occupancy (and thus interactions) between susceptible people and
an infectious people, and secondly, we only ever send interaction
messages to susceptible people who had at least one interaction
with an infectious person during a time step. Note that we are able
to make both changes without a�ecting the results of the simulation

6
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Application software stack

• Parallel programming model / runtime:

• MPI, OpenMP, Charm++, CUDA, …

• Libraries

• Data and visualization libraries (mesh management, 
simulation output)

• I/O libraries

• Math/numerical libraries

• Graph partitioning, load balancing … 

19
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Libraries

Parallel prog. runtime (MPI, Charm++ etc.)
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Why use libraries?

• No need to reinvent the wheel

• Libraries are highly optimized, have fewer bugs

• Avoids significant effort to write, optimize and maintain code

• Makes code more portable

20
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Popular Libraries

• Data/visualization and I/O libraries

• I/O: HDF5, pNetCDF, ADIOS

• Numerical libraries:

• Fast Fourier transforms: FFTW

• Dense linear algebra: BLAS, LAPACK, Intel MKL

• Solvers for sparse systems: Hypre, PETSc, Trilinos

• Graph partitioning/load balancing:

• METIS, Scotch, Zoltan, Chaco

21
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Domain-specific languages/frameworks

• Structured grids: SAMRAI, Chombo, AMREx

• Unstructured grids: MFEM, Quinoa

22
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The n-body problem

• Simulate the motion of celestial objects 
interacting with one another due to 
gravitational forces

• Naive algorithm: O(n2)

• Every body calculates forces pair-wise with every other 
body (particle)

23

https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-31-fast-n-body-simulation-cuda
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Data distribution in n-body problems

• Naive approach: Assign n/p particles to each process

• Other approaches?

24
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Data distribution in n-body problems

• Naive approach: Assign n/p particles to each process

• Other approaches?
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Data distribution in n-body problems

• Let us consider a two-dimensional space with bodies/particles in it
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Different parallelization methods

• Tree codes: Barnes-Hut simulations

• Fast multipole methods (FMM): Greengard and Rokhlin

• Particle mesh methods

• Particle-particle particle-mesh (P3M) methods

26
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Barnes-Hut simulation

• Represent the space containing the particles as an 
oct-tree

• Pairwise force calculations for nearby particles

• For tree nodes that are sufficiently far away, 
approximate the particles in the node by a single 
large particle at the center of mass

• O(N logN) algorithm
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Fast multipole methods

• Use multipole expansion for distant particles

• Takes advantage of the fact that for nearby particles, multipole-expanded forces from 
distant particles are similar

• Reduces the time complexity further to O(n)

28



Abhinav Bhatele (CMSC416 / CMSC616)

Particle-particle particle-mesh methods

• Explicit calculation of forces on nearby particles

• Fourier-based Ewald summation for calculating potentials on a grid

• Smoothed particle hydrodynamics
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