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Annoucements

e Assighment /7 (extra credit) has been posted

® Due on Dec 9 | |:59 pm (no extensions for any reason)

e |RB-approved research study to analyze the generated logs

* Please opt-in to help us with research
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The evolution of HPC systems and rise of a
new revolution in Al

® |n the last two decades, an enormous
amount of compute power has become

available Top500 Rpeak - 91.75 Tflop/s

® lLarge datasets and open source software
such as PyTorch have also emerged

® Led to a frenzy in the world of Al and the
effects are being felt in almost every other
domain

FP64 - 34 Tflop/s

NVIDIA H100, 2024
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® |n the last two decades, an enormous
amount of compute power has become

available Top500 Rpeak - 91.75 Tflop/s } =

® Large datasets and open source software ~Z
such as PyTorch have also emerged IBM Blue Gene/L, 2004

® Led to a frenzy in the world of Al and the
effects are being felt in almost every other

domain
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The evolution of HPC systems and rise of a
new revolution in Al

® |n the last two decades, an enormous
amount of compute power has become
available

® lLarge datasets and open source software
such as PyTorch have also emerged

® Led to a frenzy in the world of Al and the
effects are being felt in almost every other

domain 110.63 Exaflop/s!!

NVIDIA HI100, 2024
Singh & Bhatele @ J) &24
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Use of AI/ML in HPC

® Some of the earliest works were around 2007 on using traditional machine learning
approaches to model performance and power

e 2007-2017:Supervised and unsupervised algorithms for creating prediction models

e 2018-present: Deep learning and transfer learning starting to become popular
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Abhinav Bhatele, et al. Identifying the culprits behind network congestion. In Proceedings of
the IEEE International Parallel & Distributed Processing Symposium, IPDPS '15. May 2015.
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Use of AI/ML in HPC

® Some of the earliest works were around 2007 on using traditional machine learning
approaches to model performance and power

e 2007-2017:Supervised and unsupervised algorithms for creating prediction models

e 2018-present: Deep learning and transfer learning starting to become popular
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Al/ML for Computational Science

e Using of Al models for approximating computation in scientific codes
® Black box models

® Physics-informed machine learning models
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Al/ML for Computational Science

e Using of Al models for approximating computation in scientific codes
® Black box models

® Physics-informed machine learning models

Turbulence modeling Cosmology Climate science Molecular dynamics
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Deep neural networks (DNNs)

® An area of machine learning that uses artificial neural
networks to learn complex functions

e Often from high-dimensional data: text, images, audio, ...

® Widespread use in computer vision, natural language
processing, etc.

® Neural networks can be used to model complex functions

® Several layers that process “batches” of the input data
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Deep neural networks (DNNs)

® An area of machine learning that uses artificial neural
networks to learn complex functions

2 w. * x + bias

e Often from high-dimensional data: text, images, audio, ...

Summation  Activation
Inputs Weights and bias function  Outputs

® Widespread use in computer vision, natural language
processing, etc.

® Neural networks can be used to model complex functions

® Several layers that process “batches” of the input data
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Deep neural networks (DNNs)

® An area of machine learning that uses artificial neural
networks to learn complex functions

e Often from high-dimensional data: text, images, audio, ...

® Widespread use in computer vision, natural language
processing, etc.

® Neural networks can be used to model complex functions

® Several layers that process “batches” of the input data

Layer Hidden La)’e rs Layer
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Deep learning and language models

Web data

Books

Structured data

https://medium.com/data-science-at-microsoft/how-large-language-models-work-9 1 c¢362f5b78f
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Deep learning and language models

Web data Text Generation
B ok q Classification

Structured data

https://medium.com/data-science-at-microsoft/how-large-language-models-work-9 1 c¢362f5b78f
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Deep learning and language models

Web data Text Generation
Books q Classification

Structured data

Word Probability
speak 0.065
A trained language model can —> generate 0.072
Input politics 0.001
walk 0.003

https://medium.com/data-science-at-microsoft/how-large-language-models-work-9 1 c362f5b78f
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Deep learning and language models

Web data Text Generation
Books q Classification

Structured data

Word Probability Word Probability
speak 0.065 ability 0.002
A trained language model can —> generate 0.072 — text 0.084
Input politics 0.001 coherent 0.085
walk 0.003 ideas 0.041

https://medium.com/data-science-at-microsoft/how-large-language-models-work-9 1 c362f5b78f
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Other definitions

® |earning/training: task of selecting weights that lead to an accurate function
® | oss:a scalar proxy that when minimized leads to higher accuracy

¢ Gradient descent: process of updating the weights using gradients (derivates) of the
loss weighted by a learning rate

® Mini-batch: Small subsets of the dataset processed iteratively

® Epoch: One pass over all the mini-batches
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Do we really need parallel resources?

® The largest model you can run on an HI00 96 GB GPU is around 3.5-4 billion
parameters

® On a single node (with four HI00 GPUs): around ~16 billion parameters model
® Training a |16B parameter would take 33 years!
® OpenAl’s GPT 4.0 is estimated to have |.8 trillion parameters

® Meta’s Llama-3.1-405B has more than 400 billion parameters
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Why is LLM training well-suited for HPC?

Layers

Embedding == Decoder == Decoder ® ® ® Decoder == C(lassifier

| 8
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Why is LLM training well-suited for HPC?

4

X Embedding == Decoder == Decoder ® ® ® Decoder == Classifier
5 Self

s attention
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Why is LLM training well-suited for HPC?
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Parallel/distributed training

® Many opportunities for exploiting parallelism
® |terative process of training (epochs)
® Many iterations per epoch (mini-batches)

® Many layers in DNNs
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Parallel/distributed training

Increase in size of neural networks

® Many opportunities for exploiting parallelism

® |terative process of training (epochs) :

® Many iterations per epoch (mini-batches) 5 08 E;\"I ...... e T Bertlarge..............
7 eXlet I I I | |

® Man), |8.)’€I’S in DNINs . 2012 2014 2016 2018 2019 2020

Year

RYALS 152
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Parallel/distributed training

Increase in size of neural networks

) ° ° ° ° |O|2 e
® Many opportunities for exploiting parallelism
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® |terative process of training (epochs) L oL
S 9
P 1 R S ARt
S
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® Many iterations per epoch (mini-batches) £ 108 [ e Bertdarge .
VGG-16
AlexNet
107 | | | | | | |
1 2012 2014 2016 2018 2019 2020
® Many layers in DNNs ;
ear
, Largest Largest Trained Network
Jramew oy Type of Parallelism Accelerator Count (No. of Parameters)
FlexFlow Hybrid 64 GPUs 24M*
PipeDream Inter-Layer 16 GPUs 138M
DDP Data 256 GPUs 345M
GPipe Inter-Layer 8 GPUs 557M
MeshTensorFlow Intra-Layer 512-core TPUv2 4.9B
Megatron Intra-Layer 512 GPUs 8.3B
TorchGPipe Inter-Layer 8 GPUs 15.8B
KARMA Data 2048 GPUs 17B
LBANN Data 3072 CPUs 78.6B
ZeRO Data 400 GPUs 100B
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Sequential LLM training gl

I I:I
while (remaining batches) ({ 1 ]
Read a single batch

Forward pass: perform matrix multiplies to compute
output activations, and a loss on the batch

Backward pass: matrix multiplies to compute gradients of
the loss w.r.t. parameters via backpropagation

Optimizer step: use gradients to update the weights or
parameters such that loss 1s gradually reduced

}
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Data parallelism

® Divide training data (input batch) among
workers (GPUs)

e Each worker has a full copy of the entire
NN and processes different mini-batches

® All reduce operation to synchronize
gradients

® Example: PyTorch’s DDP, ZeRO
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Data parallelism

® Divide training data (input batch) among
workers (GPUs)

Shard 2

e Each worker has a full copy of the entire

NN and processes different mini-batches

Batch Shard |

® All reduce operation to synchronize
gradients

Shard 0

® Example: PyTorch’s DDP, ZeRO
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Inter-layer parallelism

® Assign entire layers to different processes/GPUs

® |deally map contiguous subsets of layers

® Point-to-point communication (activations and gradients) between processes/GPUs
managing different layers

e Use a pipeline of mini-batches to enable concurrent execution

N
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Inter-layer parallelism

® Assign entire layers to different processes/GPUs
Pipeline parallelism

® |deally map contiguous subsets of layers

® Point-to-point communication (activations and gradients) between processes/GPUs
managing different layers

e Use a pipeline of mini-batches to enable concurrent execution
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Intra-layer parallelism

® Enables training neural networks that would not fit on a single GPU

e Distribute the work within each layer to multiple processes/GPUs

® Essentially parallelize matrix operations such as matmuls across multiple GPUs

o Example: Megatron-LM
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Intra-layer parallelism

Tensor parallelism

® Enables training neural networks that would not fit on a single GPU

e Distribute the work within each layer to multiple processes/GPUs

® Essentially parallelize matrix operations such as matmuls across multiple GPUs

o Example: Megatron-LM




Hybrid parallelism

e Using two or more approaches together in the same parallel framework
® 3D parallelism: use all three
® Popular serial frameworks: pytorch, tensorflow

® Popular parallel frameworks: DDP, MeshTensorFlow, Megatron-LM, ZeRO

RYALS 152
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A four-dimensional hybrid parallel approach

® A hybrid parallelism approach

® Combines data parallelism with
3-dimensional parallel matrix
multiplication (PMM)
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A four-dimensional hybrid parallel approach

® A hybrid parallelism approach

Batch

® Combines data parallelism with
3-dimensional parallel matrix
multiplication (PMM)
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A four-dimensional hybrid parallel approach

Shard 2

® A hybrid parallelism approach

Batch ===  Shard |

® Combines data parallelism with \

3-dimensional parallel matrix Shard 0
multiplication (PMM)
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A four-dimensional hybrid parallel approach

Shard 2

ﬁ

-~

Batch wwsp  Shard | o)
—

® A hybrid parallelism approach

® Combines data parallelism with \

3-dimensional parallel matrix Shard 0
multiplication (PMM)
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A four-dimensional hybrid parallel approach

Shard 2

® A hybrid parallelism approach

ﬁ

-~

Batch wwssp  Shard | e
ﬁ

® Combines data parallelism with \

3-dimensional parallel matrix Shard 0
multiplication (PMM)

GPU Group 0

Data Parallelism

m |7 Singh & Bhatele @ J) &24

pc
GA’



Enabling 3D parallel matrix multiplication in
AXONN

e Each layer is multiplying input activations with weights to produce output activations
e Distribute | and W across a 3D grid of GPUs

e Compute partial output activations, O on each GPU
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Enabling 3D parallel matrix multiplication in
AXONN

e Each layer is multiplying input activations with weights to produce output activations
e Distribute | and W across a 3D grid of GPUs

e Compute partial output activations, O on each GPU
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Enabling 3D parallel matrix multiplication in
AXONN

e Each layer is multiplying input activations with weights to produce output activations

e Distribute | and W across a 3D grid of GPUs

e Compute partial output activations, O on each GPU
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Enabling 3D parallel matrix multiplication in
AXONN

e Each layer is multiplying input activations with weights to produce output activations
® Distribute | and W across a 3D grid of GPUs

e Compute partial output activations, O on each GPU
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9 Easy parallelization using AxoNN

® Requires minimal code changes to model architecture (code):

from axonn.intra layer import auto parallelize

with auto parallelize():
net = # declare your sequential model here

® AxoNN intercepts all declarations of torch.nn.Linear,and parallelizes them
® Our ML collaborators used this mode for the memorization experiments

® We also have backends for 11ightning and accelerate

19 Singh & Bhatele @ zy
o Auunta.‘gf;;cmes.

GA




Weak scaling performance

Weak Scaling Performance of AxoNN
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Weak scaling performance

Weak Scaling Performance of AxoNN
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Weak scaling performance

Weak Scaling Performance of AxoNN
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Weak scaling perfor

Weak Scaling Performance of AxoNN |.38
Exaflop/s

R ——
—®—  Frontier
30_ S Perlmutter ...................................................................................................
e A
A L R /o
© /
-
% 204 -.__.\ ............................................................ /,—{ .........................
0 - — N = = - =
o
(ol |5 S TSR
[0)
£
I_
[
v —A
...... 4
5 '""""""""""Q'-"-".".".';;.".".";.".“.'.'.'-”-"-' iiii SR TS PSSR PSSR R RN USRS
0

58 |0B 20B 40B 60B SOB 160B 320B
(512) (1024) (2048) (4096) (6144) (8192) (16384)(32768)

Number of parameters
(Number of GPUs/GCDs)

’;

SC24

Atlanta, hpc
GA |creates.




Weak scaling perfor

Weak Scaling Performance of AxoNN |.38
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Weak scaling performance

Weak Scaling Performance of AxoNN .38 Strong Scaling Performance of AxoNN on Frontier
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