
Parallel Deep Learning
Abhinav Bhatele, Alan Sussman

Introduction to Parallel Computing (CMSC416 / CMSC616)



Abhinav Bhatele (CMSC416 / CMSC616)

Annoucements

• Assignment 7 (extra credit) has been posted

• Due on Dec 9 11:59 pm (no extensions for any reason)

• IRB-approved research study to analyze the generated logs

• Please opt-in to help us with research

2



Singh & Bhatele @

The evolution of HPC systems and rise of a 
new revolution in AI

• In the last two decades, an enormous 
amount of compute power has become 
available

• Large datasets and open source software 
such as PyTorch have also emerged

• Led to a frenzy in the world of AI and the 
effects are being felt in almost every other 
domain
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• Some of the earliest works were around 2007 on using traditional machine learning 

approaches to model performance and power

• 2007-2017: Supervised and unsupervised algorithms for creating prediction models

• 2018-present: Deep learning and transfer learning starting to become popular
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blocks. Mode two was adopted on Cielo in September 2011
and allocates 2⇥ 2 node blocks.

Job CR1 used mode one, so most y-communicators were
1⇥2⇥8 nodes. CR2 used mode two so most y-communicators
were 2 ⇥ 2 ⇥ 4 nodes. CR3 also used mode two so most
y-communicators were 2 ⇥ 2 ⇥ 8 nodes (32 processes re-
quired longer communicators). The messaging rate for CR2
was higher than for the other two runs, suggesting that a
smaller extent, in this case by a factor of two, for the y-
communicators in the z-direction of the torus has a strong
impact on performance.

The variability in message rates between batch time slots
was high for the Cielo simulations and was nearly a factor
of three for CR3. pF3D is a bulk synchronous code, so
the performance of the slowest communicator controls the
performance of the job. Some of the communicators have
a larger extent on the torus due to intervening nodes that
were in use at job launch. Those “stretched” communicators
are slower than typical communicators.

Figure 7 shows the location of I/O, login, and visualiza-
tion nodes on Cielo. The visualization nodes form a compact
brick along one edge of the torus and have little impact on
the compactness of nodes allocated to pF3D. Service nodes
are scattered throughout the torus and will be located be-
tween compute nodes allocated to pF3D in any large run.
The “breaks” in pF3D’s node allocation due to service nodes
are much smaller than the breaks due to other jobs on Hop-
per (see Section 5).

Figure 7: Location of service and visualization nodes
on Cielo.

We do not have data on nodes that were in use by other
jobs during our Cielo runs. The di↵erence between the aver-
age message rates for the runs shown in Figure 6 are some-
what larger than the variability within a run. From this we
infer that the shape of communicators has at least as big an
impact on message rate variability as contention with other
jobs on Cielo.

The rest of the paper describes more extensive tests on
Hopper where we gathered performance data for each run
to verify some of our hypotheses based on the Cielo runs.

5. STUDIES ON HOPPER
In this section, we investigate several potential sources of

the performance variability we observed for pF3D on Hop-
per. We look at the impact of noise from OS daemons,

coordinates of the allocated nodes on the torus, and con-
tention from other jobs running concurrently with pF3D.
These simulations use fewer nodes than the production sim-
ulations on Cielo, which might somewhat change the relative
importance of di↵erent sources of variability.

5.1 Impact of OS jitter
OS jitter or noise [13, 11] has been the culprit for variabil-

ity and the subject of numerous studies in the past. Thus,
investigating the impact of jitter was a natural starting place
for us to look for the cause of the performance variabil-
ity within a pF3D job. We used the output from mpiP to
calculate the average computation time over all 8,192 pro-
cesses in each job on Hopper in Figure 8 (top). The error
bar shows the minimum and maximum times. The average
computation time is nearly constant at ˜26 seconds and the
maximum and minimum times vary no more than 6% and
16% respectively. From this plot and also Figure 3 (left),
we can conclude that there is little across job variability in
computation time.

Figure 8: Average, minimum, and maximum com-
putation times within each pF3D job shown for dif-
ferent runs (top). Performance di↵erences when us-
ing di↵erent cores on the Opteron sockets of Hopper
(bottom).

Because we are running on 16 of the 24 cores on each Hop-
per node, we have flexibility in deciding which physical cores
to use. Since some kernel activities, e.g. interrupt handling,
are typically handled by core 0, we wanted to make sure our
process-to-core mapping didn’t cause any unnecessary per-
formance variability. In order to study this e↵ect, we tried
two configurations. In the first configuration, we used cores
0-3, 6-9, 12-15 and 18-21; in the second configuration, we

Abhinav Bhatele, et al. Identifying the culprits behind network congestion. In Proceedings of 
the IEEE International Parallel & Distributed Processing Symposium, IPDPS '15. May 2015.
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in applications such as multi-resource scheduling. Some works
have used heuristics and machine learning models to do
resource placements for tasks in workflows [29], [30]. These
have used test runs and search space pruning to find optimal
resource sets. However, none of them use cross-architecture
predictive models to inform their resource selection.

IV. OVERVIEW OF OUR METHODOLOGY

We first provide an overview of our methodology to predict
the relative performance of an application across a set of
architectures given performance counters of the application
from one architecture. This includes two things – the data
collection phase and the model training phase (Figure 1).
In the first phase, we collect performance profiles for a
variety of applications running on N different HPC systems
with different architectures and record a hand-selected set of
performance counters. These counters, along with the recorded
execution times, are used to train a regression model to predict
relative performance in the second phase.

Fig. 1. Overview of data collection and machine learning pipeline. Ap-
plications are profiled on several architectures and performance counters
are collected for training the model. Model and feature selection are done
iteratively until the best set is selected.

Since our goal is to predict performance on other architec-
tures relative to a baseline on one architecture, we introduce
the term Relative Performance Vector (RPV) that encodes the
relative performance of an application across several archi-
tectures. To define RPV, let us consider a set of applications
A, corresponding input problems IA, and systems S. For a
particular application and input problem pair (a, i) 2 A⇥ IA
executed on N systems in S we can define the Relative
Performance Vector as rpv : (A, IA) ⇥ S 7! RN such that
rpv(a, i, s) is the vector of the performance of (a, i) across
all platforms relative to that on system s. Here we assume that
(a, i) can run on all the systems in S. For example, consider
running an application-input pair (TestApp, “-s 5”) on systems
X , Y , and Z. If the application runs in ten minutes on system
X , eight minutes on system Y , and 21 minutes on system Z,
then the performance vector relative to X would be:

rpv( TestApp , “-s 5” , X ) =

2

664

1.0

0.8

2.1

3

775

Time on X relative to X Time on Y
relative to X
Time on Z
relative to X

Application being run

Input Arguments

System run on

We also define rpv(·, ·,min) and rpv(·, ·,max) as the
performance vectors relative to the systems where lowest
and highest performance is obtained, respectively. The RPV
provides a concise, mathematical representation for relative
performance across systems that can be used in our further
downstream modeling tasks.

In order to model the mapping rpv : (A, IA) ⇥ S 7! RN ,
we need a large number of input and output data to train on.
This requires a large number of samples in the (A, IA) ⇥ S
space. To collect these, we profile a variety of aplications
at several of their inputs on several architectures. These
runs provide hardware counters that may provide insight into
an application’s behavior for many application, input, and
architecture tuples.

We use the counters collected during profiling to form the
MP-HPC dataset and, in turn, use this dataset for the machine
learning (ML) component (second phase). The ML component
uses the profiled counters from a particular architecture to
predict the relative performance vector across a set of systems.
We try different ML models and feature sets to identify the
best performing model. This model is exported and used
in downstream relative performance prediction tasks such as
cross-architecture scheduling.

V. DATA COLLECTION AND PRE-PROCESSING

In this section, we provide details of how we generated
the MP-HPC dataset used for our modeling problem. We
describe the process of running and profiling the applications,
and collecting the performance metrics.

A. Scientific Applications

In order to model the relative performance of applications
run on an HPC machine, we need to collect performance data
from applications that are typically run on these machines. We
accomplish this by running a set of applications, benchmarks,
and proxy applications from the ECP Proxy Applications
Suite [31] and E4S Test Suite [32]. These are chosen because
they are designed to be representative of actual workloads
on HPC systems, but are simpler to build and run than full
scientific applications.

Table II lists the applications used in our data set. There
are twenty applications in total, and eleven of them have
GPU support. The GPU support comes from a variety of
libraries such as OpenMP, Kokkos [33], RAJA [3], and native
CUDA or HIP. Each application is paired with different input
configurations when run, in order to test different problems
and problem sizes. We build and install all of the applications
with their default build settings provided in their respective
Spack [4] packages.

B. Architecture Descriptions

We run each application-input pair on four different ma-
chines with different architectures. These are listed in Table I.
There are two Intel Xeon based, CPU-only machines and
two GPU-based machines. The first GPU machine uses IBM

Abhinav Bhatele, et al. Identifying the culprits behind network congestion. In Proceedings of 
the IEEE International Parallel & Distributed Processing Symposium, IPDPS '15. May 2015.

Daniel Nichols, et al. Predicting Cross-Architecture Performance of Parallel Programs. In 
Proceedings of the IEEE International Parallel & Distributed Processing Symposium. May 2024.
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3.1 Deep Learning

Deep learning is a family of machine learning algorithms characterized by the usage of artificial neural
networks (ANNs) as function approximators. As the name suggests, ANNs are inspired by the functioning
of the human brain. The last decade has seen ANNs applied very widely in a variety of fields like computer
vision, natural language processing, bioinformatics, drug design, speech and audio recognition with results
often surpassing the state of the art and in some cases even human expert performance. While, neural
network architectures and training algorithms have existed for decades, it was only in the last few years that
deep learning has rose to prominence, primarily due to the following reasons: (1) increased computational
power via GPGPU hardware accelerators, and (2) availability of large amounts of data.

Artificial Neural Networks ANNs are parameterized function approximation algorithms, and are inspired
by biological neural networks. An ANN is a collection of artificial or simulated neurons (Figure 1 (left)),
each of which is a node in a directed, weighted graph. Each link has a weight which represents the strength
of one node’s influence over another. All of these weights taken together are the parameters of the neural
network. Thus, the words weights and parameters can be used interchangeably. Neural networks learn by
processing known inputs and outputs, and adjusting weight associations between the two to reduce error.
The activation of each neuron is the weighted sum of its inputs from neighboring neurons weighted by the
link weights followed by a non-linear function like sigmoid. The initial input is external data and output
accomplishes the designated task such as prediction.
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Figure 1: A single neuron (left) and an example artificial neural network (right).

Layer In deep learning, neurons are typically organized into layers. A layer computes a parameterized
non-linear transform of it’s input. Often, the layers are connected in a straight-chain with the ith layer op-
erating on the output of the (i � 1)th layer and the first layer operating on the input dataset. The “deep”
in deep learning stems from the usage of multiple layers essentially increasing the depth of the neural net-
work. Figure 1 (right) shows how neurons organized into different layers are connected to each other. It is
through the use of multiple layers that neural networks are able to learn very useful feature representations
of the input automatically [45].

Learning/Training and Loss Learning or Training is defined as the task of selecting the weight values
which can accurately compute the function that the neural network has to approximate. This is done by
posing the problem as a parameterized optimization of a scalar proxy called the loss. The loss is designed
in a way such that minimizing it leads to accurate function approximation.

Backpropagation Backpropagation is the algorithm by which the gradients/derivatives of the loss w.r.t. the
weights are calculated. Gradients are calculated in the reverse topological order starting from the final layer,
i.e. if layer i consumed the output of layer j, then layer i’s weight gradients are calculated first and used in
the calculation of layer j’s weight gradients. This backward flow of gradients in the layers lends the name
backpropagation to this process.
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Other definitions

• Learning/training: task of selecting weights that lead to an accurate function

• Loss: a scalar proxy that when minimized leads to higher accuracy

• Gradient descent: process of updating the weights using gradients (derivates) of the 
loss weighted by a learning rate

• Mini-batch: Small subsets of the dataset processed iteratively

• Epoch: One pass over all the mini-batches
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Do we really need parallel resources?

• The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion 
parameters

• On a single node (with four H100 GPUs): around ~16 billion parameters model

• Training a 16B parameter would take 33 years!

• OpenAI’s GPT 4.0 is estimated to have 1.8 trillion parameters

• Meta’s Llama-3.1-405B has more than 400 billion parameters
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to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.
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Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of
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Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i  ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS( @L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx( @L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing
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to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.
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Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of
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Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i  ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS( @L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx( @L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing

to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.
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Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of
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Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i  ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS( @L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx( @L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing

to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.
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Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of
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Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i  ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS( @L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx( @L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing
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How to Train Your Neural Network: A Comparative Evaluation
Anonymous Author(s)

ABSTRACT
The �eld of deep learning has witnessed a remarkable shift towards
extremely compute- and memory-intensive neural networks. These
newer larger models have enabled researchers to advance state-
of-the-art tools across a variety of �elds. This phenomenon has
spurred the development of algorithms for distributed training of
neural networks over a larger number of hardware accelerators. In
this paper, we discuss and compare current state-of-the-art frame-
works for large scale distributed deep learning. First, we survey
current practices in distributed learning and identify the di�er-
ent types of parallelism used. Then, we present empirical results
comparing their performance on large image and language train-
ing tasks. Additionally, we address their statistical e�ciency and
memory consumption behavior. Based on our results, we discuss
algorithmic and implementation portions of each framework which
hinder performance.

KEYWORDS
neural networks, deep learning, distributed training, GPUs, perfor-
mance, survey
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1 INTRODUCTION
The previous decade witnessed an explosion in the development of
machine learning algorithms. In particular, deep learning (DL), a
subset of machine learning focused on using neural networks for
function approximation, has gained widespread popularity. Deep
neural networks (DNNs) have enabled the advancement of the
state of the art in a plethora of research areas: ranging from visual
recognition [33, 58, 63, 66, 74] and natural language processing [13,
44, 50, 68] to computational chemistry and computer systems [5,
22, 24, 39, 41, 64, 65, 69]. Their popularity stems from the DNN’s
ability to automatically learn low-dimensional representations from
high-dimensional unstructured data such as images, text and audio.
Given enough data, the representations learned by these models are
often superior to handcrafted features designed by domain experts.

The advances in accelerator technology, increased memory ca-
pacity per accelerator, and faster networks have encouraged users
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of deep learning to train neural networks with increasingly larger
numbers of parameters. Figure 1 shows the increasing number of
parameters in the largest networks since 2012. Often times, it is
impossible to train such networks on a single accelerator either
due to large execution time or insu�cient memory capacity to �t
these models. The latter problem is further exacerbated for con-
temporary neural architectures. For example, GPT-2, an extremely
popular neural network used in NLP requires 84 GB of GPU DRAM
for training. This has motivated recent works in parallelizing the
task of deep learning: training large models using multiple GPUs
on a single node [21, 30] or across multiple nodes connected by a
network [14, 25, 36, 43, 51, 57, 72].
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Figure 1: Neural networks have continued to grow in size
in terms of the number of parameters. Recent language net-
works have further contributed to this trend.

Di�erent parallel frameworks o�er di�erent strengths and weak-
nesses in terms of performance (execution time for training), mem-
ory consumption, and statistical e�ciency. Ben-Nun et al. [4] sur-
veyed parallel DL frameworks and the di�erent ways of exploiting
the concurrency in neural networks in 2018. However, many new
frameworks have emerged in the last three years, and the authors
limited their discussion to a qualitative discussion. In this paper, we
survey the most popular parallel DL frameworks available today
and perform an empirical evaluation for the ones with open-source
implementations to compare various metrics. This comparative
evaluation can help users of deep learning select the best parallel
framework for their training tasks.

We �rst present a comprehensive qualitative survey of the state
of the art in parallel deep learning. We classify approaches for
parallelization into three categories (de�ned in Section 2): data
parallelism, intra-layer parallelism (sometimes referred to as model
parallelism), and inter-layer parallelism (sometimes referred to as
pipelining,). We present the advantages and disadvantages of using
each approach, and discuss the capabilities of di�erent frameworks
that implement each type of parallelism.

An end user who needs a scalable DL framework for their train-
ing experiments needs to know which frameworks provide the
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ABSTRACT
The �eld of deep learning has witnessed a remarkable shift towards
extremely compute- and memory-intensive neural networks. These
newer larger models have enabled researchers to advance state-
of-the-art tools across a variety of �elds. This phenomenon has
spurred the development of algorithms for distributed training of
neural networks over a larger number of hardware accelerators. In
this paper, we discuss and compare current state-of-the-art frame-
works for large scale distributed deep learning. First, we survey
current practices in distributed learning and identify the di�er-
ent types of parallelism used. Then, we present empirical results
comparing their performance on large image and language train-
ing tasks. Additionally, we address their statistical e�ciency and
memory consumption behavior. Based on our results, we discuss
algorithmic and implementation portions of each framework which
hinder performance.
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1 INTRODUCTION
The previous decade witnessed an explosion in the development of
machine learning algorithms. In particular, deep learning (DL), a
subset of machine learning focused on using neural networks for
function approximation, has gained widespread popularity. Deep
neural networks (DNNs) have enabled the advancement of the
state of the art in a plethora of research areas: ranging from visual
recognition [33, 58, 63, 66, 74] and natural language processing [13,
44, 50, 68] to computational chemistry and computer systems [5,
22, 24, 39, 41, 64, 65, 69]. Their popularity stems from the DNN’s
ability to automatically learn low-dimensional representations from
high-dimensional unstructured data such as images, text and audio.
Given enough data, the representations learned by these models are
often superior to handcrafted features designed by domain experts.

The advances in accelerator technology, increased memory ca-
pacity per accelerator, and faster networks have encouraged users
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of deep learning to train neural networks with increasingly larger
numbers of parameters. Figure 1 shows the increasing number of
parameters in the largest networks since 2012. Often times, it is
impossible to train such networks on a single accelerator either
due to large execution time or insu�cient memory capacity to �t
these models. The latter problem is further exacerbated for con-
temporary neural architectures. For example, GPT-2, an extremely
popular neural network used in NLP requires 84 GB of GPU DRAM
for training. This has motivated recent works in parallelizing the
task of deep learning: training large models using multiple GPUs
on a single node [21, 30] or across multiple nodes connected by a
network [14, 25, 36, 43, 51, 57, 72].
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Figure 1: Neural networks have continued to grow in size
in terms of the number of parameters. Recent language net-
works have further contributed to this trend.

Di�erent parallel frameworks o�er di�erent strengths and weak-
nesses in terms of performance (execution time for training), mem-
ory consumption, and statistical e�ciency. Ben-Nun et al. [4] sur-
veyed parallel DL frameworks and the di�erent ways of exploiting
the concurrency in neural networks in 2018. However, many new
frameworks have emerged in the last three years, and the authors
limited their discussion to a qualitative discussion. In this paper, we
survey the most popular parallel DL frameworks available today
and perform an empirical evaluation for the ones with open-source
implementations to compare various metrics. This comparative
evaluation can help users of deep learning select the best parallel
framework for their training tasks.

We �rst present a comprehensive qualitative survey of the state
of the art in parallel deep learning. We classify approaches for
parallelization into three categories (de�ned in Section 2): data
parallelism, intra-layer parallelism (sometimes referred to as model
parallelism), and inter-layer parallelism (sometimes referred to as
pipelining,). We present the advantages and disadvantages of using
each approach, and discuss the capabilities of di�erent frameworks
that implement each type of parallelism.

An end user who needs a scalable DL framework for their train-
ing experiments needs to know which frameworks provide the
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Table 1: Summary of Literature Review on Parallel Deep Learning

Framework Type of Parallelism Largest
Accelerator Count

Largest Trained Network
(No. of Parameters)

FlexFlow Hybrid 64 GPUs 24M⇤

PipeDream Inter-Layer 16 GPUs 138M
DDP Data 256 GPUs 345M
GPipe Inter-Layer 8 GPUs 557M
MeshTensorFlow Intra-Layer 512-core TPUv2 4.9B
Megatron Intra-Layer 512 GPUs 8.3B
TorchGPipe Inter-Layer 8 GPUs 15.8B
KARMA Data 2048 GPUs 17B
LBANN Data 3072 CPUs 78.6B
ZeRO Data 400 GPUs 100B

⇤Note: FlexFlow does not provide a parameter size for the largest network it trains. We have
defaulted to the largest network with a known network size cited in their paper.

framework. Convolutions are also parallelized in [46] with a hy-
brid parallelism by extending data parallelism with parallelism
in the spatial domain. For language-based models Megatron[57]
achieves a similar parallelism by partitioning the blocks in trans-
former layers across processors. Megatron has been increasingly
used as language models become more common and larger (see
Figure 1). It has shown up to 74% weak scaling coe�cient on 512
GPUs.

Dividing layer tensor dimensions across processors is, however,
very sensitive to the layer type. For instance, fully connected layers
involve an all-to-all computation and therefore all-to-all commu-
nication, which is more expensive the data parallelism’s allreduce.
Thus, it is hard to generalize coarser grained intra-layer parallelism
for models with custom layers. To combat this some methods look
strictly at compute graph operations and not model layers [27].

3.3 Inter-Layer Parallelism
True inter-layer parallelism can only be achieved by pipelining i.e.
having multiple mini-batches active in the system at any given
instance. There are two ways to achieve pipelining : with and
without �ushing. In this section, we discuss the pros and cons
of both approaches. We also provide an overview of frameworks
that implement these approaches.

3.3.1 Pipelining with Flushing. Pipelining with �ushing divides a
mini-batch into micro-batches of equal size. These micro-batches
are injected one by one into the system. GPUs accumulate gra-
dients from all the micro-batches in the system. A GPU updates
it’s weights only after it has �nished the backward pass of the
last micro-batch. The next mini-batch and its corresponding micro-
batches are injected after all the GPUs have �nished updating their
weights. This approach to pipelining is also called micro-batching.
The number of micro-batches is usually kept to be much larger than
the number of workers so that each worker. Ensuring optimum
hardware utilization requires having a large mini-batch size. To
maintain statistical e�ciency at large mini-batch sizes, the same set
of solutions discussed in Section 3.1.3 can be used. Flushing creates
bubbles in the pipeline which leads to lower hardware utilization.

A load balanced mapping of layers to GPUs is absolutely critical to
maximize performance. The load balancing algorithm must also be
communication-aware. This is because activations and gradients
exchanged at GPU boundaries can be in the magnitudes of GBs for
large neural networks. An e�cient implementation of pipelining
with �ushing must have load balancing support.

This ideawas �rst introduced byHuang et al. in GPipe [21]. Using
GPipe they trained a 557M parameter neural network - AmoebaNet-
B [52] on the ImageNet [54] dataset and surpassed the state of the
art in a number of downstream image classi�cation tasks. TorchG-
Pipe [30] is an uno�cial open-source implementation of GPipe built
on the PyTorch [47] backend. GEMS (GPU-Enabled Memory Aware
Model-Parallelism System) [23] introduces a novel approach to in-
crease hardware utilization. This framework proposes an algorithm
to train two neural networks concurrently using pipelining with-
out �ushing on multiple GPUs. They double the throughput of the
system by overlapping the forward and backward passes of the two
neural networks. We refer the reader to their paper for the details of
their implementation. Recently ZeRO [51] and Megatron [57] also
extended support for this approach towards inter-layer parallelism.
TorchGPipe [30] provides a load balancing algorithm that seeks to
balance the net execution time of the forward and backward pass of
a micro-batch on each GPU. However, their algorithm ignores the
communication overhead of exchanging tensors across GPU bound-
aries. Megatron divides the layers of a transformer across GPUs.
This strategy is optimal because all the layers of a transformer
are identical. ZeRO also provides an identical strategy that divides
the layers equally across GPUs. Additionally they also support a
load balancing algorithm that equalizes GPU memory consump-
tion across GPUs. While Megatron and ZeRO support pipelining,
it is not their preferred mode of execution for parallelizing neural
networks.

3.3.2 Pipelining without Flushing. In this approach, the number
of mini-batches active in the system is kept constant. As soon as
a mini-batch �nishes it’s backward pass on the �rst GPU, a new
mini-batch is injected into the system to maintain full pipeline
occupancy. Unlike pipelining with �ushing, weight updates on a
GPU take place as soon as it is done with the backward pass of a
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while (remaining_batches) {
    Read a single batch

    Forward pass: perform matrix multiplies to compute
        output activations, and a loss on the batch

    Backward pass: matrix multiplies to compute gradients of
        the loss w.r.t. parameters via backpropagation

    Optimizer step: use gradients to update the weights or
        parameters such that loss is gradually reduced
}

to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.

OI

W

Input 
Activations

Weights

Output
Activations

k

n

m

k

Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of

2 3
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Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i  ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS( @L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx( @L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing
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3.1 Deep Learning

Deep learning is a family of machine learning algorithms characterized by the usage of artificial neural
networks (ANNs) as function approximators. As the name suggests, ANNs are inspired by the functioning
of the human brain. The last decade has seen ANNs applied very widely in a variety of fields like computer
vision, natural language processing, bioinformatics, drug design, speech and audio recognition with results
often surpassing the state of the art and in some cases even human expert performance. While, neural
network architectures and training algorithms have existed for decades, it was only in the last few years that
deep learning has rose to prominence, primarily due to the following reasons: (1) increased computational
power via GPGPU hardware accelerators, and (2) availability of large amounts of data.

Artificial Neural Networks ANNs are parameterized function approximation algorithms, and are inspired
by biological neural networks. An ANN is a collection of artificial or simulated neurons (Figure 1 (left)),
each of which is a node in a directed, weighted graph. Each link has a weight which represents the strength
of one node’s influence over another. All of these weights taken together are the parameters of the neural
network. Thus, the words weights and parameters can be used interchangeably. Neural networks learn by
processing known inputs and outputs, and adjusting weight associations between the two to reduce error.
The activation of each neuron is the weighted sum of its inputs from neighboring neurons weighted by the
link weights followed by a non-linear function like sigmoid. The initial input is external data and output
accomplishes the designated task such as prediction.
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Figure 1: A single neuron (left) and an example artificial neural network (right).

Layer In deep learning, neurons are typically organized into layers. A layer computes a parameterized
non-linear transform of it’s input. Often, the layers are connected in a straight-chain with the ith layer op-
erating on the output of the (i � 1)th layer and the first layer operating on the input dataset. The “deep”
in deep learning stems from the usage of multiple layers essentially increasing the depth of the neural net-
work. Figure 1 (right) shows how neurons organized into different layers are connected to each other. It is
through the use of multiple layers that neural networks are able to learn very useful feature representations
of the input automatically [45].

Learning/Training and Loss Learning or Training is defined as the task of selecting the weight values
which can accurately compute the function that the neural network has to approximate. This is done by
posing the problem as a parameterized optimization of a scalar proxy called the loss. The loss is designed
in a way such that minimizing it leads to accurate function approximation.

Backpropagation Backpropagation is the algorithm by which the gradients/derivatives of the loss w.r.t. the
weights are calculated. Gradients are calculated in the reverse topological order starting from the final layer,
i.e. if layer i consumed the output of layer j, then layer i’s weight gradients are calculated first and used in
the calculation of layer j’s weight gradients. This backward flow of gradients in the layers lends the name
backpropagation to this process.
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in deep learning stems from the usage of multiple layers essentially increasing the depth of the neural net-
work. Figure 1 (right) shows how neurons organized into different layers are connected to each other. It is
through the use of multiple layers that neural networks are able to learn very useful feature representations
of the input automatically [45].

Learning/Training and Loss Learning or Training is defined as the task of selecting the weight values
which can accurately compute the function that the neural network has to approximate. This is done by
posing the problem as a parameterized optimization of a scalar proxy called the loss. The loss is designed
in a way such that minimizing it leads to accurate function approximation.

Backpropagation Backpropagation is the algorithm by which the gradients/derivatives of the loss w.r.t. the
weights are calculated. Gradients are calculated in the reverse topological order starting from the final layer,
i.e. if layer i consumed the output of layer j, then layer i’s weight gradients are calculated first and used in
the calculation of layer j’s weight gradients. This backward flow of gradients in the layers lends the name
backpropagation to this process.
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Intra-layer parallelism: divides the computation of each
layer of the neural network on multiple GPUs. Each GPU
is responsible for partially computing the output activation
of a layer. These partial outputs are pieced together using a
collective communication primitive like all-gather or all-reduce
to be used for the computation of the next layer. For example,
Megatron-LM [2], [5] shards the various matrix multiplications
of a transformer [11] layer across GPUs. While saving
memory, it is prohibited by expensive collective communication
after computing the output activations. Typically, intra-layer
parallelism cannot scale efficiently beyond the confines of
GPUs inside a node connected via a high-speed inter-connect
like NVLink [5].

Inter-layer parallelism: divides the layers of a neural network
among worker GPUs. To achieve parallelism, an input batch
is divided into smaller microbatches. Forward and backward
passes for different microbatches can thus proceed on different
GPUs concurrently. Inter-layer parallelism is often called as
pipelining and the set of GPUs implementing it are called the
pipeline. Prior work has shown that inter-layer parallelism is
inefficient for a large number of GPUs in the pipeline due
to an increase in the idle time in the pipeline [5]. Figure 1
illustrates the working of inter-layer parallelism.
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Fig. 1. Inter-layer parallelism on four GPUs. The green and yellow boxes
represent the forward and backward passes of a microbatch respectively. The
numbers inside each box represent the microbatch number. We assume that
the backward pass takes twice as much time as the forward pass.

Hybrid parallelism: Data parallelism is often combined
with either or both of intra-layer or inter-layer parallelism
to realize hybrid parallelism. For example, Megatron-LM [5]
and DeepSpeed [12], [6] combine all three forms of parallelism
to train large transformer neural networks [11] at extreme scale.
This form of parallelism has been called 3D parallelism in
literature. Prior work [15], [5] has shown 3D parallelism as
the fastest method for training large scale neural networks.

III. DESIGNING A PARALLEL DEEP LEARNING FRAMEWORK

We now present the design of our new framework. AxoNN
combines inter-layer parallelism and data parallelism to scale
parallel training to a large number of GPUs.

A. A hybrid approach to parallel training
The central idea behind AxoNN’s hybrid parallelization of

neural networks is to create a hierarchy of compute resources
(GPUs) by dividing them into equally sized groups. Each group
of GPUs can be treated as a unit that has a full copy of the
network similar to a single GPU in the case of pure data

parallelism. Each group works on different shards of a batch
concurrently to provide data parallelism. GPUs within each
group are used to parallelize the computation associated with
processing a batch shard using inter-layer parallelism. In the
case of AxoNN, we arrange GPUs in a virtual 2D grid topology
as shown in Figure 2. GPUs in each row form a group and are
used to implement inter-layer parallelism within each group.
The groups together are used to provide data parallelism by
processing different shards of a batch in parallel. We use Gdata

and Ginter to denote the number of data-parallel groups and the
number of GPUs inside each data-parallel group respectively.
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Fig. 2. AxoNN uses hybrid parallelism that combines inter-layer and data
parallelism. In this example, we train a neural network on 12 GPUs in a 4⇥ 3
configuration (4-way inter-layer parallelism and 3-way data parallelism). The
blue and red arrows represent communication of activations and gradients
respectively. In inter-layer parallelism, these gradients are w.r.t. the output
activations, whereas in data parallelism, these gradients are w.r.t. the network
parameters.

Algorithm 1 AxoNN’s hybrid training algorithm for GPU gi,j

in a Ginter ⇥Gdata configuration
1: function TRAIN(neural network, dataset ...)
2: nn shard  instantiate neural network shard for gi,j
3: while training has not finished do
4: next batch  get next batch from dataset
5: batch shard  get batch shard for gi,j
6: DATA PARALLEL STEP(nn shard, batch shard ...)
7: run the optimizer
8: end while
9: end function

10:
11: function DATA PARALLEL STEP(nn shard, batch shard ...)
12: INTER LAYER PARALLEL STEP(nn shard, batch shard ...)
13: All-reduce on nn shard.r~✓
14: end function

Algorithm 1 explains the working of AxoNN’s parallel
algorithm from the point of view of one of the GPUs gi,j in
the 2D virtual grid. Training begins in the TRAIN function (line
1) which takes a neural network specification and a training
dataset as its arguments. For each GPU, we first instantiate a
neural network shard (contiguous subset of layers) that GPU
gi,j will be responsible for in the inter-layer phase (line 12).
In the main training loop (lines 3-7), we divide the input batch
into Gdata shards (line 5) and run the data parallel step on the
corresponding shard of gi,j . The data parallel step first calls
the inter-layer parallel step followed by an all-reduce on the
gradients of the network shard. In the optimizer phase, we run
a standard optimizer used in deep learning such as Adam [16]



Abhinav Bhatele @ 

Inter-layer parallelism

• Assign entire layers to different processes/GPUs

• Ideally map contiguous subsets of layers 

• Point-to-point communication (activations and gradients) between processes/GPUs 
managing different layers

• Use a pipeline of mini-batches to enable concurrent execution

14

Intra-layer parallelism: divides the computation of each
layer of the neural network on multiple GPUs. Each GPU
is responsible for partially computing the output activation
of a layer. These partial outputs are pieced together using a
collective communication primitive like all-gather or all-reduce
to be used for the computation of the next layer. For example,
Megatron-LM [2], [5] shards the various matrix multiplications
of a transformer [11] layer across GPUs. While saving
memory, it is prohibited by expensive collective communication
after computing the output activations. Typically, intra-layer
parallelism cannot scale efficiently beyond the confines of
GPUs inside a node connected via a high-speed inter-connect
like NVLink [5].

Inter-layer parallelism: divides the layers of a neural network
among worker GPUs. To achieve parallelism, an input batch
is divided into smaller microbatches. Forward and backward
passes for different microbatches can thus proceed on different
GPUs concurrently. Inter-layer parallelism is often called as
pipelining and the set of GPUs implementing it are called the
pipeline. Prior work has shown that inter-layer parallelism is
inefficient for a large number of GPUs in the pipeline due
to an increase in the idle time in the pipeline [5]. Figure 1
illustrates the working of inter-layer parallelism.

0GPU 0

GPU 1

GPU 2

GPU 3

0

1 2 3

Inter-layer Parallelism with Pipelining

Time

1 2 3

0 1 2 3

0 1 2 30

0

1

1

2 3

2

0

0 4

1

1

2

2

4

4

4

3

3

35

5

5

54

4

4

46 7

6

6

65 6

5

7

7

Fig. 1. Inter-layer parallelism on four GPUs. The green and yellow boxes
represent the forward and backward passes of a microbatch respectively. The
numbers inside each box represent the microbatch number. We assume that
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Hybrid parallelism: Data parallelism is often combined
with either or both of intra-layer or inter-layer parallelism
to realize hybrid parallelism. For example, Megatron-LM [5]
and DeepSpeed [12], [6] combine all three forms of parallelism
to train large transformer neural networks [11] at extreme scale.
This form of parallelism has been called 3D parallelism in
literature. Prior work [15], [5] has shown 3D parallelism as
the fastest method for training large scale neural networks.

III. DESIGNING A PARALLEL DEEP LEARNING FRAMEWORK

We now present the design of our new framework. AxoNN
combines inter-layer parallelism and data parallelism to scale
parallel training to a large number of GPUs.

A. A hybrid approach to parallel training
The central idea behind AxoNN’s hybrid parallelization of

neural networks is to create a hierarchy of compute resources
(GPUs) by dividing them into equally sized groups. Each group
of GPUs can be treated as a unit that has a full copy of the
network similar to a single GPU in the case of pure data

parallelism. Each group works on different shards of a batch
concurrently to provide data parallelism. GPUs within each
group are used to parallelize the computation associated with
processing a batch shard using inter-layer parallelism. In the
case of AxoNN, we arrange GPUs in a virtual 2D grid topology
as shown in Figure 2. GPUs in each row form a group and are
used to implement inter-layer parallelism within each group.
The groups together are used to provide data parallelism by
processing different shards of a batch in parallel. We use Gdata

and Ginter to denote the number of data-parallel groups and the
number of GPUs inside each data-parallel group respectively.
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Fig. 2. AxoNN uses hybrid parallelism that combines inter-layer and data
parallelism. In this example, we train a neural network on 12 GPUs in a 4⇥ 3
configuration (4-way inter-layer parallelism and 3-way data parallelism). The
blue and red arrows represent communication of activations and gradients
respectively. In inter-layer parallelism, these gradients are w.r.t. the output
activations, whereas in data parallelism, these gradients are w.r.t. the network
parameters.

Algorithm 1 AxoNN’s hybrid training algorithm for GPU gi,j

in a Ginter ⇥Gdata configuration
1: function TRAIN(neural network, dataset ...)
2: nn shard  instantiate neural network shard for gi,j
3: while training has not finished do
4: next batch  get next batch from dataset
5: batch shard  get batch shard for gi,j
6: DATA PARALLEL STEP(nn shard, batch shard ...)
7: run the optimizer
8: end while
9: end function

10:
11: function DATA PARALLEL STEP(nn shard, batch shard ...)
12: INTER LAYER PARALLEL STEP(nn shard, batch shard ...)
13: All-reduce on nn shard.r~✓
14: end function

Algorithm 1 explains the working of AxoNN’s parallel
algorithm from the point of view of one of the GPUs gi,j in
the 2D virtual grid. Training begins in the TRAIN function (line
1) which takes a neural network specification and a training
dataset as its arguments. For each GPU, we first instantiate a
neural network shard (contiguous subset of layers) that GPU
gi,j will be responsible for in the inter-layer phase (line 12).
In the main training loop (lines 3-7), we divide the input batch
into Gdata shards (line 5) and run the data parallel step on the
corresponding shard of gi,j . The data parallel step first calls
the inter-layer parallel step followed by an all-reduce on the
gradients of the network shard. In the optimizer phase, we run
a standard optimizer used in deep learning such as Adam [16]
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3.1 Deep Learning

Deep learning is a family of machine learning algorithms characterized by the usage of artificial neural
networks (ANNs) as function approximators. As the name suggests, ANNs are inspired by the functioning
of the human brain. The last decade has seen ANNs applied very widely in a variety of fields like computer
vision, natural language processing, bioinformatics, drug design, speech and audio recognition with results
often surpassing the state of the art and in some cases even human expert performance. While, neural
network architectures and training algorithms have existed for decades, it was only in the last few years that
deep learning has rose to prominence, primarily due to the following reasons: (1) increased computational
power via GPGPU hardware accelerators, and (2) availability of large amounts of data.

Artificial Neural Networks ANNs are parameterized function approximation algorithms, and are inspired
by biological neural networks. An ANN is a collection of artificial or simulated neurons (Figure 1 (left)),
each of which is a node in a directed, weighted graph. Each link has a weight which represents the strength
of one node’s influence over another. All of these weights taken together are the parameters of the neural
network. Thus, the words weights and parameters can be used interchangeably. Neural networks learn by
processing known inputs and outputs, and adjusting weight associations between the two to reduce error.
The activation of each neuron is the weighted sum of its inputs from neighboring neurons weighted by the
link weights followed by a non-linear function like sigmoid. The initial input is external data and output
accomplishes the designated task such as prediction.
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Figure 1: A single neuron (left) and an example artificial neural network (right).

Layer In deep learning, neurons are typically organized into layers. A layer computes a parameterized
non-linear transform of it’s input. Often, the layers are connected in a straight-chain with the ith layer op-
erating on the output of the (i � 1)th layer and the first layer operating on the input dataset. The “deep”
in deep learning stems from the usage of multiple layers essentially increasing the depth of the neural net-
work. Figure 1 (right) shows how neurons organized into different layers are connected to each other. It is
through the use of multiple layers that neural networks are able to learn very useful feature representations
of the input automatically [45].

Learning/Training and Loss Learning or Training is defined as the task of selecting the weight values
which can accurately compute the function that the neural network has to approximate. This is done by
posing the problem as a parameterized optimization of a scalar proxy called the loss. The loss is designed
in a way such that minimizing it leads to accurate function approximation.

Backpropagation Backpropagation is the algorithm by which the gradients/derivatives of the loss w.r.t. the
weights are calculated. Gradients are calculated in the reverse topological order starting from the final layer,
i.e. if layer i consumed the output of layer j, then layer i’s weight gradients are calculated first and used in
the calculation of layer j’s weight gradients. This backward flow of gradients in the layers lends the name
backpropagation to this process.
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to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.

OI
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Input 
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Output
Activations
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Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of
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Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i  ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS( @L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx( @L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing
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to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.
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Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of
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Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i  ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS( @L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx( @L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing
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to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.
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Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of
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Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i  ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS( @L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx( @L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing
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to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.
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Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of
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Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i  ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS( @L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx( @L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing
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to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.
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Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of
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Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i  ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS( @L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx( @L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing
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• Our ML collaborators used this mode for the memorization experiments

• We also have backends for lightning and accelerate
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from axonn.intra_layer import auto_parallelize

with auto_parallelize():
    net = # declare your sequential model here
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