CMSC 631: Midterm Exam (Fall 2022)

1 Question 1 (10 points)
For each of the terms below, write their type or “ill-typed” if an expression doesn’t have a type.

(a) [nat]

(b) [bool; 42]

(¢) fun (X:Prop) (x:X) = conj x x
(d) fun x = x x

(e) [fun X = X x X]

2 Question 2 (20 points)

For each of the types below, write a (nontrivial if possible) Coq expression that has that type or write
“empty” if there are no such expressions.

(a) nat — list bool

(b) forall (X : Prop), option bool
(c) forall (XY : Type), Y

(d) forall (XY : Type), X — X

(e) Prop  nat

(f) option (nat * bool —-> bool)
(g) forall (X :Prop), list X

(h) forall (PQ: Prop),P Vv Q

(i) forall (PQ:Prop),P > Q =PV Q



3 Question 3 (20 points)

A binary tree with natural numbers as labels is either empty or a node that contains some natural number
along with two binary trees as children. Formally, binary trees can be defined as follows in Coq:

Inductive tree :=
| Empty : tree
| Node : nat -> tree -> tree —> tree.

For example, the following definitions:

Definition ex_tree_2 : tree :=

Definition ex_tree_1 : tree := Node O
Node 1 (Node 10 Empty Empty)
(Node 5 (Node 5
(Node 17 Empty Empty) (Node 2 Empty Empty)
(Node 10 Empty Empty)) (Node 7
(Node 42 Empty Empty) . (Node 42 Empty Empty)

(Node 8 Empty Empty))).
represent the trees:

(a) The height of a binary tree is the maximum number of edges from the root of the tree to a Leaf node.
For example, the height of ex_tree_1 is 2, while the height of ex_tree_2 is 3.

Fill in the following function that calculates the height of a binary tree. It should be the case that the
following Examples are provable by reflexivity.

(* Trivial tree: *)
Example height_leaf : height Leaf = O.
(* Examples *)

Example heightl : height ex_tree_1
Example height2 : height ex_tree_2

non
w N



Fixpoint height (t: tree) : nat :=

(b) A binary tree is balanced if for every node of the tree, the height of its left and right subtrees differ at
most by one. For example, ex_tree_1 is balanced, but ex_tree_2 is not.

Write a predicate that checks whether a tree is balanced. You can use height for this purpose. The
following Examples should be provable by reflexivity.

(* Trivial tree: *)

Example balanced_leaf : balanced Leaf = true.
(* Examples *)

Example balancedl : balanced ex_tree_1 = true.
Example balanced2 : balanced ex_tree_2 = false.

Fixpoint balanced (t : tree) : bool :=



(¢) Now, write an inductive definition that captures the notion of a balanced tree with height either n or
n-1. You should not use height in your definition, and the following Examples should be provable:

(* Trivial tree is balanced at both O and 1: *)
Example bal_leafO : bal O Leaf.

Example bal_leafl : bal 1 Leaf.

(* Examples *)

Example ball : bal 2 ex_tree_1.

Example bal2 : forall n, ~ (bal n ex_tree_2).

Inductive bal : nat -> tree -> Prop :=



4 Question 4 (10 points)

Consider the following IMP program:

Y := 0;

Z :=X;
WHILE Z > 0 DO
Z =7 -1;
Y :=Y +X
DONE

Fill in the annotations in the following program to show that the Hoare triple given by the outermost pre-
and post- conditions is valid. Be completely precise and pedantic in the way you apply Hoare rules—write
assertions in ezxactly the form given by the rules rather than just logically equivalent ones. The provided
blanks have been constructed so that if you work backwards from the end of the program you should only
need to use the rule of consequence in the places indicated with ->>. These implication steps can (silently)
rely on all the usual rules of natural number arithmetic.

H{X=m13} >
{ 3
Y := 0;
{ 1
Z :=X;
{{ i3
WHILE Z > 0 DO
{ o>
{ 1
Z =7 -1;
{ b3
Y :=Y + X
{ 3
DONE
{ >
H{Y=m=*xm}}



5 Question 5 (20 points)

In the rest of this problem, we will add an assert command to IMP: it takes a boolean expression as an
argument; if it evaluates to true, then the command behaves like a skip; if not, then the command does
not step. Here is the syntax of this extension:

Inductive com : Type :=
| CSkip
| CAss (x : string) (a : aexp)
| CSeq (cl c2 : com)
| CIf (b : bexp) (cl c2 : com)
| CWhile (b : bexp) (c : com)
| CAssert (b : bexp) (* <« new *).

As notation, instead of (CAssert b) we will write
assert b

This command is equivalent to a skip, if the boolean holds, and should not evaluate to any state
otherwise.

(a) Write a Hoare rule for this new construct. It should, for example, be strong enough to prove the
following triple:

H{xX<Y 3}
assert (X = 0)
{{0<Y}}



(b) Extend the evaluation relation for IMP to account for this new construct.

Reserved Notation
"st ;=[) c :]=>; st?"
(at level 40, c custom com at level 99,
st constr, st’ constr at next level).

Inductive ceval : com -> state -> state -> Prop :=
| E_Skip : forall st,
st =[ skip 1=> st
| E_Asgn : forall st a n x,
aeval st a = n ->
st =[x :=a]=> (x '->n ; st)
| E_Seq : forall cl c2 st st’ st’’,
st =[ cl ]=>st’ —->
st’ =[ c2 ]=> st’’ —>
st =[ cl ; c2 ]=> st?’
| E_IfTrue : forall st st’ b cl c2,
beval st b = true ->
st =[ ¢l ]=> st’> —>
st =[ if b then cl1 else c2 end]=> st’
| E_IfFalse : forall st st’ b cl c2,
beval st b = false ->
st =[ c2 ]=> st’> —>
st =[ if b then cl1 else c2 end]=> st’
| E_WhileFalse : forall b st c,
beval st b = false ->
st =[ while b do ¢ end ]=> st
| E_WhileTrue : forall st st’ st’’ b c,
beval st b = true ->
st =[ c 1=>st’> ->
st’ =[ while b do ¢ end ]1=> st’’ ->
st =[ while b do ¢ end ]=> st’’

(* FILL IN HERE *)

where "st =[ ¢ ]=> st’" := (ceval c st st’).



Library Reference

A Logic

Inductive and (X Y : Prop) : Prop :=
conj : X > Y —» and X VY.

Inductive or (X Y : Prop) : Prop :=
| or_introl : X - or X Y
| or_intror : Y - or X Y.

Arguments conj {X Y}.
Arguments or_introl {X Y}.
Arguments or_intror {X Y}.

Notation "A A B" := (and A B).

Notation "A v B" := (or A B).

Definition iff (A B : Prop) := (A - B) A (B — A).
Notation "A < B" := (iff A B) (at level 95).

B Booleans

Inductive bool : Type :=
| true
| false.

Definition negb (b:bool) : bool :=
match b with
| true = false
| false = true
end.

Definition andb (bl b2: bool) : bool :=
match bl with
| true = b2
| false = false
end.

Definition orb (bl b2:bool) : bool :=
match bl with
| true = true
| false = b2
end.

C Numbers

Inductive nat : Type :=
| 0
| S (n : nat).

Fixpoint plus (n : nat) (m : nat) : nat :=
match n with
| 0 =>m
| Sn' = S (plus n' m)
end.



Fixpoint minus (n m:nat) : nat :=
match n, m with

| O , =0

| s_,0 = n

| Sn', Sm' = minus n' m'
end.

Fixpoint mult (n m : nat) : nat :=
match n with

| 0=0
| Sn' = plus m (mult n' m)
end.
Notation "x + y" := (plus x y) (at level 50, left associativity).
Notation "x - y" := (minus x y) (at level 50, left associativity).
Notation "x * y" := (mult x y) (at level 40, left associativity).

Fixpoint egqb (n m : nat) : bool :=
match n with
| 0 = match m with
| 0 = true
| Sm' = false
end
| Sn' = match m with
| 0 = false
| Sm' = egb n' m'
end
end.

Fixpoint leb (n m : nat) : bool :=
match n with
| 0 = true
| Sn' =
match m with
| 0 = false
| Sm' = lebn' m'

end
end.
Notation "x =7 y" := (egb x y) (at level 70).
Notation "x <7 y" := (leb x y) (at level 70).

Inductive le : nat — nat — Prop :=
| lenn : lenn
| leSnm:1lenm— len (Sm.

Notation "m < n" (le m n).



D Lists

Inductive list (X:Type) : Type :=
| nil
| cons (x : X) (1 : list X).

Arguments nil {X}.
Arguments cons {X} _ _.

Notation "x :: y" := (cons x y) (at level 60, right associativity).
Notation "[ J" := nil.

Notation "[ x ; .. ; y 1" := (cons x .. (cons y [1) ..).

Notation "x ++ y" := (app x y) (at level 60, right associativity).

Fixpoint map {X Y: Type} (f : X - Y) (1 : list X) : (list Y) :=
match 1 with

I [ = [I
| h :: t = (fh) :: (map £ t)
end.

Fixpoint filter {X : Type} (test : X — bool) (1 : list X)

(list X) :=
match 1 with
I [ = [
| h :: t = if test h then h :: (filter test t)
else filter test t
end.

Fixpoint fold {X Y} (f : X > Y > YY) (2 : list X) (b : Y) : Y :=
match 1 with
| nil = b
| h :: t = fh (fold £ t b)
end.

E Strings

We won’t define strings from scratch here. Assume eqb_string has the type given below, and anything within
quotes is a string.

Parameter egqb_string : string — string — bool.

F Maps

Definition total_map (A:Type) := string — A.

Definition t_empty {A:Type} (v : A) : total_map A :=
(fun = v).

Definition t_update {A:Type} (m : total_map A) (x : string) (v : A) :=
fun x' = if eqb_string x x' then v else m x'.

Notation "{ -— d }" := (t_empty d) (at level 0).
Notation "m '&' { a -— x }" := (t_update m a x) (at level 20).

10



G Imp

Inductive aexp : Type :=
| ANum (n : nat)
| AId (x : string)
| APlus (al a2 : aexp)
| AMinus (al a2 : aexp)
| AMult (al a2 : aexp).

Inductive bexp : Type :=
| BTrue
| BFalse
| BEq (al a2 : aexp)
| BLe (al a2 : aexp)
| BNot (b : bexp)
| BAnd (bl b2 : bexp).

Inductive com : Type :=

| CSkip
CAss (x : string) (a : aexp)
CSeq (cl c2 : com)
CIf (b : bexp) (cl c2 : com)
CWhile (b : bexp) (c : com).

Definition state := total_map nat.

Fixpoint aeval (st : state) (a : aexp) : nat :=
match a with
| ANum n = n
| AId x = st x
| APlus al a2 = (aeval st al) + (aeval st a2)
| AMinus al a2 = minus (aeval st al) (aeval st a2)
| AMult al a2 = (aeval st al) * (aeval st a2)
end.

Fixpoint beval (st : state) (b : bexp) : bool :=
match b with

| BTrue = true

| BFalse = false

| BEq a1l a2 = (aeval st al) =7 (aeval st a2)

| BLe al a2 = (aeval st al) <7 (aeval st a2)

| BNot bl = negb (beval st bl)

| BAnd bl b2 = andb (beval st bl) (beval st b2)
end.
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Reserved Notation
"St |:[| c |]:>| Stlll
(at level 40, c custom com at level 99,
st constr, st' constr at next level).

Inductive ceval : com — state — state — Prop
| E_Skip : forall st,
st =[ skip 1= st
| E_.Asgn : forall st a n x,
aeval st a = n —
st =[x :=al= (x !> n ; st)
| E_Seq : forall cl c2 st st' st'',
st =[ cl ]= st' —
st' =[ c2 ]= st'' —
st =[cl ; c2 1= st''
| E_IfTrue : forall st st' b cl c2,
beval st b = true —
st =[ c1l ]= st' —
st =[ if b then cl1 else c2 end]= st'
| E_IfFalse : forall st st' b cl c2,
beval st b = false —
st =[ c2 1= st' —
st =[ if b then cl else c2 end]= st'
| E_WhileFalse : forall b st c,
beval st b = false —
st =[ while b do ¢ end ]= st
| E_WhileTrue : forall st st' st'' b c,
beval st b = true —
st =[ c ]= st' -
st' =[ while b do c end ]= st'' —
st =[ while b do ¢ end ]= st''

where "st =[ ¢ ]= st'" := (ceval c st st').
Definition cequiv (cl c2 : com) : Prop :=

forall (st st' : state),
(st =[ c1 ]= st') < (st =[ c2 ]= st').
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H Hoare Rules

———————————————————— (hoare_skip)
{{ P }} skip {{ P }}

H{PIct{{Q}
L Q3 c2{{R }}

_____________________ (hoare_seq)

——————————————————————————— (hoare_asgn)

{Q X > al}} X := a {{Q}}

{{P’}} ¢ {{Q’}}
P ->> P Q> ->>Q
———————————————————— (hoare_consequence)

{{P}} ¢ {{Q}}

{{P /\  Db}} ct {{Q}}

{{P /\ 7 b}} c2 {{Q}}
———————————————————————————————————— (hoare_if)
{{P}} if b then cl else c2 end {{Q}}

{{P A b}} c {{P}}

————————————————————————————————— (hoare_while)
{{P} while b do c end {{P A -b}}
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