
CMSC 433

Programming Language Technologies and

Paradigms

SAT Solvers

1CMSC433 Fall 2025

Borrowed slides from Aarti Gupta, Sharad Malik, Emina Torlak

How Does Dafny work?

2

Boogie is an intermediate verification language, intended as a layer on

which to build program verifiers for other languages.

Boolean Satisfiability (SAT) Solvers

Given a propositional logic (Boolean) formula,

Find a variable assignment such that the formula

evaluates to true or prove that no such assignment

exists.

3

F = (x1 ∨ x2) ^ (x3 ∨ x4 ∨ ¬x5)

SAT Solvers

Engines for solving any problem reducible to propositional logic

• Input: Propositional formula f

• Output: SAT + valuation v such that v (f) = T if f satisfiable

 UNSAT: otherwise

4

v(p) = T

v(q) = F

v(r) = F

SAT is NP-Complete

For n variables, there are 2n possible truth assignments

to be checked.

First established NP-Complete problem. (Stephen A.

Cook 1971)

5

F = (x1 ∨ x2) ^ (x3 ∨ x4 ∨ ¬x5)

Sat Solvers Timeline

6

DPLL 2004

Z3 2008

Problem size: We went from 10 variables, 20 constraints (early

90’s) to 1M+ variables and 5M+ constraints in 20 years.

Where are we today?

Intractability of the problem no longer daunting

• can regularly solve practical instances with millions of variables

and constraints

SAT has matured from theoretical interest to practical impact

• Widely used in many aspects of chip design (Electronic Design

Automation): equivalence checking, assertion verification,

synthesis, debugging, post-silicon validation

• Software verification

➢ Commercial use at Microsoft, Amazon, Google, Facebook,...

7

Where are we today?

Significant SAT community

• SatLive Portal (http://www.satlive.org/)

• Annual SAT competitions (http://www.satcompetition.org/)

• SAT Conference (http://www.satisfiability.org/)

Emboldened researchers to take on even harder problems related

to SAT

• Max-SAT: for optimization

• Satisfiability Modulo Theories (SMT): for more expressive

theories

• Quantified Boolean Formulas (QBF): for more complex problems

8

http://www.satlive.org/

Propositional Logic

Propositional logic is a branch of logic that deals with

statements (propositions) that can be true or false —

but not both.

• “It is raining.” → can be true or false

It focuses on how truth values combine and interact

using logical connectives.

• ¬P, P ∧ Q, P ∨ Q, P → Q, P Q

9

Propositional Logic: Syntax

• Atom:

➢ truth symbols: ⊤ (“true”), ⊥ (“false”)

➢ propositional variables: p,q,r,...

• Literal

➢ an atom α or its negation ¬α

• Formula:

➢ an atom or the application of a logical connective to formulas F1, F2 :

• ¬F1 “not” (negation)

• F1 ∧ F2 “and” (conjunction)

• F1 ∨ F2 “or” (disjunction)

• F1 → F2 “implies” (implication)

• F1 F2 “if and only if” (iff)

10

Propositional Logic: Semantics

Given a Boolean formula F, and an Interpretation I, which maps

variables to true/false

I is a satisfying interpretation of F, written as I ⊨ F, if F evaluates

to true under I.

• A satisfying interpretation is also called a model.

I is a falsifying interpretation of F, written as I ⊭ F, if F evaluates

to false under I.

11

I :{ p↦true,q↦false,...}

Propositional Logic: Semantics

Definition

• Base case

➢ I ⊨ ⊤

➢ I ⊭ ⊥

➢ I ⊨ p iff I[p]=true

➢ I ⊭ p iff I[p]=false

12

Propositional Logic: Semantics

Definition

• Inductive cases:

➢ I ⊨¬F iff I ⊭ F

➢ I ⊨ F1 ∧ F2 iff I ⊨F1 and I ⊨ F2

➢ I ⊨ F1 ∨ F2 iff I ⊨ F1 or I ⊨ F2

➢ I ⊨ F1 →F2 iff I ⊭ F1 or I ⊨ F2

➢ I ⊨ F1 F2 iff I ⊨ F1 and I ⊨ F2, or I ⊭ F1 and I ⊭ F2

13

Truth Table

14

A truth table shows whether a propositional formula is true or

false for each possible truth assignment.

P Q ¬P P→Q ¬P∧(P→Q)

T T F T F

T F F F F

F T T T T

F F T T T

Propositional Logic: Semantics

Example

15

F: (p ∧ q) → (p ∨ ¬q)

I: {p ↦ true, q ↦ false}

Propositional Logic: Semantics

Example

16

F: (p ∧ q) → (p ∨ ¬q)

I: {p ↦ true, q ↦ false}

I ⊨ F, I is a satisfying interpretation of F

Satisfiability & Validity of Propositional Formulas

F is satisfiable iff I ⊨ F for some I.

F is valid iff I ⊨ F for all I.

Duality of satisfiability and validity: F is valid iff ¬F is

unsatisfiable.

• If we have a procedure for checking satisfiability, we

can also check validity of propositional formulas, and

vice versa.

17

Techniques for Deciding Satisfiability & Validity

Search

• Enumerate all interpretations (i.e., build a truth table),

and check that they satisfy the formula.

Deduction

• Assume the formula is invalid, apply proof rules, and

check for contradiction in every branch of the proof

tree.

18

Proof by Search: enumerating interpretations

19

p q p∧q ¬q p ∨ ¬q F:

F F F T T T

F T F F F T

T F F T T T

T T T F T T

F : (p∧q)→(p∨¬q) I ⊨ F1 →F2 iff I ⊭ F1 or I ⊨ F2

Proof by Search: enumerating interpretations

20

p q p∧q ¬q p ∨ ¬q F:

F F F T T T

F T F F F T

T F F T T T

T T T F T T

F : (p∧q)→(p∨¬q) I ⊨ F1 →F2 iff I ⊭ F1 or I ⊨ F2

Valid

Proof by Deduction: semantic arguments

A proof rule consists of

• premise: facts that must hold to apply the rule.

• conclusion: facts derived from applying the rule.

Commas indicate derivation of multiple facts; pipes

indicate alternative facts (branches in the proof).

21

Premise

Conclusion

Proof by Deduction: semantic arguments

22

Proof by Deduction: semantic arguments

23

Proof by deduction: another example 1

Prove p ∧ ¬q is valid or find a falsifying interpretation.

24

1. I ⊭ p ∧ ¬q (assumed)

a. I ⊭ p (1, ∧)

b. I ⊭ ¬q (1, ∧)

i. I ⊨ q (1b,¬)

The formula is invalid, and I = {p↦false,q↦true} is a falsifying

interpretation.

Proof by deduction: another example 2

Prove (p ∧ (p→q)) → q or find a falsifying interpretation.

25

We have reached a contradiction in every branch of the proof,

so the formula is valid.

1. I ⊭ (p ∧ (p→q))→q

2. I ⊭ q (1,→)

3. I ⊨ (p ∧ (p→q)) (1,→)

4. I ⊨ p (3,∧)

5. I ⊨ p→q (3,∧)

1. I ⊭ p (5,→)

2. I ⊨ q (5,→)

I ⊨ F1 →F2 iff

I ⊭ F1 or I ⊨ F2

Semantic Judgement

Formulas F1 and F2 are equivalent, written F1 ⟺ F2, iff F1 F2 is

valid.

Formula F1 implies F2, written F1 ⟹ F2, iff F1 → F2 is valid.

F1 ⟺F2 and F1 ⟹F2 are not propositional formulas (not part of

syntax). They are properties of formulas, just like validity or

satisfiability.

26

Normal Form

A normal form for a logic is a syntactic restriction such

that every formula in the logic has an equivalent formula

in the normal form.

• Assembly language for a logic.

Three important normal forms for propositional logic:

• Negation Normal Form (NNF)

• Disjunctive Normal Form (DNF)

• Conjunctive Normal Form (CNF)

27

Negation Normal Form (NNF)

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Literal | Formula op Formula

op := ∧ | ∨

The only allowed connectives are ∧, ∨, and ¬. ¬ can appear only in

literals.

Conversion to NNF performed using DeMorgan’s Laws:

¬(F ∧ G) ⟺ ¬F ∨ ¬G

¬(F ∨ G) ⟺ ¬F ∧ ¬G

28

NNF Examples

The following formulae are all in negation normal form:

 The following formulae are not in negation normal form:

29

Disjunctive Normal Form (DNF)

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∨ Formula

Clause := Literal | Literal ∧ Clause

30

To convert to DNF, convert to NNF and distribute ∧ over ∨:

(F∧(G∨H))⟺ (F∧G)∨(F∧H)

((G∨H)∧F)⟺ (G∧F)∨(H∧F)

• Disjunction of

conjunction of literals.

• Deciding satisfiability of

a DNF formula is trivial.

DNF Examples

The following formulas are in DNF:

The following formulas are not in DNF:

31

Conjunctive Normal Form (CNF)

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∧ Formula

Clause := Literal | Literal ∨ Clause

To convert to CNF, convert to NNF and distribute ∨ over ∧

(F∨(G∧H))⟺ (F∨G)∧(F∨H)

((G∧H)∨F)⟺ (G∨F)∧(H∨F)

32

• Conjunction of disjunction of

literals.

• Deciding the satisfiability of a CNF

formula is hard.

• SAT solvers use CNF as their input

language.

However, this can result in an exponential increase in equation size.

CNF Examples

the following formulas are in conjunctive normal form:

The following formulas are not in conjunctive normal form:

33

Translation to CNF: Example

34

(x1 ∧ x2) ∨ (¬ (x3 ∧ ¬ x4))

= (x1 ∧ x2) ∨ (¬ x3 ∨ ¬(¬ x4)) ... #de Mogans’s Law

= (x1 ∧ x2) ∨ (¬ x3 ∨ x4) ... ¬ simplification

= (x1 ∨ ¬ x3 ∨ x4) ∧ (x2 ∨ ¬ x3 ∨ x4) ...#Distribute (x1 ∧ x2)

= (x1 ∨ ¬ x3 ∨ x4) ∧ (x2 ∨ ¬ x3 ∨ x4)

Tseitin Transformation

By introducing fresh variables, Tseitin transformation can

translate every formula inro an equisatisfiable CNF

formula.

Main idea: Introduce fresh variable for each subformula

and write ”equations” .

The CNF grows linearly with the size of the original

formula.

35

Tseitin Transformation Example

z = x ∧ y (x ∨ ¬z) ∧ (y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z)

z → (x ∧ y) Equivalently: ¬z ∨ (x ∧ y)

This gives us two clauses:

• (¬z ∨ x)

• (¬z ∨ y)

(x ∧ y) → z Equivalently: ¬(x ∧ y) ∨ z

Using De Morgan's law: (¬x ∨ ¬y ∨ z)

z = x ∧ y (x ∨ ¬z) ∧ (y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z)

36

Tseitin Transformation Example

37

New variables: y1, y2, y3, y4, y5

Equations

y1 = x1 ∧ x2

y2 = y1 ∨ y3

y3 = ¬ y4

y4 = x3 ∧ y5

y5 = ¬ x4

Equation CNF to implement the Equation

z = ¬ x (x ∨ z) ∧ (¬ x ∨ ¬ z)
z = x ∧ y (x ∨ ¬z) ∧ (y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z)
z = x ∨ y (¬x ∨ z) ∧ (¬y ∨ z) ∧ (x ∨ y ∨ ¬z)

CNF

(x1 ∨ ¬ y1) ∧ (x2 ∨ ¬ y1) ∧ (¬ x1 ∨ ¬ x2
∨ y1) ∧ (¬ y1 ∨ y2) ∧ (¬ y3 ∨ y2) ∧ (y1 ∨
y3 ∨ ¬ y2) ∧ (y3 ∨ y4) ∧ (¬ y3 ∨ ¬ y4) ∧
(x3 ∨ ¬ y4) ∧ (y5 ∨ ¬ y4) ∧ (¬ x3 ∨ ¬ y5
∨ y4) ∧ (x4 ∨ y5) ∧ (¬ x4 ∨ ¬ y5) ∧

(y2)

Tseitin Transformation

• For a given formula f, let Tseitin(f) denote the

generated CNF formula

• Size of Tseitin(f) is linear in the size of f

• Tseitin(f) is equi-satisfiable with f

• i.e., Tseitin(f) is satisfiable if and only if f is

satisfiable

38

Solving real problems with SAT

N-Queens Problem

• Given an N x N chess board, find a placement of N queens such

that no two queens can take each other

39

N-Queens as a SAT

Introduce variables xi j for 0 ≤ i,j < N,

• xij = T if queen at position (i,j) F otherwise

Constraints

• Exactly one queen per row

➢Rowi = xij, j=0…N-1

• Exactly one queen per column

➢Columnj = xij, i=0…N-1

• At most one queen on diagonal

➢Diagonalk- = xij, i-j = k = -N+1…,N-1

➢Diagonalk+ = xij, i+j = k = 0…,2N-2

40

00 01 02 03

1310 11 12

20 21 22 23

3330 31 32

4-Queens SAT input

41

00 01 02 03

1310 11 12

20 21 22 23

3330 31 32

Exactly one queen in row I

• xi0  xi1  xi2  xi3

• xi0→ xi1  xi2  xi3

• xi1→ xi2  xi3

• xi2→ xi3

At least one queen by line:
(assert (or x00 x01 x02 x03))

At most only one queen by line
(assert (not

 (or(and x01 x00)(and x02 x00)

 (and x02 x01)(and x03 x00)

 (and x03 x01)(and x03 x02))))

4-Queens SAT input

42

00 01 02 03

1310 11 12

20 21 22 23

3330 31 32

Exactly one queen in column j

•x0j  x1j  x2j  x3j

•x0j→ x1j  x2j  x3j

•x1j→ x2j  x3j

•x2j→ x3j

4-Queens SAT input

43

00 01 02 03

1310 11 12

20 21 22 23

3330 31 32

At most one queen in diagonal k-

•x20→ x31

• …

• x00→ x11  x22  x33

• x11→ x22  x33

• x22→ x33

• …

• x02→ x13

N-queens Demo

44

	Slide 1: CMSC 433 Programming Language Technologies and Paradigms
	Slide 2: How Does Dafny work?
	Slide 3: Boolean Satisfiability (SAT) Solvers
	Slide 4: SAT Solvers
	Slide 5: SAT is NP-Complete
	Slide 6: Sat Solvers Timeline
	Slide 7: Where are we today?
	Slide 8: Where are we today?
	Slide 9: Propositional Logic
	Slide 10: Propositional Logic: Syntax
	Slide 11: Propositional Logic: Semantics
	Slide 12: Propositional Logic: Semantics
	Slide 13: Propositional Logic: Semantics
	Slide 14: Truth Table
	Slide 15: Propositional Logic: Semantics
	Slide 16: Propositional Logic: Semantics
	Slide 17: Satisfiability & Validity of Propositional Formulas
	Slide 18: Techniques for Deciding Satisfiability & Validity
	Slide 19: Proof by Search: enumerating interpretations
	Slide 20: Proof by Search: enumerating interpretations
	Slide 21: Proof by Deduction: semantic arguments
	Slide 22: Proof by Deduction: semantic arguments
	Slide 23: Proof by Deduction: semantic arguments
	Slide 24: Proof by deduction: another example 1
	Slide 25: Proof by deduction: another example 2
	Slide 26: Semantic Judgement
	Slide 27: Normal Form
	Slide 28: Negation Normal Form (NNF)
	Slide 29: NNF Examples
	Slide 30: Disjunctive Normal Form (DNF)
	Slide 31: DNF Examples
	Slide 32: Conjunctive Normal Form (CNF)
	Slide 33: CNF Examples
	Slide 34: Translation to CNF: Example
	Slide 35: Tseitin Transformation
	Slide 36: Tseitin Transformation Example
	Slide 37: Tseitin Transformation Example
	Slide 38: Tseitin Transformation
	Slide 39: Solving real problems with SAT
	Slide 40: N-Queens as a SAT
	Slide 41: 4-Queens SAT input
	Slide 42: 4-Queens SAT input
	Slide 43: 4-Queens SAT input
	Slide 44: N-queens Demo

