
Parallel CSE Applications
Abhinav Bhatele, Alan Sussman

Introduction to Parallel Computing (CMSC416 / CMSC616)

Abhinav Bhatele (CMSC416 / CMSC616)

Announcements

• Quiz 3 has been posted

2

Abhinav Bhatele (CMSC416 / CMSC616)

Contact me

• CMSC416: If you are an undergrad interested in participating in International Student
Cluster Competitions

• bhatele@cs.umd.edu

3

Abhinav Bhatele (CMSC416 / CMSC616)

Molecular Dynamics

4

Abhinav Bhatele (CMSC416 / CMSC616)

Molecular Dynamics

• Calculate trajectories of atoms and molecules by solving Newton’s equations of
motions

4

Abhinav Bhatele (CMSC416 / CMSC616)

Molecular Dynamics

• Calculate trajectories of atoms and molecules by solving Newton’s equations of
motions

• Force calculations

• Bonded interactions: bonds, angles, dihedrals

• Non-bonded interactions: van der Waal’s and electrostatic forces

4

Abhinav Bhatele (CMSC416 / CMSC616)

Molecular Dynamics

• Calculate trajectories of atoms and molecules by solving Newton’s equations of
motions

• Force calculations

• Bonded interactions: bonds, angles, dihedrals

• Non-bonded interactions: van der Waal’s and electrostatic forces

• Number of atoms: thousands to millions

4

Abhinav Bhatele (CMSC416 / CMSC616)

Molecular Dynamics

• Calculate trajectories of atoms and molecules by solving Newton’s equations of
motions

• Force calculations

• Bonded interactions: bonds, angles, dihedrals

• Non-bonded interactions: van der Waal’s and electrostatic forces

• Number of atoms: thousands to millions

• Simulation step: ~1 femtosecond (10-15 s)

4

Abhinav Bhatele (CMSC416 / CMSC616)

Molecular Dynamics

• Calculate trajectories of atoms and molecules by solving Newton’s equations of
motions

• Force calculations

• Bonded interactions: bonds, angles, dihedrals

• Non-bonded interactions: van der Waal’s and electrostatic forces

• Number of atoms: thousands to millions

• Simulation step: ~1 femtosecond (10-15 s)

• Used for drug design, materials design

4

Abhinav Bhatele (CMSC416 / CMSC616)

Sequential Algorithm

• At every step, calculate forces on each atom

• Calculate bonded and short-range forces every step

• Calculate long-range non-bonded forces every few time steps (using PME or P3M etc.)

• Particle mesh Ewald (PME) summation:

• Calculate long-range interactions in Fourier space

• Calculate velocities and new positions

• Repeat …

5

Abhinav Bhatele (CMSC416 / CMSC616)

Traditional approaches to parallelization

6

Abhinav Bhatele (CMSC416 / CMSC616)

Traditional approaches to parallelization

• Atom decomposition:

• Partition the atoms across processes

6

Abhinav Bhatele (CMSC416 / CMSC616)

Traditional approaches to parallelization

• Atom decomposition:

• Partition the atoms across processes

• Force decomposition:

• Distribute the force matrix to processes

• Matrix is sparse and non-uniform

6

Abhinav Bhatele (CMSC416 / CMSC616)

Traditional approaches to parallelization

• Atom decomposition:

• Partition the atoms across processes

• Force decomposition:

• Distribute the force matrix to processes

• Matrix is sparse and non-uniform

• Spatial decomposition:

• Assign a region of the 3D simulation space to each process

6

16 Å

16 Å

8 Å
8 Å

4 Å
4 Å

Fig. 1. A biomolecular simulation box (only two dimensions shown) split into cells of size 16⇥ 16⇥ 16 Å (extreme left). Each processor holds one such
cell containing approximately 400 atoms. When there are fewer atoms per processor (say 50), the three dimensions are further split to give cells of size
8⇥ 8⇥ 8 Å (center). When there are around 6 atoms per processor, each dimension is reduced to one-fourth the original size (extreme right).

and computation, at every time step, each node sends positions
and velocities of the atoms to its communicating neighbors and
once it has received its incoming messages, calculates forces
on its atoms. The expression for the time per step of an MD
computation is:

T =
1

⌘
⇥

N

Pc
⇥ 33547⇥ tc + 1376⇥

✓
ts +

N

Pc
4tw

◆
(III.3)

Substituting the expression for T from equation (III.3) in
equation (III.2),

1

⌘
⇥

N

Pc
⇥ 33547⇥ tc + 1376⇥

✓
ts +

N

Pc
4tw

◆
< 3.6⇥ 10�3

For the weak scaling analysis, putting in the values of ratio
of atoms to processors, N/Pc = 100 and tc = 10�10 seconds,

1

⌘
⇥ 33547⇥ 10�8 + 1376⇥ (ts + 400tw) < 3.6⇥ 10�3

1376⇥ (ts + 400tw) < 3.6⇥ 10�3
�

1

⌘
⇥ 3.35⇥ 10�4

ts + 400tw < 2.62⇥ 10�6
�

1

⌘
⇥ 2.44⇥ 10�7

Figure 2 plots the values of ts and tw based on the
equation above for different values of ⌘. For the case of
perfect efficiency, MD simulations do not put a considerable
requirement on the per-processor communication bandwidth.
However, it does require that the network latencies be small.
If we look at the case of ⌘ = 0.125, the application would
require a latency of below a microsecond and a per-processor
communication bandwidth of 2 GB/s. It is also important to
mention that our analysis assumes serialization of messages
put on the network by a node arising from all of its 1024
cores. We expect that for future machines, multiple cores on a
node will be able to inject messages on the network in parallel.

B. Memory requirements

MD codes have a relatively small memory footprint since
the number of atoms on each core is small (between 5 to
400). However at the start of each time step, when atoms

 0.1

 1

 10

 100

 1000

10-4 10-3 10-2 10-1 100 101

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for MD

η = 0.1
η = 0.125

η = 0.25
η = 0.5

η = 1

Fig. 2. Latency and bandwidth requirements for MD (weak scaling)

are received by the processing cores, the amount of memory
needed increases. This is proportional to the total number
of messages received by each core (75 for the case above).
The size of each message is equal to N/Pc multiplied by
the memory requirements for the atom data structure. The
information about each atom sent in the message is the
charge on the atom and its position. Hence the increase in
memory consumption at the beginning of each time is equal
to 75 ⇥ (N/Pc) ⇥ 32 bytes = 0.23 MB. However, even this
transient memory usage in MD simulations is not significant.

C. Smaller problem sizes

An important observation is that building a 107 billion
atom molecular system and doing useful science with it, will
be a challenge for biophysicists. Simulating such a large
system to observe anything meaningful will require long
simulations (milliseconds to seconds). The largest classical
MD simulations done so far involve up to 3 million atoms,
a five orders of magnitude difference. Hence, many scientists
will still simulate systems smaller than 107 billion atoms and

Abhinav Bhatele (CMSC416 / CMSC616)

Hybrid parallelization

• Hybrid of spatial and force decomposition

• Decouple assignment of data and work to
processes

• Distribute both atoms and the force
calculations to different processes

7

Abhinav Bhatele (CMSC416 / CMSC616)

Neutral territory (NT) methods

• Desmond’s mid-point method

8

Figure 1. Assignment of particle pairs to interaction boxes in the midpoint
method. In this figure, the boxes are square with side length b, and R = 1.5b.
Each pair of particles separated by a distance less than R is connected by a
dashed line segment, with the “x” at its center indicating the box which will
compute the interaction of that pair.

to the box in which a set of particles interact as their
interaction box. Figure 1 illustrates the assignment of particle
pairs to interaction boxes implied by the midpoint method.
Two particles that lie in the same box necessarily interact in
that box, but particles that lie in different boxes may interact
either in the box in which one of them resides (e.g., particles 2
and 3) or in a box in which neither resides (e.g., particles 1
and 5 or particles 3 and 4).

In the midpoint method, the volume of space from which a
given process must “import” particle data that ordinarily
resides within other processes (its import region) includes
only points within a distance R/2 of its home box, because if
the distance between two particles is less than R and one of
them lies more than a distance R/2 from the home box, their
midpoint must lie outside the home box. This import region is
shown in Figure 2(a) for a two-dimensional system.

For comparison, Figure 2(b) shows the import region of a
particular traditional spatial decomposition method in which
the box that interacts two particles is always the home box of
one or both particles. In this method, the particles interact
within the home box of the particle with the smaller x-
coordinate, unless the home boxes of the two particles are in
the same vertical column, in which case the particles interact

Figure 2. Import regions of (a) the 2-D midpoint method and (b) the 2-D
analog of the HS method, where R = 1.5b. In each case, the interaction box is
light gray and the import region is dark gray.

within the home box of the particle with the smaller y-
coordinate. The import region includes half the space within a
distance R of the home box. This method is the 2-D analog of
the HS method defined in our recent publications [6, 43].

When the midpoint or HS methods are used for an MD
simulation, or any other application that requires computation
of the total force on each particle, each interaction box must
“export” a force contribution to each of the particles in its
import region after it has computed the interactions assigned
to it. A method in which each process computes all force
contributions for each particle in its home box would avoid
the need for such force export, but it would have twice the
import volume of the HS method and would require that each
interaction between particles in different boxes be computed
twice.

Communication Volume. Assuming uniform particle
density, the amount of particle data that must be transferred
into each process during particle import and out of each
process during force export is proportional to the volume of
the import region. We therefore use the volume of the import
region (the import volume) as a measure of communication
bandwidth requirements of a parallelization method.
Assuming cubical boxes of side length b, we can express the
import volumes of the 3-D HS and midpoint methods
(Vimport,HS and Vimport,midpoint, respectively) in terms of αR = R/b
as:

Vimport,HS = b3 (2/3 παR
3 + 3/2 παR

2 + 3αR)
Vimport,midpoint = b3 (1/6 παR

3
 + 3/4 παR

2 + 3αR).
A large value of αR implies a high degree of parallelism, as

b is determined by the number of processes used for
simulation as well as the size of the global cell. The import
volume of the midpoint method is always smaller than that of
the HS method, with the difference growing in both relative
and absolute terms as αR grows. For a more detailed
comparison of the import volumes of various parallelization
methods, see [5] and [6].

Parallelization of Other Calculations. The midpoint
method also applies to interactions that involve sets of three or
more particles: the interaction between a set of m particles is
computed on the box that contains their midpoint, defined as
the center of the smallest sphere that contains all m particles.
Desmond uses the midpoint method to parallelize computation
of the bonded terms, which typically involve two, three, or
four particles. Each of these terms is evaluated on the box
containing an easily computed, approximate midpoint of the
particles involved. For parameters associated with typical
biomolecular force fields, this requires no additional
communication because all particle positions needed for the
computation of each bonded term are already included in the
midpoint method import region associated with the pairwise
nonbonded computations [5].

Similarly, no additional communication is typically required
for the charge spreading or force interpolation operations
associated with PME and k-GSE because the particles to be
communicated already lie in the midpoint method’s import
region [5]. The same holds for the constraint calculations
performed in Desmond. Under the HS method, these
operations would require additional communication.

5

Match efficiency of NT method
Subboxes per box

1×1×1 2×2×2 4×4×4

8 Å 25% 40% 51%
16 Å 12% 25% 40%

Box
side

length 32 Å 4% 12% 25%

Table 3: Match efficiency of the NT method for several box sizes, each
divided into 1 (1×1×1), 8 (2×2×2), or 64 (4×4×4) subboxes. These figures
assume a 13-Å cutoff radius.

Figure 3: (a–c) Import regions associated with several parallelization
methods for range-limited pairwise interactions. (a) In the NT method,
each node computes interactions between atoms in a tower region and
atoms in a plate region. The asymmetry of the plate region reflects the fact
that the interaction between a pair of particles need only be computed
once, yielding equal and opposite forces on both particles. (b) In a more
traditional parallelization method, each node computes interactions be-
tween atoms in its home box and atoms in a larger “half-shell” region,
which includes the home box. (c) A variant of the NT method used for
charge spreading and force interpolation. A larger, symmetrical plate
region is required because these calculations involve interactions between
particles and mesh points rather than between pairs of particles. (d–f)
Adapting the NT method to Anton. (d) The original NT method, for a
chemical system larger than that of (a). (e) The use of subboxes leads to
an expansion of the plate region, because the union of the subbox plates is
larger than the original plate. (f) On Anton, the import region consists of
whole subboxes.

leads to a more communication-efficient implementation, an
advantage that grows asymptotically as the level of parallelism
increases. In addition, because the two sets of atoms to be inter-
acted are closer in size in the NT method, the ratio of computation
to communication bandwidth within each HTIS is higher, so the
NT method uses on-chip communication resources more effec-
tively. The NT method is one of a number of neutral territory
methods—parallelization schemes in which the interaction between
two atoms may be computed by a node on which neither resides [2,
3, 11, 19, 29].

In the absence of appropriate countermeasures, one efficiency-
limiting factor associated with the NT method arises from the fact
that not all atoms in the tower need to interact with all atoms in the
plate; many atom pairs, for example, exceed the cutoff radius. In
order to achieve high PPIP utilization, each PPIP is thus fed by
eight match units, which consider pairs of atoms and determine
whether they may be required to interact. A given plate atom can
be tested against eight tower atoms in a single cycle, with pairs that
pass this test moving through a concentrator that feeds the PPIP
input queue. As long as the average number of such pairs per cycle
per PPIP is at least one, the PPIPs will approach full utilization.

As the chemical system size increases, the NT method’s match
efficiency (defined as the ratio of necessary interactions to pairs of
atoms considered) falls to a point where even eight match units
cannot keep a PPIP occupied (Table 3). We address this issue by

dividing each home box into a regular array of subboxes, and
applying the NT method separately to each one. The use of
subboxes significantly increases match efficiency and thus PPIP
utilization (Table 3), at the cost of slightly enlarging a node’s total
import region (Figure 3e). The effective import region is enlarged
further (Figure 3f) to take advantage of Anton’s multicast mecha-
nism, which sends all atoms in a given subbox to the same set of
nodes.

A variant of the NT method is also used to parallelize the charge
spreading and force interpolation operations, with the HTIS com-
puting interactions between atoms in the tower and mesh points in
the plate. Because of the asymmetric nature of these interactions,
the plate region must be enlarged relative to that used for range-
limited interactions (Figure 3c). In addition, mesh point positions
are regular and fixed, so each node can simply compute them
locally rather than importing them. To perform charge spreading,
for example, each node imports position data for atoms in the
tower, computes interactions with mesh points in the plate, and
then exports a charge for each of these mesh points. Because the
tower region that must be imported for the range-limited force
computation always includes the charge-spreading tower region, no
additional atom position communication is required.

3.2.2 FFT
In order to evaluate long-range electrostatic forces, Anton must
perform two sequentially dependent FFTs: a forward FFT followed
by an inverse FFT. With our choice of Ewald parameters, the mesh
on which these FFTs is computed is small—just 32×32×32 for a
cubical chemical system 40–80 Å on a side, with only 64 mesh
points stored on each of Anton’s 512 nodes. As such, the actual
FFT computation is relatively inexpensive, and most of the FFT
time is due to communication. Although Anton’s toroidal inter-
connect is optimized for local communication, the three-
dimensional FFT can still be parallelized effectively using a
straightforward decomposition into sets of one-dimensional FFTs
oriented along each of the three axes. This parallelization strategy
involves sending a large number of messages (hundreds per node);
alternative strategies that reduce the number of messages but use
greater communication volume generally perform better on com-
modity clusters [2, 14]. Computation of the FFT on Anton is de-
scribed in more detail in a separate paper [36].

3.2.3 Bond Terms and Correction Forces
In contrast to range-limited forces, which are computed between
pairs of atoms dynamically selected according to their current
positions, each bonded force term (bond term) is specified prior to

SC23 Test-of-time award:

Shaw DE, RO Dror, JK Salmon, et al. 2009.
“Millisecond-scale molecular dynamics simulations
on Anton,” In Proceedings of the Conference on High
Performance Computing Networking, Storage and
Analysis (SC09), Portland, OR, USA, pp. 1-11, doi:
10.1145/1654059.1654126

https://dl.acm.org/doi/10.1145/1654059.1654126

Abhinav Bhatele (CMSC416 / CMSC616)

Particle mesh Ewald

• Replace direct force calculations by:

• Calculate short-range forces in real space

• Calculate long-range forces in Fourier space

• Create a 3D mesh/grid representing charge densities of atoms

• Compute a 3D Fast Fourier Transform (FFT)

• FFT computes the discrete Fourier transform (DFT) or inverse DFT

• Reduces the complexity from O(N2) to O(N log N)

9

Abhinav Bhatele (CMSC416 / CMSC616)

Parallelization of PME (3D FFT)

10

Abhinav Bhatele (CMSC416 / CMSC616)

Parallelization of PME (3D FFT)

10

• Bring all the data to one process

Abhinav Bhatele (CMSC416 / CMSC616)

Parallelization of PME (3D FFT)

10

• Bring all the data to one process

• 1D or slab decomposition

Abhinav Bhatele (CMSC416 / CMSC616)

Parallelization of PME (3D FFT)

11

• 2D or pencil decomposition

Abhinav Bhatele (CMSC416 / CMSC616)

Measles killed 200,000 in 2020 alone!

12

https://www.nature.com/articles/d41586-020-01011-6

Predictions say that 1.66 million
people died of tuberculosis in 2020

https://www.nature.com/articles/d41586-020-02497-w

Abhinav Bhatele (CMSC416 / CMSC616)

Measles killed 200,000 in 2020 alone!

12

https://www.nature.com/articles/d41586-020-01011-6

Predictions say that 1.66 million
people died of tuberculosis in 2020

https://www.nature.com/articles/d41586-020-02497-w

Abhinav Bhatele (CMSC416 / CMSC616)

Societal challenge

• Controlling the spread of infectious diseases is important

• Computational and mathematical modeling of epidemics important to assist
governments in responding to outbreaks

• Made challenging due to:

• increased and denser urbanization

• increased local and global travel

• increasingly immuno-comprised population

13

Abhinav Bhatele (CMSC416 / CMSC616)

Approach: individual-based simulation

• Agent-based modeling to simulate epidemic diffusion

• Models agents (people) and interactions between them

• People interact when they visit the same location at the same time

• These “interactions” between pairs of people are represented as “visits” to locations

• Use a bi-partite graph of people and locations or a people-people interactivity graph

14

Abhinav Bhatele (CMSC416 / CMSC616)

Serial algorithm

• At each timestep (typically a day):

• Determine which people visit which locations

• “Send” people to those locations

• At each location “interactions” happen and transmission happens

• Update people’s states at the end of the day and continue

• Interventions (vaccinations, school closures) can be added on certain days to change
people’s susceptibility, movements etc.

15

Abhinav Bhatele (CMSC416 / CMSC616)

Combination of network theory and discrete-
event simulations

• Hybrid time-stepped and discrete-event simulation

16
https://sitn.hms.harvard.edu/flash/special-edition-on-infectious-

disease/2014/an-introduction-to-infectious-disease/

Abhinav Bhatele (CMSC416 / CMSC616)

Combination of network theory and discrete-
event simulations

• Hybrid time-stepped and discrete-event simulation

16

Contact model at each location

https://sitn.hms.harvard.edu/flash/special-edition-on-infectious-
disease/2014/an-introduction-to-infectious-disease/

Abhinav Bhatele (CMSC416 / CMSC616)

Combination of network theory and discrete-
event simulations

• Hybrid time-stepped and discrete-event simulation

16

Contact model at each location

https://sitn.hms.harvard.edu/flash/special-edition-on-infectious-
disease/2014/an-introduction-to-infectious-disease/

Model for human transmission

Abhinav Bhatele (CMSC416 / CMSC616)

Combination of network theory and discrete-
event simulations

• Hybrid time-stepped and discrete-event simulation

16

Contact model at each location

Disease model for each person
117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SC ’21, November 14–19, 2021, St. Louis, MO, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Susceptible

Exposed Fixed (3) 65%

 Pre-
Symptomatic

Normal (5,1) ; 35%

Fixed (2) Symptomatic

Medically
Attended

(Recovers)

Histogram (1-10, mean=4.375) ; 95.94%

Medically
Attended

(Hospitalized)

Medically
Attended
(Death)

RecoveredNormal (5, 1)

Normal (5, 1)

Normal (5, 4.6)

Hospitalized

Fixed (2); 95%

Fixed (8); 5% Hospitalized
(Death)

Ventilator
(Recovers)

Normal (1, 0.2); 6%

Normal (3.1, 3.7); 94%

Ventilator
(Death)Fixed(2); 6%

Fixed(6); 94%

Fixed(6)

Fixed(1)

Death

Immune

Fixed(1); 4%

Fixed(2); 0.06%

Normal (3.1, 3.7); 94%

Asymptomatic

Figure 1: Probabilistic timed transition system (PTTS) showing states and transmissions that represent transmission con�gu-
rations in a simpli�ed model for the COVID-19 disease.

written on top of an asynchronous task-based parallel runtime. This
framework allows us to simulate the population of California in
0.530 seconds per simulated day and the entire US population in
3.425 seconds per simulated day when running on 8,192 compute
cores. Our work makes the following important contributions:

• The design and implementation of a scalable and modular
parallel simulation framework for modeling contagion pro-
cesses and intervention scenarios.

• A �exible and user-friendly input format based on Google’s
Protocol Bu�ers (Protobuf) library [14] to represent disease
models, population datasets, and intervention scenarios.

• Demonstration of the scalability of the code on multiple HPC
platforms both in strong and weak scaling scenarios.

• Demonstration of themodeling capabilities of Loimos by sim-
ulating individual-based (stay-at-home) and location-based
(school closure) interventions.

2 ALGORITHM FOR CONTAGION DIFFUSION
An alternative approach to coupled-rate equations uses a combina-
tion of network theory, discrete event simulations, and agent-based
modeling to study epidemics in large urban areas. In this approach,
both individuals in the population (referred to as “agents”) and
interactions between pairs of them are modeled, in order to simu-
late epidemic di�usion in social contact networks. The main idea
is that a better understanding of the characteristics of the social
contact network can give better insights into disease dynamics and
intervention strategies - like vaccination and quarantines - which
can be used in the epidemic simulation. In this section, we describe
both the serial and parallel versions of the algorithm implemented
in Loimos.

2.1 Serial Algorithm
The general form of our problem can be stated informally as fol-
lows. The input to the algorithm is a time-varying bipartite graph
of people and locations representing people-people interactions at
various locations. An edge between a person, ? , and a location, ✓ ,
represents the potential for an interaction between ? and any other
person with an edge to ✓ , visiting ✓ at the same time as ? . Each per-
son carries with them a probabilistic timed �nite state automaton

that represents their current health state and transitions to other
states. Time is considered to be discrete, and state transitions are
probabilistic. The simulation is best described as iterations of dis-
crete time steps, each time step involving the following update step:
each person updates their state in the automaton based on their
interactions with other individuals at the visited locations in the
current time step. By using di�erent automata for di�erent diseases
(referred to as disease models, Section 2.1.1), various contagion
processes can be simulated. The transmission of disease between
two individuals in contact is governed by a transmission model
(Section 2.1.2). Whether two individuals visiting the same location
come into contact is governed by a contact model (Section 2.1.3)
and simulated using a discrete-event simulation executed serially
at each location within each time step (Section 2.1.4).

2.1.1 Disease Model and Finite State Automaton. A person’s health
state is managed using a �nite state automaton that represents a
probabilistic timed transition system (PTTS). Each (health) state is
connected with a set of exit states which the person can transition
to probabilistically. A state can have an empty set of exit states,
as in the recovered or removed state of the classical SEIR disease
model. At any given time, a person is in exactly one health state.
Immediately after entering a new heath state, a person will select an
exit state to transition to next according to the transition probability
distribution associated with their current state. Each such transition
has an associated dwell time distribution, which determines how
long the person will remain in the state they just entered. In other
words, people move between health states over time according to
the transition and dwell time probability distributions.

Di�erent diseases can be modeled by PTTSs with di�erent sets
of states and di�erent transitions between states. Transitions can
happen between some of the states in the disease model as a result
of a person having contact with another person, as described in
Section 2.1.2. Figure 1 shows a simpli�ed version of the PTTS used
for simulations in this paper.

2.1.2 Transmission Model. In general, certain health states are re-
ferred to as susceptible and as infectious, as are the people in those
states. Disease transmission can result from contacts between in-
fectious and susceptible individuals at a location. The transmission
model takes as input the contact network between all infectious

2

https://sitn.hms.harvard.edu/flash/special-edition-on-infectious-
disease/2014/an-introduction-to-infectious-disease/

Model for human transmission

Abhinav Bhatele (CMSC416 / CMSC616)

Combination of network theory and discrete-
event simulations

• Hybrid time-stepped and discrete-event simulation

16

Contact model at each location

Disease model for each person
117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SC ’21, November 14–19, 2021, St. Louis, MO, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Susceptible

Exposed Fixed (3) 65%

 Pre-
Symptomatic

Normal (5,1) ; 35%

Fixed (2) Symptomatic

Medically
Attended

(Recovers)

Histogram (1-10, mean=4.375) ; 95.94%

Medically
Attended

(Hospitalized)

Medically
Attended
(Death)

RecoveredNormal (5, 1)

Normal (5, 1)

Normal (5, 4.6)

Hospitalized

Fixed (2); 95%

Fixed (8); 5% Hospitalized
(Death)

Ventilator
(Recovers)

Normal (1, 0.2); 6%

Normal (3.1, 3.7); 94%

Ventilator
(Death)Fixed(2); 6%

Fixed(6); 94%

Fixed(6)

Fixed(1)

Death

Immune

Fixed(1); 4%

Fixed(2); 0.06%

Normal (3.1, 3.7); 94%

Asymptomatic

Figure 1: Probabilistic timed transition system (PTTS) showing states and transmissions that represent transmission con�gu-
rations in a simpli�ed model for the COVID-19 disease.

written on top of an asynchronous task-based parallel runtime. This
framework allows us to simulate the population of California in
0.530 seconds per simulated day and the entire US population in
3.425 seconds per simulated day when running on 8,192 compute
cores. Our work makes the following important contributions:

• The design and implementation of a scalable and modular
parallel simulation framework for modeling contagion pro-
cesses and intervention scenarios.

• A �exible and user-friendly input format based on Google’s
Protocol Bu�ers (Protobuf) library [14] to represent disease
models, population datasets, and intervention scenarios.

• Demonstration of the scalability of the code on multiple HPC
platforms both in strong and weak scaling scenarios.

• Demonstration of themodeling capabilities of Loimos by sim-
ulating individual-based (stay-at-home) and location-based
(school closure) interventions.

2 ALGORITHM FOR CONTAGION DIFFUSION
An alternative approach to coupled-rate equations uses a combina-
tion of network theory, discrete event simulations, and agent-based
modeling to study epidemics in large urban areas. In this approach,
both individuals in the population (referred to as “agents”) and
interactions between pairs of them are modeled, in order to simu-
late epidemic di�usion in social contact networks. The main idea
is that a better understanding of the characteristics of the social
contact network can give better insights into disease dynamics and
intervention strategies - like vaccination and quarantines - which
can be used in the epidemic simulation. In this section, we describe
both the serial and parallel versions of the algorithm implemented
in Loimos.

2.1 Serial Algorithm
The general form of our problem can be stated informally as fol-
lows. The input to the algorithm is a time-varying bipartite graph
of people and locations representing people-people interactions at
various locations. An edge between a person, ? , and a location, ✓ ,
represents the potential for an interaction between ? and any other
person with an edge to ✓ , visiting ✓ at the same time as ? . Each per-
son carries with them a probabilistic timed �nite state automaton

that represents their current health state and transitions to other
states. Time is considered to be discrete, and state transitions are
probabilistic. The simulation is best described as iterations of dis-
crete time steps, each time step involving the following update step:
each person updates their state in the automaton based on their
interactions with other individuals at the visited locations in the
current time step. By using di�erent automata for di�erent diseases
(referred to as disease models, Section 2.1.1), various contagion
processes can be simulated. The transmission of disease between
two individuals in contact is governed by a transmission model
(Section 2.1.2). Whether two individuals visiting the same location
come into contact is governed by a contact model (Section 2.1.3)
and simulated using a discrete-event simulation executed serially
at each location within each time step (Section 2.1.4).

2.1.1 Disease Model and Finite State Automaton. A person’s health
state is managed using a �nite state automaton that represents a
probabilistic timed transition system (PTTS). Each (health) state is
connected with a set of exit states which the person can transition
to probabilistically. A state can have an empty set of exit states,
as in the recovered or removed state of the classical SEIR disease
model. At any given time, a person is in exactly one health state.
Immediately after entering a new heath state, a person will select an
exit state to transition to next according to the transition probability
distribution associated with their current state. Each such transition
has an associated dwell time distribution, which determines how
long the person will remain in the state they just entered. In other
words, people move between health states over time according to
the transition and dwell time probability distributions.

Di�erent diseases can be modeled by PTTSs with di�erent sets
of states and di�erent transitions between states. Transitions can
happen between some of the states in the disease model as a result
of a person having contact with another person, as described in
Section 2.1.2. Figure 1 shows a simpli�ed version of the PTTS used
for simulations in this paper.

2.1.2 Transmission Model. In general, certain health states are re-
ferred to as susceptible and as infectious, as are the people in those
states. Disease transmission can result from contacts between in-
fectious and susceptible individuals at a location. The transmission
model takes as input the contact network between all infectious

2

https://sitn.hms.harvard.edu/flash/special-edition-on-infectious-
disease/2014/an-introduction-to-infectious-disease/

Model for human transmission

while d < num_days:
for each person:
Send visit messages to locations

for each location:
Process all visit messages
Run discrete event simulation
Send interaction messages

for each person:
Process interactions
Update disease state

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel simulation is challenging

• Size and scale of the social contact network (6 billion agents for a global simulation)

• Unstructured networks and complicated dependencies lead to high communication cost

• Individuals and their behaviors are not identical

• Co-evolving epidemics, public policies and agent behaviors make it impossible to
apply standard model reduction techniques

17

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel implementation: Loimos

• All the people and locations are
distributed among all processes

• DES computation can be done locally in
parallel

• Communication when sending visit and
infection messages

• Uses Charm++, a message-driven model

18

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SC ’21, November 14–19, 2021, St. Louis, MO, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

l
l
l

p
p
p

l
l
l

p
p
p

l
l
l

p
p
p

... ...

P0 L0

P1 L1

Pn Lm

Figure 3: All person and location objects are partitioned
across chares. People chares send visit messages to location
chares and receive interaction messages in response.

receive visit events, compute the set of interactions which occur
on their locations, and send interaction messages back to people
chares (lines 13-16, 18, and 19-21 of Algorithm 2, respectively). Note
that the tasks depend on a two-phase message exchange between
the people and location chares; people chares send visit messages
to location chares, and location chares respond with interaction
messages. This pattern is responsible for almost all of the commu-
nication in Loimos.

In addition to these chare arrays which handle the bulk of the
communication and computation, we have two other Charm++ ob-
jects that play a substantial role in our implementation of Loimos.
The �rst is the main chare, which is responsible for parsing com-
mand line input to the program and handles the overarching control
structure. The main chare is responsible for starting each time step,
as well as detecting when each of the message exchanges has com-
pleted so that the next phase of the program can begin (as no single
location or people chare can know if all other chares are done
sending it messages), and synchronization at the end of each time
step.

The other important object is a node group, which we use to
hold information regarding the disease model. In Charm++, a node
group is an object which is instantiated once for each node the
program is run on, and it avoid having to keep redundant copies of
shared information in memory on one node, while also minimizing
inter-node communication.

3.3 Implementation of Di�erent Models
The various models described in Section 2.1 are implemented in a
modular fashion to enable replacing them with alternative models
easily.

3.3.1 Disease Model. We implement the disease model as a timed
�nite-state machine. User agents begin in an entry state which
can be predetermined based on data attributes such as age. User
agents will remain in this initial state unless they are exposed by
another infectious agent. We seed the infection by selecting groups
of locations in de�ned clusters. All location in a cluster are disease

sources. When healthy people visit a seeding location, they are
randomly infected with a set probability. This seeding continues
for a small number of con�gurable days. By default, clusters are
selected such that 0.1% locations are seeders for 3 days and 1%
of susceptible people visiting those location on a given day are
infected.

Once agents have been exposed, they transition to a contact
state. Agents will continue to make timed transitions based on
con�gurable distributions for each state. Note that this graph may
be cyclic as agents can be re-infected upon recovery.

The bulk of the important information regarding the disease
model is stored in the textproto �le read in as input, as discussed
in Section 3.1. Once that information is in memory, a single copy is
stored on each node via a Charm++ node group. From there, both
location and people chares can access its information as needed.
These data are mainly used for calculating infection propensities
(on location chares) and health state transition for those already
infected (on people chares).

When using real input data, we also can optionally use infor-
mation about individual people, like their ages, to change their
potential health states. In essence, given an disease model �le with
multiple connected components in the state-transition graph, we
can choose which component each person’s disease states will be a
part of by branching based on one of their attributes. This allows
us to capture the di�erent ways in which a disease could impact
di�erent segments of the population.

3.3.2 Transmission Model. Recall from Section 2.1.2 that there are
three main parts of the transition model: computing the propensity
for given interaction to cause an infection, determining if a person
was infected during one of their interactions in a given time step,
and determining which interaction caused their infection (if they
were in fact infected). In Loimos, the �rst step is computed by
location chares immediately after the interaction is identi�ed, and
then sent to the appropriate people chare when the location chare
is �nished processing the visit it occurred during. The second two
steps are then computed on the appropriate people chare.

3.3.3 Contact Model. We implemented two di�erent types of con-
tact model in our code. The �rst is the<8=/<0G/U model discussed
in Section 2.1.3. This involves reading in the maximum simultane-
ous visits from the location input �le, and computing the appropri-
ate contact probability for each location at the start of a run based
on this value. Note that this only works when we are in fact reading
in data from an input �le. To handle this, we implemented our sec-
ond contact model, in which every location has the same contact
probability. By default, Loimos uses this constant probability model
for all runs, but we provide the option to select the <8=/<0G/U
model at runtime during a run on real data.

3.3.4 Discrete-event Simulation. In implementing the visit model,
we made two key optimizations: �rst, we only keep track of co-
occupancy (and thus interactions) between susceptible people and
an infectious people, and secondly, we only ever send interaction
messages to susceptible people who had at least one interaction
with an infectious person during a time step. Note that we are able
to make both changes without a�ecting the results of the simulation

6

Abhinav Bhatele (CMSC416 / CMSC616)

Application software stack

• Parallel programming model / runtime:

• MPI, OpenMP, Charm++, CUDA, …

• Libraries

• Data and visualization libraries (mesh management,
simulation output)

• I/O libraries

• Math/numerical libraries

• Graph partitioning, load balancing …

19

User program

Libraries

Parallel prog. runtime (MPI, Charm++ etc.)

Abhinav Bhatele (CMSC416 / CMSC616)

Why use libraries?

• No need to reinvent the wheel

• Libraries are highly optimized, have fewer bugs

• Avoids significant effort to write, optimize and maintain code

• Makes code more portable

20

Abhinav Bhatele (CMSC416 / CMSC616)

Popular Libraries

• Data/visualization and I/O libraries

• I/O: HDF5, pNetCDF, ADIOS

• Numerical libraries:

• Fast Fourier transforms: FFTW

• Dense linear algebra: BLAS, LAPACK, Intel MKL

• Solvers for sparse systems: Hypre, PETSc, Trilinos

• Graph partitioning/load balancing:

• METIS, Scotch, Zoltan, Chaco

21

https://events.prace-ri.eu/event/176/contributions/38/attachments/154/305/HPC_libraries.pdf

Abhinav Bhatele (CMSC416 / CMSC616)

Domain-specific languages/frameworks

• Structured grids: SAMRAI, Chombo, AMREx

• Unstructured grids: MFEM, Quinoa

22

Abhinav Bhatele (CMSC416 / CMSC616)

The n-body problem

• Simulate the motion of celestial objects
interacting with one another due to
gravitational forces

• Naive algorithm: O(n2)

• Every body calculates forces pair-wise with every other
body (particle)

23

https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-31-fast-n-body-simulation-cuda

Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Naive approach: Assign n/p particles to each process

• Other approaches?

24

Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Naive approach: Assign n/p particles to each process

• Other approaches?

24

http://datagenetics.com/blog/march22013/

https://en.wikipedia.org/wiki/Z-order_curve

Space-
filling

curves

Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Naive approach: Assign n/p particles to each process

• Other approaches?

24

http://datagenetics.com/blog/march22013/

https://en.wikipedia.org/wiki/Z-order_curve

Space-
filling

curves

Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Naive approach: Assign n/p particles to each process

• Other approaches?

24

http://datagenetics.com/blog/march22013/

https://en.wikipedia.org/wiki/Z-order_curve http://charm.cs.uiuc.edu/workshops/charmWorkshop2011/slides/CharmWorkshop2011_apps_ChaNGa.pdf

Space-
filling

curves

ORB

Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Let us consider a two-dimensional space with bodies/particles in it

25

Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Let us consider a two-dimensional space with bodies/particles in it

25

Abhinav Bhatele (CMSC416 / CMSC616)

Data distribution in n-body problems

• Let us consider a two-dimensional space with bodies/particles in it

25

Quad-tree: not all nodes are shown

Abhinav Bhatele (CMSC416 / CMSC616)

Different parallelization methods

• Tree codes: Barnes-Hut simulations

• Fast multipole methods (FMM): Greengard and Rokhlin

• Particle mesh methods

• Particle-particle particle-mesh (P3M) methods

26

Abhinav Bhatele (CMSC416 / CMSC616)

Barnes-Hut simulation

• Represent the space containing the particles as an
oct-tree

• Pairwise force calculations for nearby particles

• For tree nodes that are sufficiently far away,
approximate the particles in the node by a single
large particle at the center of mass

• O(N logN) algorithm

27

https://en.wikipedia.org/wiki/Barnes–Hut_simulation

Abhinav Bhatele (CMSC416 / CMSC616)

Fast multipole methods

• Use multipole expansion for distant particles

• Takes advantage of the fact that for nearby particles, multipole-expanded forces from
distant particles are similar

• Reduces the time complexity further to O(n)

28

Abhinav Bhatele (CMSC416 / CMSC616)

Particle-particle particle-mesh methods

• Explicit calculation of forces on nearby particles

• Fourier-based Ewald summation for calculating potentials on a grid

• Smoothed particle hydrodynamics

29

