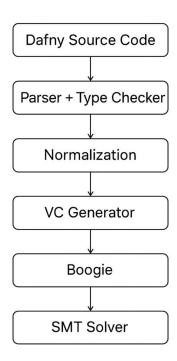
CMSC 433 Programming Language Technologies and Paradigms

SAT Solvers

Borrowed slides from Aarti Gupta, Sharad Malik, Emina Torlak

How Does Dafny work?



Boogie is an intermediate verification language, intended as a layer on which to build program verifiers for other languages.

Boolean Satisfiability (SAT) Solvers

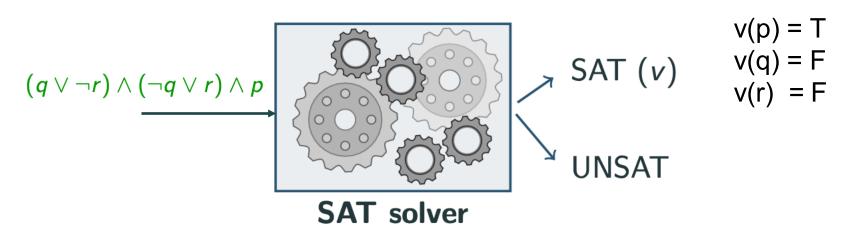
Given a propositional logic (Boolean) formula,

$$F = (x1 \lor x2) \land (x3 \lor x4 \lor \neg x5)$$

Find a variable assignment such that the formula evaluates to true or prove that no such assignment exists.

SAT Solvers

- Engines for solving any problem reducible to propositional logic
 - Input: Propositional formula f
 - Output: SAT + valuation v such that v (f) = T if f satisfiable UNSAT: otherwise



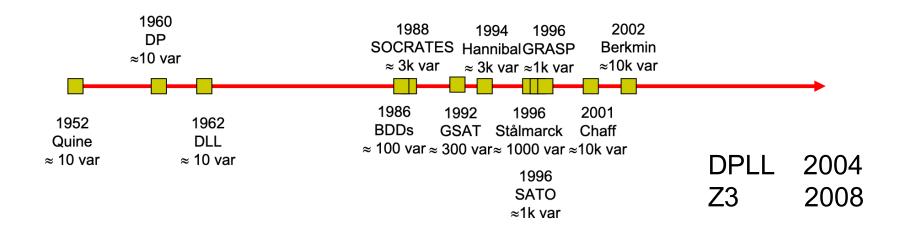
SAT is NP-Complete

$$F = (x1 \lor x2) \land (x3 \lor x4 \lor \neg x5)$$

For n variables, there are 2ⁿ possible truth assignments to be checked.

First established NP-Complete problem. (Stephen A. Cook 1971)

Sat Solvers Timeline



Problem size: We went from 10 variables, 20 constraints (early 90's) to 1M+ variables and 5M+ constraints in 20 years.

Where are we today?

- Intractability of the problem no longer daunting
 - can regularly solve practical instances with millions of variables and constraints
- SAT has matured from theoretical interest to practical impact
 - Widely used in many aspects of chip design (Electronic Design Automation): equivalence checking, assertion verification, synthesis, debugging, post-silicon validation
 - Software verification
 - Commercial use at Microsoft, Amazon, Google, Facebook,...

Where are we today?

- Significant SAT community
 - SatLive Portal (http://www.satlive.org/)
 - Annual SAT competitions (http://www.satcompetition.org/)
 - SAT Conference (http://www.satisfiability.org/)
- Emboldened researchers to take on even harder problems related to SAT
 - Max-SAT: for optimization
 - Satisfiability Modulo Theories (SMT): for more expressive theories
 - Quantified Boolean Formulas (QBF): for more complex problems

Propositional Logic

- Propositional logic is a branch of logic that deals with statements (propositions) that can be true or false but not both.
 - "It is raining." → can be **true** or **false**
- ▶ It focuses on how **truth values** combine and interact using **logical connectives**.
 - $\neg P, P \land Q, P \lor Q, P \rightarrow Q, P \leftrightarrow Q$

Propositional Logic: Syntax

Atom:

- > truth symbols: T ("true"), ⊥ ("false")
- > propositional variables: p,q,r,...

Literal

> an atom α or its negation ¬α

• Formula:

 \succ an atom or the application of a **logical connective** to formulas F_1 , F_2 :

• ¬F1	"not"	(negation)
• <i>F</i> 1 ∧ <i>F</i> 2	"and"	(conjunction)
• <i>F</i> 1 ∨ <i>F</i> 2	"or"	(disjunction)
• $F1 \rightarrow F2$	"implies"	(implication)
• <i>F</i> 1 ↔ <i>F</i> 2	"if and only if"	(iff)

Given a Boolean formula F, and an *Interpretation I*, which maps variables to true/false

$$I : \{ p \mapsto \text{true}, q \mapsto \text{false}, ... \}$$

- I is a satisfying interpretation of F, written as I ⊨ F, if F evaluates to true under I.
 - A satisfying interpretation is also called a model.
- I is a falsifying interpretation of F, written as I ⊨ F, if F evaluates to false under I.

- Definition
 - Base case

- Definition
 - Inductive cases:

Truth Table

A truth table shows whether a propositional formula is true or false for each possible truth assignment.

Р	Q	¬Р	P→Q	¬P∧(P→Q)
Т	Т	F	Т	F
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Example

$$F: (p \land q) \rightarrow (p \lor \neg q)$$

I:
$$\{p \mapsto \text{true}, q \mapsto \text{false}\}$$

Example

$$F: (p \land q) \rightarrow (p \lor \neg q)$$

I: $\{p \mapsto \text{true}, q \mapsto \text{false}\}$

 $I \models F$, I is a **satisfying interpretation** of F

Satisfiability & Validity of Propositional Formulas

▶ F is **satisfiable** iff $I \models F$ for some I.

• F is valid iff $I \models F$ for all I.

- ▶ Duality of satisfiability and validity: F is valid iff ¬F is unsatisfiable.
 - If we have a procedure for checking satisfiability, we can also check validity of propositional formulas, and vice versa.

Techniques for Deciding Satisfiability & Validity

Search

• Enumerate all interpretations (i.e., build a truth table), and check that they satisfy the formula.

Deduction

 Assume the formula is invalid, apply proof rules, and check for contradiction in every branch of the proof tree.

Proof by Search: enumerating interpretations

 $F: (p \land q) \rightarrow (p \lor \neg q)$

 $I \models F1 \rightarrow F2 \text{ iff } I \not\models F1 \text{ or } I \models F2$

р	q	p∧q	٦q	<i>p</i> ∨ ¬ <i>q</i>	F:
F	F	F	Т	Т	Т
F	Т	F	F	F	Т
Т	H	F	Т	Т	Т
Т	Τ	T	F	T	Т

Proof by Search: enumerating interpretations

$$F: (p \land q) \rightarrow (p \lor \neg q)$$
 $I \models F1 \rightarrow F2 \text{ iff } I \not\models F1 \text{ or } I \models F2$

р	q	p∧q	¬q	<i>p</i> ∨ ¬ <i>q</i>	F:	
F	F	F	Т	Т	Т	
F	Т	F	F	F	Т	│ ├─ Valid
Т	H	F	Т	Т	Т	valiu
Т	Τ	T	F	Т	Т	

Proof by Deduction: semantic arguments

- A proof rule consists of
 - premise: facts that must hold to apply the rule.
 - conclusion: facts derived from applying the rule.

Commas indicate derivation of multiple facts; pipes indicate alternative facts (branches in the proof).

Premise
Conclusion

Proof by Deduction: semantic arguments

$$\frac{I \vDash \neg F}{I \not\vDash F}$$

$$\frac{I \not\models \neg F}{I \models F}$$

$$\frac{I \vDash F_1 \land F_2}{I \vDash F_1, I \vDash F_2}$$

$$\frac{1 \not\models F_1 \land F_2}{1 \not\models F_1 \mid 1 \not\models F_2}$$

$$\frac{I \vDash F_1 \lor F_2}{I \vDash F_1 \mid I \vDash F_2}$$

$$\frac{1 \not\models F_1 \lor F_2}{1 \not\models F_1, 1 \not\models F_2}$$

Proof by Deduction: semantic arguments

$$\frac{I \models F_1 \to F_2}{I \not\models F_1 \mid I \models F_2} \qquad \frac{I \not\models F_1 \to F_2}{I \models F_1, I \not\models F_2}$$

$$\frac{I \models F_1 \leftrightarrow F_2}{I \models F_1 \land F_2 \mid I \models F_1 \land F_2} \qquad \frac{I \not\models F_1 \leftrightarrow F_2}{I \models F_1 \land F_2 \mid I \models \neg F_1 \land F_2}$$

Proof by deduction: another example 1

▶ Prove $p \land \neg q$ is valid or find a falsifying interpretation.

```
1. I 
ot p \land \neg q (assumed)

a. I \not \models p (1, \land)

b. I \not \models \neg q (1, \land)

i. I \not \models q (1b,\neg)
```

The formula is invalid, and $I = \{p \mapsto false, q \mapsto true\}$ is a falsifying interpretation.

Proof by deduction: another example 2

▶ Prove $(p \land (p \rightarrow q)) \rightarrow q$ or find a falsifying interpretation.

1.
$$I \vDash (p \land (p \rightarrow q)) \rightarrow q$$
 $I \vDash F1 \rightarrow F2 \text{ iff}$
2. $I \vDash q$ $(1, \rightarrow)$ $I \vDash F1 \text{ or } I \vDash F2$
3. $I \vDash (p \land (p \rightarrow q))$ $(1, \rightarrow)$
4. $I \vDash p$ $(3, \land)$
5. $I \vDash p \rightarrow q$ $(3, \land)$
1. $I \vDash p$ $(5, \rightarrow)$
2. $I \vDash q$ $(5, \rightarrow)$

We have reached a contradiction in every branch of the proof, so the formula is valid.

Semantic Judgement

- Formulas F1 and F2 are equivalent, written F1 ⇔ F2, iff F1 ↔ F2 is valid.
- ▶ Formula F1 implies F2, written $F1 \Rightarrow F2$, iff $F1 \rightarrow F2$ is valid.
- ► $F1 \Leftrightarrow F2$ and $F1 \Rightarrow F2$ are **not** propositional formulas (not part of syntax). They are properties of formulas, just like validity or satisfiability.

Normal Form

- A **normal form** for a logic is a syntactic restriction such that every formula in the logic has an equivalent formula in the normal form.
 - Assembly language for a logic.
- Three important normal forms for propositional logic:
 - Negation Normal Form (NNF)
 - Disjunctive Normal Form (DNF)
 - Conjunctive Normal Form (CNF)

Negation Normal Form (NNF)

- Atom := Variable | ⊤ | ⊥
- ▶ Literal := Atom | ¬Atom Formula := Literal | Formula op Formula
- ▶ op := ∧ | ∨
- The only allowed connectives are ∧, ∨, and ¬. ¬ can appear only in literals.
- Conversion to NNF performed using **DeMorgan's Laws**:

$$\neg(F \land G) \Leftrightarrow \neg F \lor \neg G$$

 $\neg(F \lor G) \Leftrightarrow \neg F \land \neg G$

NNF Examples

▶ The following formulae are all in negation normal form:

$$egin{aligned} (Aee B)\wedge C\ (A\wedge (
eg Bee C)\wedge
eg C)ee D\ Aee
eg B\ A\wedge
eg B \end{aligned}$$

The following formulae are not in negation normal form:

$$A\Rightarrow B \ \neg (A\lor B) \ \neg (A\land B) \ \neg (A\lor \neg C)$$

Disjunctive Normal Form (DNF)

Atom := Variable | T | ⊥

Literal := Atom | ¬Atom

Formula := Clause v Formula

Clause := Literal | Literal ∧ Clause

- Disjunction of conjunction of literals.
- Deciding satisfiability of a DNF formula is trivial.

To convert to DNF, convert to NNF and distribute ∧ over ∨:

 $(F \land (G \lor H)) \Leftrightarrow (F \land G) \lor (F \land H)$

 $((G \lor H) \land F) \Leftrightarrow (G \land F) \lor (H \land F)$

DNF Examples

The following formulas are in DNF:

```
(A \wedge \neg B \wedge \neg C) \vee (\neg D \wedge E \wedge F \wedge D \wedge F)

(A \wedge B) \vee (C)

(A \wedge B)

(A)
```

The following formulas are **not** in DNF:

 $eg(A \lor B)$, since an OR is nested within a NOT $eg(A \land B) \lor C$, since an AND is nested within a NOT $A \lor (B \land (C \lor D))$, since an OR is nested within an AND

Conjunctive Normal Form (CNF)

```
Atom := Variable | ⊤ | ⊥
```

Literal := Atom | ¬Atom

Formula := Clause ∧ Formula

Clause := Literal | Literal ∨ Clause

- Conjunction of disjunction of literals.
- Deciding the satisfiability of a CNF formula is hard.
- SAT solvers use CNF as their input language.
- ► To convert to CNF, convert to NNF and distribute ∨ over ∧

```
(F \lor (G \land H)) \Leftrightarrow (F \lor G) \land (F \lor H)

((G \land H) \lor F) \Leftrightarrow (G \lor F) \land (H \lor F)
```

However, this can result in an exponential increase in equation size.

CNF Examples

the following formulas are in conjunctive normal form:

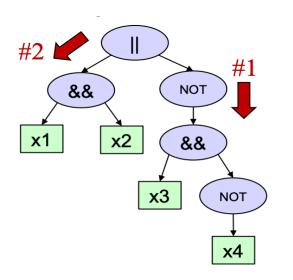
$$egin{aligned} (A ee
eg B ee
eg C) \wedge (
eg D ee E ee F ee D ee F) \ (A ee B) \wedge (C) \ (A ee B) \ (A) \end{aligned}$$

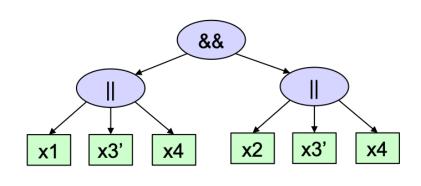
The following formulas are **not** in conjunctive normal form:

$$eg(A \wedge B)$$
, since an AND is nested within a NOT $eg(A \vee B) \wedge C$, since an OR is nested within a NOT $A \wedge (B \vee (D \wedge E))$, since an AND is nested within an OR

Translation to CNF: Example

```
(x1 \land x2) \lor (\neg (x3 \land \neg x4))
= (x1 \land x2) \lor (\neg x3 \lor \neg (\neg x4)) \dots #de Mogans's Law
= (x1 \land x2) \lor (\neg x3 \lor x4) \dots \neg simplification
= (x1 \lor \neg x3 \lor x4) \land (x2 \lor \neg x3 \lor x4) \dots#Distribute (x1 \land x2)
= (x1 \lor \neg x3 \lor x4) \land (x2 \lor \neg x3 \lor x4)
```





Tseitin Transformation

By introducing fresh variables, Tseitin transformation can translate every formula inro an equisatisfiable CNF formula.

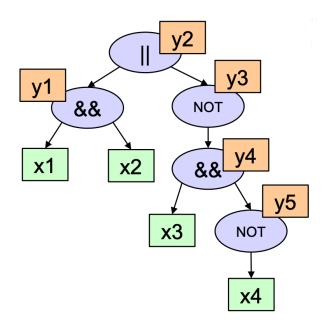
Main idea: Introduce fresh variable for each subformula and write "equations".

The CNF grows linearly with the size of the original formula.

Tseitin Transformation Example

- $z = x \wedge y \qquad (x \vee \neg z) \wedge (y \vee \neg z) \wedge (\neg x \vee \neg y \vee z)$
- ▶ $z \rightarrow (x \land y)$ Equivalently: $\neg z \lor (x \land y)$
- This gives us two clauses:
 - (¬z∨x)
 - (¬z ∨ y)
- ▶ $(x \land y) \rightarrow z$ Equivalently: $\neg(x \land y) \lor z$
- ► Using De Morgan's law: (¬x ∨ ¬y ∨ z)
- $z = x \wedge y \qquad (x \vee \neg z) \wedge (y \vee \neg z) \wedge (\neg x \vee \neg y \vee z)$

Tseitin Transformation Example



Equation

$$z = \neg x$$

 $z = x \land y$
 $z = x \lor y$

CNF to implement the Equation

$$\begin{array}{c} (x \lor z) \land (\neg x \lor \neg z) \\ (x \lor \neg z) \land (y \lor \neg z) \land (\neg x \lor \neg y \lor z) \\ (\neg x \lor z) \land (\neg y \lor z) \land (x \lor y \lor \neg z) \end{array}$$

New variables: y1, y2, y3, y4, y5 Equations

CNF

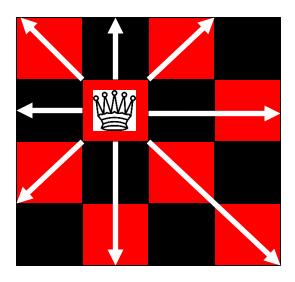
Tseitin Transformation

- For a given formula f, let Tseitin(f) denote the generated CNF formula
- Size of Tseitin(f) is *linear* in the size of f

- Tseitin(f) is equi-satisfiable with f
 - i.e., Tseitin(f) is satisfiable if and only if f is satisfiable

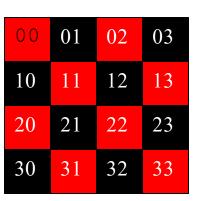
Solving real problems with SAT

- N-Queens Problem
 - Given an N x N chess board, find a placement of N queens such that no two queens can take each other



N-Queens as a SAT

- Introduce variables x_{ij} for 0 ≤ i,j < N,</p>
 - $x_{ij} = T$ if queen at position (i,j) F otherwise
- Constraints
 - Exactly one queen per row
 - > Row_i = x_{ii} , j=0...N-1
 - Exactly one queen per column
 - > Column_i = x_{ii} , i=0...N-1
 - At most one queen on diagonal
 - > Diagonal_{k-} = x_{ii} , i-j = k = -N+1...,N-1
 - > Diagonal_{k+} = x_{ii} , i+j = k = 0...,2N-2



4-Queens SAT input

Exactly one queen in row I

```
• \mathbf{x}_{i0} \lor \mathbf{x}_{i1} \lor \mathbf{x}_{i2} \lor \mathbf{x}_{i3}
• \mathbf{x}_{i0} \rightarrow \neg \mathbf{x}_{i1} \land \neg \mathbf{x}_{i2} \land \neg \mathbf{x}_{i3}
• \mathbf{x}_{i1} \rightarrow \neg \mathbf{x}_{i2} \land \neg \mathbf{x}_{i3}
• \mathbf{x}_{i2} \rightarrow \neg \mathbf{x}_{i3}
```

At least one queen by line:

```
(assert (or x_{00} x_{01} x_{02} x_{03}))
At most only one queen by line
(assert (not
(or (and x_{01} x_{00}) (and x_{02} x_{00})
(and x_{02} x_{01}) (and x_{03} x_{00})
(and x_{03} x_{01}) (and x_{03} x_{02}))))
```

00	01	02	03
10	11	12	13
20	21	22	23
30	31	32	33

4-Queens SAT input

Exactly one queen in column j

$$\mathbf{x}_{0j} \vee \mathbf{x}_{1j} \vee \mathbf{x}_{2j} \vee \mathbf{x}_{3j}$$

•
$$\mathbf{x}_{0j} \rightarrow \neg \mathbf{x}_{1j} \wedge \neg \mathbf{x}_{2j} \wedge \neg \mathbf{x}_{3j}$$

•
$$\mathbf{x}_{1j} \rightarrow \neg \mathbf{x}_{2j} \wedge \neg \mathbf{x}_{3j}$$

•
$$\mathbf{x}_{2j} \rightarrow \neg \mathbf{x}_{3j}$$

00	01	02	03
10	11	12	13
20	21	22	23
30	31	32	33

4-Queens SAT input

At most one queen in diagonal k-

$$\bullet x_{20} \rightarrow \neg x_{31}$$

•

•
$$\mathbf{x}_{00} \rightarrow \neg \mathbf{x}_{11} \wedge \neg \mathbf{x}_{22} \wedge \neg \mathbf{x}_{33}$$

•
$$\mathbf{x}_{11} \rightarrow \neg \mathbf{x}_{22} \wedge \neg \mathbf{x}_{33}$$

•
$$\mathbf{x}_{22} \rightarrow -\mathbf{x}_{33}$$

•

•
$$x_{02} \rightarrow \neg x_{13}$$

00	01	02	03
10	11	12	13
20	21	22	23
30	31	32	33

N-queens Demo