Introduction to Parallel Computing (CMSC416 / CMSCé16)

Parallel Deep Learning

Abhinav Bhatele, Alan Sussman

UNIVERSITY OF

MARYLAND

Annoucements

e Assighment /7 (extra credit) has been posted

® Due on Dec 9 | |:59 pm (no extensions for any reason)

e |RB-approved research study to analyze the generated logs

* Please opt-in to help us with research

s DEPARTMENT OF .
;}}TM;’J COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

The evolution of HPC systems and rise of a
new revolution in Al

® |n the last two decades, an enormous
amount of compute power has become

available Top500 Rpeak - 91.75 Tflop/s

® lLarge datasets and open source software
such as PyTorch have also emerged

® Led to a frenzy in the world of Al and the
effects are being felt in almost every other
domain

FP64 - 34 Tflop/s

NVIDIA H100, 2024

m 3 Singh & Bhatele @ -’J) &24

The evolution of HPC systems and rise of a
new revolution in Al

® |n the last two decades, an enormous
amount of compute power has become

available Top500 Rpeak - 91.75 Tflop/s } =

® Large datasets and open source software ~Z
such as PyTorch have also emerged IBM Blue Gene/L, 2004

® Led to a frenzy in the world of Al and the
effects are being felt in almost every other

domain
NVIDIA HI100, 2024
m 3 Singh & Bhatele @ J) &24

The evolution of HPC systems and rise of a
new revolution in Al

® |n the last two decades, an enormous
amount of compute power has become
available

® lLarge datasets and open source software
such as PyTorch have also emerged

® Led to a frenzy in the world of Al and the
effects are being felt in almost every other

domain 110.63 Exaflop/s!!

NVIDIA HI100, 2024
Singh & Bhatele @ J) &24

P SIS,G 3

Use of AI/ML in HPC

® Some of the earliest works were around 2007 on using traditional machine learning
approaches to model performance and power

e 2007-2017:Supervised and unsupervised algorithms for creating prediction models

e 2018-present: Deep learning and transfer learning starting to become popular

4 Abhinav Bhatele @ HPDC 24 %3

Use of AI/ML in HPC

® Some of the earliest works were around 2007 on using traditional machine learning
approaches to model performance and power

e 2007-2017:Supervised and unsupervised algorithms for creating prediction models

e 2018-present: Deep learning and transfer learning starting to become popular

- | = 4 >]
c : \;. *u s o Y
° ° o % @
. .q.:..‘ oy
\ % 3 :'!‘!2.
~. PO
¢ W'

Abhinav Bhatele, et al. Identifying the culprits behind network congestion. In Proceedings of
the IEEE International Parallel & Distributed Processing Symposium, IPDPS '15. May 2015.

m 4 Abhinav Bhatele @ HPDC 24 %3

Use of AI/ML in HPC

® Some of the earliest works were around 2007 on using traditional machine learning
approaches to model performance and power

e 2007-2017:Supervised and unsupervised algorithms for creating prediction models

e 2018-present: Deep learning and transfer learning starting to become popular

. e ® ‘- Run/profile A / . : \
- L LA . o Model Training and Selection
o ® AR U Applications
b ¥ N N P G P C—
¢ ‘1‘p ® (7]
oo © ‘00.35335.3;_#:‘ g | Counters ! Model -
* * o9 .‘020032 2 — | w — eature Best
, ! o % \i'}:.‘ Q 2 3 . 2 Selection Model
208 ¢ R B — 5 .
w‘. = : Selection
’ °* o : > :
e’ <
|
* 7 _ /
IE};;/;:ES Data Collection Cross-architecture
and Pre-processing Modeling using ML
Abhinav Bhatele, et al. Identifying the culprits behind network congestion. In Proceedings of Daniel Nichols, et al. Predicting Cross-Architecture Performance of Parallel Programs. In
the IEEE International Parallel & Distributed Processing Symposium, IPDPS '15. May 2015. Proceedings of the IEEE International Parallel & Distributed Processing Symposium. May 2024.

m 4 Abhinav Bhatele @ HPDC 24 %%

Al/ML for Computational Science

e Using of Al models for approximating computation in scientific codes
® Black box models

® Physics-informed machine learning models

5 Abhinav Bhatele @ HPDC 24 %%

Al/ML for Computational Science

e Using of Al models for approximating computation in scientific codes
® Black box models

® Physics-informed machine learning models

Turbulence modeling Cosmology

m 5 Abhinav Bhatele @ HPDC 24

(ol)
&J

Al/ML for Computational Science

e Using of Al models for approximating computation in scientific codes
® Black box models

® Physics-informed machine learning models

Turbulence modeling Cosmology Climate science Molecular dynamics

m 5 Abhinav Bhatele @ HPDC 24 %%

Deep neural networks (DNNs)

® An area of machine learning that uses artificial neural
networks to learn complex functions

e Often from high-dimensional data: text, images, audio, ...

® Widespread use in computer vision, natural language
processing, etc.

® Neural networks can be used to model complex functions

® Several layers that process “batches” of the input data

agg@ 6 Abhinav Bhatele @ (/7) pEARc24

Deep neural networks (DNNs)

® An area of machine learning that uses artificial neural
networks to learn complex functions

2 w. * x + bias

e Often from high-dimensional data: text, images, audio, ...

Summation Activation
Inputs Weights and bias function Outputs

® Widespread use in computer vision, natural language
processing, etc.

® Neural networks can be used to model complex functions

® Several layers that process “batches” of the input data

agg@ 6 Abhinav Bhatele @ (/7) pEARc24

Deep neural networks (DNNs)

® An area of machine learning that uses artificial neural
networks to learn complex functions

e Often from high-dimensional data: text, images, audio, ...

® Widespread use in computer vision, natural language
processing, etc.

® Neural networks can be used to model complex functions

® Several layers that process “batches” of the input data

Layer Hidden La)’e rs Layer

m 6 Abhinav Bhatele @ , .

Deep learning and language models

Web data

Books

Structured data

https://medium.com/data-science-at-microsoft/how-large-language-models-work-9 1 c¢362f5b78f

m 7 Abhinav Bhatele @ HPDC 24 %%

Deep learning and language models

Web data Text Generation
B ok q Classification

Structured data

https://medium.com/data-science-at-microsoft/how-large-language-models-work-9 1 c¢362f5b78f

m 7 Abhinav Bhatele @ HPDC 24 %%

Deep learning and language models

Web data Text Generation
Books q Classification

Structured data

Word Probability
speak 0.065
A trained language model can —> generate 0.072
Input politics 0.001
walk 0.003

https://medium.com/data-science-at-microsoft/how-large-language-models-work-9 1 c362f5b78f

agg@ / Abhinav Bhatele @ HPDC ‘24 %3

Deep learning and language models

Web data Text Generation
Books q Classification

Structured data

Word Probability Word Probability
speak 0.065 ability 0.002
A trained language model can —> generate 0.072 — text 0.084
Input politics 0.001 coherent 0.085
walk 0.003 ideas 0.041

https://medium.com/data-science-at-microsoft/how-large-language-models-work-9 1 c362f5b78f

m 7 Abhinav Bhatele @ HPDC 24 %3

Other definitions

® |earning/training: task of selecting weights that lead to an accurate function
® | oss:a scalar proxy that when minimized leads to higher accuracy

¢ Gradient descent: process of updating the weights using gradients (derivates) of the
loss weighted by a learning rate

® Mini-batch: Small subsets of the dataset processed iteratively

® Epoch: One pass over all the mini-batches

S DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Do we really need parallel resources?

® The largest model you can run on an HI00 96 GB GPU is around 3.5-4 billion
parameters

® On a single node (with four HI00 GPUs): around ~16 billion parameters model
® Training a |16B parameter would take 33 years!
® OpenAl’s GPT 4.0 is estimated to have |.8 trillion parameters

® Meta’s Llama-3.1-405B has more than 400 billion parameters

-~
h Amné%‘?,%cates.

Why is LLM training well-suited for HPC?

Layers

Embedding == Decoder == Decoder ® ® ® Decoder == C(lassifier

| 8

10 Singh & Bhatele @ :;/?‘, &24
- .

Atlanta.
GA

Why is LLM training well-suited for HPC?

4

X Embedding == Decoder == Decoder ® ® ® Decoder == Classifier
5 Self

s attention

3

A

Attention block

--

|10

Why is LLM training well-suited for HPC?

(Vg
.
q>)\ Embedding == Decoder == Decoder © ® ® Decoder == Classifier
S = y
: Self
$ attention
@
Q
a Attention block
k] "
.
0 ‘
5 s e
e ° Forward
Pass

.;
10 Singh & Bhatele @ ;)» &24
- Amné%’?-%%tes

Why is LLM training well-suited for HPC?

(Vs
.
> Embedding == Decoder == Decoder ® ® ® Decoder == C(lassifier
5 Self
s attention
O
)
O Attention block

k] W
. G
S .
£ ——

mi | O Forward mi | O m| | O Backward
Pass Pass

|
o soan s @) SC 244
- Man 2 s

Parallel/distributed training

® Many opportunities for exploiting parallelism
® |terative process of training (epochs)
® Many iterations per epoch (mini-batches)

® Many layers in DNNs

s DEPARTMENT OF :
:’f‘n‘;‘;-,.c?'-i: COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) |

Parallel/distributed training

Increase in size of neural networks

® Many opportunities for exploiting parallelism

® |terative process of training (epochs) :

® Many iterations per epoch (mini-batches) 5 08 E;\"I e T Bertlarge..............
7 eXlet I I I | |

® Man), |8.)’€I’S in DNINs . 2012 2014 2016 2018 2019 2020

Year

RYALS 152

MG DEPARTMENT OF ,
".‘,ﬁ}?;.‘b{j;;"' COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) |

Parallel/distributed training

Increase in size of neural networks

) ° ° ° ° |O|2 e
® Many opportunities for exploiting parallelism
£ [O] errrerermmsmssssreeeeeeesssmmssassssesessessssssasssssssssssssssssssss s
% -3
[] [[% IO
® |terative process of training (epochs) L oL
S 9
P 1 R S ARt
S
[[[] [E :
® Many iterations per epoch (mini-batches) £ 108 [e Bertdarge .
VGG-16
AlexNet
107 | | | | | | |
1 2012 2014 2016 2018 2019 2020
® Many layers in DNNs ;
ear
, Largest Largest Trained Network
Jramew oy Type of Parallelism Accelerator Count (No. of Parameters)
FlexFlow Hybrid 64 GPUs 24M*
PipeDream Inter-Layer 16 GPUs 138M
DDP Data 256 GPUs 345M
GPipe Inter-Layer 8 GPUs 557M
MeshTensorFlow Intra-Layer 512-core TPUv2 4.9B
Megatron Intra-Layer 512 GPUs 8.3B
TorchGPipe Inter-Layer 8 GPUs 15.8B
KARMA Data 2048 GPUs 17B
LBANN Data 3072 CPUs 78.6B
ZeRO Data 400 GPUs 100B
SAE> DEPARTMENT OF .
L) COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Ty’

Sequential LLM training gl

I I:I
while (remaining batches) ({ 1]
Read a single batch

Forward pass: perform matrix multiplies to compute
output activations, and a loss on the batch

Backward pass: matrix multiplies to compute gradients of
the loss w.r.t. parameters via backpropagation

Optimizer step: use gradients to update the weights or
parameters such that loss 1s gradually reduced

}

|
. Singh & Bhatele @ ’fﬂ &24
. Atla né%; ‘ Qr:gos

Data parallelism

® Divide training data (input batch) among
workers (GPUs)

e Each worker has a full copy of the entire
NN and processes different mini-batches

® All reduce operation to synchronize
gradients

® Example: PyTorch’s DDP, ZeRO

Data parallelism

® Divide training data (input batch) among
workers (GPUs)

e Each worker has a full copy of the entire
NN and processes different mini-batches Batch

® All reduce operation to synchronize
gradients

® Example: PyTorch’s DDP, ZeRO

Data parallelism

® Divide training data (input batch) among
workers (GPUs) Shard 2

e Each worker has a full copy of the entire
NN and processes different mini-batches Batch Shard |

® All reduce operation to synchronize
gradients Shard 0

® Example: PyTorch’s DDP, ZeRO

Data parallelism

® Divide training data (input batch) among
workers (GPUs) Shard 2

e Each worker has a full copy of the entire
NN and processes different mini-batches Batch Shard |

® All reduce operation to synchronize
gradients Shard 0

® Example: PyTorch’s DDP, ZeRO

Data parallelism

® Divide training data (input batch) among
workers (GPUs)

Shard 2

e Each worker has a full copy of the entire

NN and processes different mini-batches

Batch Shard |

® All reduce operation to synchronize
gradients

Shard 0

® Example: PyTorch’s DDP, ZeRO

|3

—
e -
g g,
',‘t"q .“{:‘- - _‘.:)"-\ ‘.‘cf..
. ‘..,." T e ,;
Abhinav Bhatele @ (/1)
|. G{iL° f
TRE
- B
9 W

%

Inter-layer parallelism

® Assign entire layers to different processes/GPUs

® |deally map contiguous subsets of layers

® Point-to-point communication (activations and gradients) between processes/GPUs
managing different layers

e Use a pipeline of mini-batches to enable concurrent execution

N

Oy

Abhinay Bhatele @) DEARC

Inter-layer parallelism

® Assign entire layers to different processes/GPUs
Pipeline parallelism

® |deally map contiguous subsets of layers

® Point-to-point communication (activations and gradients) between processes/GPUs
managing different layers

e Use a pipeline of mini-batches to enable concurrent execution

N

Oy

Abhinay Bharele @) PEARC”

Intra-layer parallelism

® Enables training neural networks that would not fit on a single GPU

e Distribute the work within each layer to multiple processes/GPUs

® Essentially parallelize matrix operations such as matmuls across multiple GPUs

o Example: Megatron-LM

m 5 Abhinav Bhatele @ . ‘ pE A Rc24

Intra-layer parallelism

Tensor parallelism

® Enables training neural networks that would not fit on a single GPU

e Distribute the work within each layer to multiple processes/GPUs

® Essentially parallelize matrix operations such as matmuls across multiple GPUs

o Example: Megatron-LM

Hybrid parallelism

e Using two or more approaches together in the same parallel framework
® 3D parallelism: use all three
® Popular serial frameworks: pytorch, tensorflow

® Popular parallel frameworks: DDP, MeshTensorFlow, Megatron-LM, ZeRO

RYALS 152

MG DEPARTMENT OF ,
".‘,,ﬁw{;;"‘ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 16

A four-dimensional hybrid parallel approach

® A hybrid parallelism approach

® Combines data parallelism with
3-dimensional parallel matrix
multiplication (PMM)

a‘gg@ 17 Singh & Bhatele @ f;ﬁ $24
- .

Atlanta.
GA

A four-dimensional hybrid parallel approach

® A hybrid parallelism approach

Batch

® Combines data parallelism with
3-dimensional parallel matrix
multiplication (PMM)

agg@ 17 Singh & Bhatele @ \ﬁ &24
- .

Atlanta.
GA

A four-dimensional hybrid parallel approach

Shard 2

® A hybrid parallelism approach

Batch === Shard |

® Combines data parallelism with \

3-dimensional parallel matrix Shard 0
multiplication (PMM)

agg@ 17 Singh & Bhatele @ f;’% &24
~ .

Atlanta,
GA

A four-dimensional hybrid parallel approach

Shard 2

ﬁ

-~

Batch wwsp Shard | o)
—

® A hybrid parallelism approach

® Combines data parallelism with \

3-dimensional parallel matrix Shard 0
multiplication (PMM)

agg@ 17 Singh & Bhatele @ f;’% &24
~ .

Atlanta,
GA

A four-dimensional hybrid parallel approach

Shard 2

® A hybrid parallelism approach

ﬁ

-~

Batch wwssp Shard | e
ﬁ

® Combines data parallelism with \

3-dimensional parallel matrix Shard 0
multiplication (PMM)

GPU Group 0

Data Parallelism

m |7 Singh & Bhatele @ J) &24

pc
GA’

Enabling 3D parallel matrix multiplication in
AXONN

e Each layer is multiplying input activations with weights to produce output activations
e Distribute | and W across a 3D grid of GPUs

e Compute partial output activations, O on each GPU

n
K] A% Weights

|

18 Singh & Bhatele @ \ﬁ &24
~ .

Atlanta,
GA

Enabling 3D parallel matrix multiplication in
AXONN

e Each layer is multiplying input activations with weights to produce output activations
e Distribute | and W across a 3D grid of GPUs

e Compute partial output activations, O on each GPU

i

Z
N Y
k W Weights
\/
|
Output
ctivations

>

18 Singh & Bhatele @ $/§ $24
- 08 tes

Atlanta.
GA

Enabling 3D parallel matrix multiplication in
AXONN

e Each layer is multiplying input activations with weights to produce output activations

e Distribute | and W across a 3D grid of GPUs

e Compute partial output activations, O on each GPU

-

Singh & Bhatele @ Q’T

)

hpc
creates.

Atlanta,
GA

Enabling 3D parallel matrix multiplication in
AXONN

e Each layer is multiplying input activations with weights to produce output activations

e Distribute | and W across a 3D grid of GPUs

e Compute partial output activations, O on each GPU

Enabling 3D parallel matrix multiplication in
AXONN

e Each layer is multiplying input activations with weights to produce output activations
® Distribute | and W across a 3D grid of GPUs

e Compute partial output activations, O on each GPU

Z

aa B9 @&
loo ™ Wo;

v All- reduce

- t I W

I O

>

p

18 Singh & Bhatele @ y), &24

oA

9 Easy parallelization using AxoNN

® Requires minimal code changes to model architecture (code):

from axonn.intra layer import auto parallelize

with auto parallelize():
net = # declare your sequential model here

® AxoNN intercepts all declarations of torch.nn.Linear,and parallelizes them
® Our ML collaborators used this mode for the memorization experiments

® We also have backends for 11ightning and accelerate

19 Singh & Bhatele @ zy
o Auunta.‘gf;;cmes.

GA

Weak scaling performance

Weak Scaling Performance of AxoNN

W
on
|

—H = Frontier

W
o
=

N
on
|

N
o
I

1

on
|

Time per batch (s)
\
/
T
I
I
I
&

o
|

5_

O I I I I I I I
5B IOB 20B 40B 60B 80B 160B 320B

(512) (1024) (2048) (4096) (6144) (8192) (16384)(32768)

Number of parameters
(Number of GPUs/GCDs)

agg@ 20 Singh & Bhatele @ *«ﬁ &24
- Atlanta, | hpc

GA |creates.

Weak scaling performance

Weak Scaling Performance of AxoNN

35 -
—m® = Frontier
301 =—#*— Perlmutter /’
/

@25- /
i
5 20- e [= A
0 n— — N e = = =
g
° |5 -
£
|_

10 -

v —A
5_
0

58 10B 20B 40B 60B S8OB 160B 320B
(512) (1024) (2048) (4096) (6144) (8192) (16384)(32768)

Number of parameters
(Number of GPUs/GCDs)

agg@ 20 Singh & Bhatele @ \ﬁ &24
v Atlanta, hpc

GA |creates.

Weak scaling performance

Weak Scaling Performance of AxoNN

35 -
—® = Frontier
30 =—*— Perlmutter /’
...‘... AIPS
25 - ,
: /
-
8 20- R) y
e L - o
)
Q- |5 -
Q
£
I_
10 -
v N
....... ¢
ch PR PO T POt
0

58 |0B 20B 40B 60B SOB 160B 320B
(512) (1024) (2048) (4096) (6144) (8192) (16384)(32768)

Number of parameters
(Number of GPUs/GCDs)

agg@ 20 Singh & Bhatele @ \ﬁ &24
v Atlanta, hpc

GA |creates.

Weak scaling perfor

Weak Scaling Performance of AxoNN |.38
Exaflop/s

R ——
—®— Frontier
30_ S Perlmutter ...
e A
A L R /o
© /
-
% 204 -.__.\ .. /,—{
0 - — N = = - =
o
(ol |5 S TSR
[0)
£
I_
[
v —A
...... 4
5 '""""""""""Q'-"-".".".';;.".".";.".“.'.'.'-”-"-' iiii SR TS PSSR PSSR R RN USRS
0

58 |0B 20B 40B 60B SOB 160B 320B
(512) (1024) (2048) (4096) (6144) (8192) (16384)(32768)

Number of parameters
(Number of GPUs/GCDs)

’;

SC24

Atlanta, hpc
GA |creates.

Weak scaling perfor

Weak Scaling Performance of AxoNN |.38
Exaflop/s

3 00
—™® = Frontier
301 —*— Perlmutter
...‘...‘ AIPS
A25 ..
£
,(_é 20 —_.\ ... e
0 - — -
o
o |5 ..
()
£
|_
Iov
LT R v L
0

58 |0B 20B 40B 60B SOB 160B 320B
(512) (1024) (2048) (4096) (6144) (8192) (16384)(32768)

Number of parameters
(Number of GPUs/GCDs)

m 20 Singh & Bhatele @ gﬁ &24
- Atlanta, | hpc

GA |creates.

Weak scaling performance

Weak Scaling Performance of AxoNN .38 Strong Scaling Performance of AxoNN on Frontier
35« ExaﬂOP/ S 00
—m = Frontier —+— GPT-640B
301 —*— Perimutter o T 100 o N GPT-80B
¢ Alps T e
25 - e
= - ..."'A,.. ...
g 20 - é 20 e G
O C "0‘.
O O ‘
0 |5 - E IO B .2 OSSOSO SIS
) N~ L N
£ v :::ff'::'.:;::
= £ T
IO - — ’0,.‘ ...
5 i 2 _..'g..*..
0 - - - - . . . | e e g
5B 10B 20B 40B 60B 80B |160B 320B e
(512) (1024) (2048) (4096) (6144) (8192) (16384)(32768) 0.5 | | | | | |
Number of parameters 128 256 512 1024 2048 4096 8192
(Number of GPUs/GCDs) Number of GCDs

agg.@ 20 Singh & Bhatele @ g"ﬁ 24
- Atlanta, hpc

GA |creates.

Questions?

UNIVERSITY OF

MARYLAND

