CMSC 631: Midterm Exam (Fall 2019)

1 Question 1 (20 points)

Write the type of each of the following Coq expressions (write “ill typed” if an expression does not have a
type).

(a) 42 +0
Answer: nat

(b) 42 +0 =17
Answer: Prop

(¢) fun (x:nat) = x = ||
Answer: nat — list nat

(d) fun (x: list nat) = x =: []
Answer: list nat — list (list nat)

(e) fun (x:list nat) = x :: x
Answer: I1l-typed

(f) and True
Answer: Prop — Prop

(g) forall (n:nat),n
Answer: I11-typed

(h) forall (n:nat),n<n
Answer: Prop

(i) map (egb 42)
Answer: list nat — list bool

(j) map or [True]
Answer: list (Prop — Prop)

2 Question 2 (20 points)

For each of the types below, write a Coq expression that has that type or write empty if there are no such
expressions.

(a) nat - list nat
Answer: fun (x : nat) = [x]

(b) forall (X : Type), nat
Answer: fun (X : Type) = 0

(¢c) forall (X : Type), X
Answer: empty

(d) forall (X : Type), X — X
Answer: fun (X : Type) (x: X) = x

(e) list Prop
Answer: [True]

(f) 1ist (Prop -> Prop)
Answer: [fun (X : Prop) = X]

(g) forall (X : Type), X — Prop
Answer: fun (X : Type) (x : X) = True

(h) forall (X : Type), Prop — X
Answer: empty

(i) forall (X : Type), Prop — Prop
Answer: fun (X : Type) (P : Prop) = P

(j) forall (X Y: Type), X > Y > X * Y
Answer: fun (XY : Type) (x:X) (y: Y) = (x,y)

3 Question 3 (20 points)

(a) Suppose Coq’s current goal state looks like this:

X, ¥y : nat

b : bool

H1 : (x,y) = (42, 17)
H2 : negb b = negb true

true = false

(i) If we give the command discriminate, what will happen?
© Error
0 Nothing (no error, but no change to the state)
O No more subgoals

(ii) If we give the command injection H1, what will happen?
O Error
0 Nothing (no error, but no change to the state)
O No more subgoals
@ Goal changes to x = 42 -> y = 17 -> true = false

(iii) If we give the command injection H2, what will happen?
& Error
0 Nothing (no error, but no change to the state)
O No more subgoals
O Goal changes to b = true -> true = false

(b) Suppose Coq’s current goal state looks like this:

m, n : nat
H1 : forall x, x *m = n * X
H2 : x=n\/ x=nmn

n*n=mns*m

(i) If we give the command destruct H2, what will happen?
O Error
0 Nothing (no error, but no change to the state)
O No more subgoals
O H2 is replaced by two hypothesesH : x = nandHO : x = m
@ Goal is replaced by two subgoals, one with hypothesis H : x = n and one with hypothesis
H:x=mn

(ii) If we give the command rewrite H1, what will happen?
O Error
0 Nothing (no error, but no change to the state)
0 No more subgoals
@ Goal changes to n
O Goal changes to n
O Goal changes to n
0 Goal changes to m

* * ¥ ¥
BB BB
I
BB BB
* * ¥ %
8B 8B

4 Question 4 (20 points)

A binary tree with natural numbers as labels is either empty or a node that contains some natural number
along with two binary trees as children. Formally, binary trees can be defined as follows in Coq:

Inductive tree :=
| Empty : tree

| Node : nat -> tree -> tree —> tree.

For example, the following definitions:

Definition ex_tree_1 : tree := Definition ex_tree_2 : tree :=
Node 17 Node 10
(Node 5 (Node O Empty Empty)
(Node 1 Empty Empty) (Node 5
(Node 10 Empty Empty)) (Node 10 Empty Empty)
(Node 42 Empty Empty). (Node 25 Empty Empty)).

represent the trees:

(a) Fill in the following function element_in which takes a natural number x and a tree t, traverses the
entire tree, and returns true if the value x appears in any of the nodes of t.

For example, all the following Examples should hold:

Example in_5_1 : element_in 5 ex_tree_1 = true.
Example in_42_1 : element_in 42 ex_tree_1 = true.
Example in_0_2 : element_in O ex_tree_2 = true.
Example not_in_O0_1 : element_in O ex_tree_1 = false.

Example not_in_42_1 : element_in 42 ex_tree_2 = false.

Fixpoint element_in (x : nat) (t : tree) : bool :=
match t with
| Empty => false
| Node y 1 r => (x =7 y) || element_in x 1 || element_in x r
end.

A tree is called a binary search tree with elements between some lower bound min and some upper
bound max, if for all nodes (Node x 1 r) in the tree, x is strictly greater than min and strictly smaller
than max, and all values stored in the left subtree 1 are strictly less than the node’s value x, and all
values stored in the right subtree r are strictly greater than x.

For example, ex_tree_1 is a binary search tree with elements between 0 and 50, but it wouldn’t be
one if we changed the label 10 to 1 or to 5. Similarly, ex_tree_2 is not a binary search tree, not matter
what choices we make for min and max.

Fill in the following inductive definition that captures what it means for a tree to be such a binary
search tree. It should be the case that the following Examples are provable:

(* Satisfies definition: *)

Example bstl : bst 0 50 ex_tree_1.

(* Trivially satisfies definition: *)

Example bst2 : bst 0 50 Empty.

(* ex_tree_1 contains 42 that is not strictly smaller than 42: *)

Example not_bst_1 : ~ (bst 0 42 ex_tree_1).

(* The right child contains label 5 which not strictly greater
than the value 10 of the top node. *)

Example not_bst_2 : ~ (bst 0 42 ex_tree_2).

Inductive bst : nat -> nat -> tree -> Prop :=
| bst_empty : forall min max, bst min max Empty
| bst_node : forall min max x 1 r,

min < x -> x < max ->

bst min x 1 ->

bst x max r —>

bst min max (Node x 1 r).

Fill in the following function element_in_bst which takes a natural number x and a tree t that is
assumed to be a binary search tree and returns true if the value x appears in any of the nodes of t. For
example, for ex_tree_1, element_in 5 ex_tree and element_in 42 ex_tree_1 should both return
true, while element_in O ex_tree_1 should not. You do not have to check whether t is a binary
search tree. You should not traverse the entire tree.

Fixpoint element_in_bst (x : nat) (t : tree) : bool :=

match t with
| Empty => false
| Node y 1 r =>

if x =7 y then true

else if x <7 y then element_in_bst x 1

else element_in_bst x r

end.

5 Question 5 (20 points)

(a) Explain (briefly) why we can’t write an evaluation function for the IMP language. (The IMP definition
can be found in the reference appendix).

All Coq functions must be terminating, but the WHILE construct introduces non-termination.

In the rest of this problem, we will replace the WHILE command with a different command: a for-loop
with fixed bounds. The language now contains a new construct FOR n ¢ ENDFOR, where n are natural
numbers and c is an IMP command. Such a command simply evaluates ¢ (the inner command) n times
in a row. For example, if we run the following program, it will terminate in a state where X is mapped
to 42.

X := 0;
FOR 42

X =X +1
ENDFOR

Here is the syntax of this extension:

Inductive com : Type :=
| CSkip
| CAss (x : string) (a : aexp)
| CSeq (cl c2 : com)
| CIf (b : bexp) (cl c2 : com)
| CFor (n : nat) (c : com). (¥ <« new *)
(b) Can we write an evaluation function for commands in this version of IMP? Explain briefly. You do not
have to write this evaluation function.

Yes. We got rid of the non-termination of while and the for loop runs for a fixed number of iterations.

(¢) Extend the evaluation relation for IMP to account for this new construct:

Reserved Notation "c1 ’/’ st ’\\’ st’"
(at level 40, st at level 39).

Inductive ceval : com -> state -> state -> Prop :=
| E_Skip : forall st,
SKIP / st \\ st

| E_Ass : forall st al n x,
aeval st al = n ->
(x ::=a1) /st \\st&{x--—>n}

| E_Seq : forall cl c2 st st’ st’’,

cl / st \\ st’ —>

c2 / st’> \\ st’’ —>

(cl ;; c2) / st \\ st?’
| E_IfTrue : forall st st’ b cl c2,

beval st b = true ->

cl / st \\ st’ ->

(IFB b THEN c1 ELSE c2 FI) / st \\ st’
| E_IfFalse : forall st st’ b cl c2,

beval st b = false ->

c2 / st \\ st’ ->

(IFB b THEN c1 ELSE c2 FI) / st \\ st’
| E_ForZero : forall c st,

FOR 0 c ENDFOR / st \\ st
| E_ForLoop : forall c st st’ st’’ n,

c / st \\ st’ —>

FOR n ¢ ENDFOR / st’ \\ st’’ —>

FOR (S n) c ENDFOR / st \\ st’’.

where "c1 ’/’ st ’\\’ st’" := (ceval cl st st’).

Library Reference

A Logic

Inductive and (X Y : Prop) : Prop :=
conj : X > Y —» and X VY.

Inductive or (X Y : Prop) : Prop :=
| or_introl : X - or X Y
| or_intror : Y - or X Y.

Arguments conj {X Y}.
Arguments or_introl {X Y}.
Arguments or_intror {X Y}.

Notation "A A B" := (and A B).

Notation "A v B" := (or A B).

Definition iff (A B : Prop) := (A - B) A (B — A).
Notation "A < B" := (iff A B) (at level 95).

B Booleans

Inductive bool : Type :=
| true
| false.

Definition negb (b:bool) : bool :=
match b with
| true = false
| false = true
end.

Definition andb (bl b2: bool) : bool :=
match bl with
| true = b2
| false = false
end.

Definition orb (bl b2:bool) : bool :=
match bl with
| true = true
| false = b2
end.

C Numbers

Inductive nat : Type :=
| 0
| S (n : nat).

Fixpoint plus (n : nat) (m : nat) : nat :=
match n with
| 0 =>m
| Sn' = S (plus n' m)
end.

Fixpoint minus (n m:nat) : nat :=
match n, m with

| O , =0

| s_,0 = n

| Sn', Sm' = minus n' m'
end.

Fixpoint mult (n m : nat) : nat :=
match n with

| 0=0
| Sn' = plus m (mult n' m)
end.
Notation "x + y" := (plus x y) (at level 50, left associativity).
Notation "x - y" := (minus x y) (at level 50, left associativity).
Notation "x * y" := (mult x y) (at level 40, left associativity).

Fixpoint egqb (n m : nat) : bool :=
match n with
| 0 = match m with
| 0 = true
| Sm' = false
end
| Sn' = match m with
| 0 = false
| Sm' = egb n' m'
end
end.

Fixpoint leb (n m : nat) : bool :=
match n with
| 0 = true
| Sn' =
match m with
| 0 = false
| Sm' = lebn' m'

end
end.
Notation "x =7 y" := (egb x y) (at level 70).
Notation "x <7 y" := (leb x y) (at level 70).

Inductive le : nat — nat — Prop :=
| lenn : lenn
| leSnm:1lenm— len (Sm.

Notation "m < n" (le m n).

D Lists

Inductive list (X:Type) : Type :=
| nil
| cons (x : X) (1 : list X).

Arguments nil {X}.
Arguments cons {X} _ _.

Notation "x :: y" := (cons x y) (at level 60, right associativity).
Notation "[J" := nil.

Notation "[x ; .. ; y 1" := (cons x .. (cons y [1) ..).

Notation "x ++ y" := (app x y) (at level 60, right associativity).

Fixpoint map {X Y: Type} (f : X - Y) (1 : list X) : (list Y) :=
match 1 with

I [= [I
| h :: t = (fh) :: (map £ t)
end.

Fixpoint filter {X : Type} (test : X — bool) (1 : list X)

(list X) :=
match 1 with
I [= [
| h :: t = if test h then h :: (filter test t)
else filter test t
end.

Fixpoint fold {X Y} (f : X > Y > YY) (2 : list X) (b : Y) : Y :=
match 1 with
| nil = b
| h :: t = fh (fold £ t b)
end.

E Strings

We won’t define strings from scratch here. Assume eqb_string has the type given below, and anything within
quotes is a string.

Parameter egqb_string : string — string — bool.

F Maps

Definition total_map (A:Type) := string — A.

Definition t_empty {A:Type} (v : A) : total_map A :=
(fun = v).

Definition t_update {A:Type} (m : total_map A) (x : string) (v : A) :=
fun x' = if eqb_string x x' then v else m x'.

Notation "{ -— d }" := (t_empty d) (at level 0).
Notation "m '&' { a -— x }" := (t_update m a x) (at level 20).

10

G Imp

Inductive aexp : Type :=
| ANum (n : nat)
| AId (x : string)
| APlus (al a2 : aexp)
| AMinus (al a2 : aexp)
| AMult (al a2 : aexp).
Inductive bexp : Type :=
| BTrue
| BFalse
| BEq (al a2 : aexp)
| BLe (al a2 : aexp)
| BNot (b : bexp)
| BAnd (bl b2 : bexp).

Inductive com : Type :=
| CSkip
| CAss (x : string) (a : aexp)
| CSeq (c1 c2 : com)
| CIf (b : bexp) (cl c2 : com)
| CWhile (b : bexp) (c : com).

Notation "'SKIP'" := CSkip.

Notation "x '::=' a" := (CAss x a) (at level 60).

Notation "cl ;; c2" := (CSeq cl c2) (at level 80, right associativity).

Notation "'WHILE' b 'DO' c 'END'" := (CWhile b c) (at level 80, right associativity).

Notation "'TEST' cl 'THEN' c¢2 'ELSE' c¢3 'FI'" := (CIf cl c2 c3) (at level 80, right associativity).
Definition state := total_map nat.

Fixpoint aeval (st : state) (a : aexp) : nat :=
match a with
| ANum n = n
| AId x = st x
| APlus al a2 = (aeval st al) + (aeval st a2)
| AMinus al a2 = minus (aeval st al) (aeval st a2)
| AMult al a2 = (aeval st al) * (aeval st a2)
end.

Fixpoint beval (st : state) (b : bexp) : bool :=
match b with

| BTrue = true

| BFalse = false

| BEq a1l a2 = (aeval st al) =7 (aeval st a2)

| BLe al a2 = (aeval st al) <7 (aeval st a2)

| BNot bl = negb (beval st bl)

| BAnd bl b2 = andb (beval st bl) (beval st b2)
end.

11

Reserved Notation "c1 '/' st '\\' st'"
(at level 40, st at level 39).

Inductive ceval : com — state — state — Prop :=

| E_Skip : forall st,
SKIP / st \\ st

| E_Ass : forall st al n x,
aeval st al = n —
(x ::=al) /st \\'st&{x-->n}

| E_Seq : forall cl c2 st st' st'',
cl /st \\ st' >
c2 [st'" \\ st'' -
(cl ;5 c2) [/ st \\ st''
| E_IfTrue : forall st st' b cl c2,
beval st b = true —
cl [/ st \\ st' -
(IFB b THEN c1 ELSE c2 FI) / st \\ st'
| E_IfFalse : forall st st' b cl1 c2,
beval st b = false —
c2 / st \\ st' —
(IFB b THEN cl1 ELSE c2 FI) / st \\ st'
| E_WhileFalse : forall b st c,
beval st b = false —
(WHILE b DO ¢ END) / st \\ st
| E_WhileTrue : forall st st' st'' b c,
beval st b = true —
c /st \\ st' -
(WHILE b DO c END) / st' \\ st'' —
(WHILE b DO ¢ END) / st \\ st''

where "c1 '/' st '"\\' st'" := (ceval cl st st').

12

