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How Does Dafny work?
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Boogie is an intermediate verification language, intended as a layer on 

which to build program verifiers for other languages.



Boolean Satisfiability (SAT) Solvers 

Given a propositional logic (Boolean) formula,

Find a variable assignment such that the formula 

evaluates to true or prove that no such assignment 

exists. 
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F = (x1 ∨ x2) ^ (x3 ∨ x4 ∨ ¬x5)



SAT Solvers 

Engines for solving any problem reducible to propositional logic

• Input: Propositional formula f

• Output: SAT + valuation v such that v (f) = T if f satisfiable

     UNSAT: otherwise
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v(p) = T

v(q) = F

v(r)  = F



SAT is NP-Complete

For n variables, there are 2n possible truth assignments 

to be checked. 

First established NP-Complete problem.  (Stephen A. 

Cook 1971)
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F = (x1 ∨ x2) ^ (x3 ∨ x4 ∨ ¬x5)



Sat Solvers Timeline
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DPLL    2004

Z3 2008

Problem size: We went from 10 variables, 20 constraints (early 

90’s) to 1M+ variables and 5M+ constraints in 20 years.



Where are we today?

Intractability of the problem no longer daunting 

• can regularly solve practical instances with millions of variables 

and constraints 

SAT has matured from theoretical interest to practical impact 

• Widely used in many aspects of chip design (Electronic Design 

Automation): equivalence checking, assertion verification, 

synthesis, debugging, post-silicon validation 

• Software verification

➢  Commercial use at Microsoft, Amazon, Google, Facebook,... 
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Where are we today?

Significant SAT community

• SatLive Portal (http://www.satlive.org/)

• Annual SAT competitions (http://www.satcompetition.org/) 

• SAT Conference (http://www.satisfiability.org/) 

Emboldened researchers to take on even harder problems related 

to SAT 

• Max-SAT: for optimization

• Satisfiability Modulo Theories (SMT): for more expressive 

theories

• Quantified Boolean Formulas (QBF): for more complex problems
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http://www.satlive.org/


Propositional Logic

Propositional logic is a branch of logic that deals with 

statements (propositions) that can be true or false — 

but not both.

• “It is raining.” → can be true or false

It focuses on how truth values combine and interact 

using logical connectives.

• ¬P, P ∧ Q, P ∨ Q, P → Q, P  Q
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Propositional Logic: Syntax

• Atom: 

➢ truth symbols: ⊤ (“true”), ⊥ (“false”) 

➢ propositional variables: p,q,r,... 

• Literal 

➢ an atom α or its negation ¬α 

• Formula: 

➢ an atom or the application of a logical connective to formulas F1, F2 : 

• ¬F1  “not”  (negation)

• F1 ∧ F2  “and”  (conjunction)

• F1 ∨ F2  “or”  (disjunction) 

• F1 → F2  “implies”  (implication)

• F1  F2  “if and only if”  (iff) 

10



Propositional Logic: Semantics

Given a Boolean formula F, and an Interpretation I, which maps 

variables to true/false

I is a satisfying interpretation of F, written as I ⊨ F, if F evaluates 

to true under I. 

• A satisfying interpretation is also called a model. 

I is a falsifying interpretation of F, written as I ⊭ F, if F evaluates 

to false under I. 
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I :{ p↦true,q↦false,...} 



Propositional Logic: Semantics

Definition

• Base case

➢ I ⊨ ⊤

➢ I ⊭ ⊥

➢ I ⊨ p  iff I[p]=true 

➢ I ⊭ p  iff I[p]=false 
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Propositional Logic: Semantics

Definition

• Inductive cases: 

➢ I ⊨¬F   iff I ⊭ F

➢ I ⊨ F1 ∧ F2 iff I ⊨F1 and I ⊨ F2

➢ I ⊨ F1 ∨ F2 iff I ⊨ F1 or I ⊨ F2 

➢ I ⊨ F1 →F2 iff I ⊭ F1 or I ⊨ F2 

➢ I ⊨ F1  F2 iff I ⊨ F1 and I ⊨ F2, or I ⊭ F1 and I ⊭ F2 
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Truth Table
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A truth table shows whether a propositional formula is true or 

false for each possible truth assignment.

P Q ¬P P→Q ¬P∧(P→Q)

T T F T F

T F F F F

F T T T T

F F T T T



Propositional Logic: Semantics

Example
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F: (p ∧ q) → (p ∨ ¬q)

I: {p ↦ true, q ↦ false}



Propositional Logic: Semantics

Example
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F: (p ∧ q) → (p ∨ ¬q)

I: {p ↦ true, q ↦ false}

I ⊨ F, I is a satisfying interpretation of F



Satisfiability & Validity of Propositional Formulas 

F is satisfiable iff I ⊨ F  for some I. 

F is valid iff I ⊨ F for all I. 

Duality of satisfiability and validity: F is valid iff ¬F is 

unsatisfiable. 

• If we have a procedure for checking satisfiability, we 

can also check validity of propositional formulas, and 

vice versa. 
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Techniques for Deciding Satisfiability & Validity 

Search

• Enumerate all interpretations (i.e., build a truth table), 

and check that they satisfy the formula. 

Deduction

• Assume the formula is invalid, apply proof rules, and 

check for contradiction in every branch of the proof 

tree. 
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Proof by Search: enumerating interpretations 
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p q p∧q ¬q p ∨ ¬q F:

F F F T T T

F T F F F T

T F F T T T

T T T F T T

F : (p∧q)→(p∨¬q) I ⊨ F1 →F2 iff I ⊭ F1 or I ⊨ F2 



Proof by Search: enumerating interpretations 

20

p q p∧q ¬q p ∨ ¬q F:

F F F T T T

F T F F F T

T F F T T T

T T T F T T

F : (p∧q)→(p∨¬q) I ⊨ F1 →F2 iff I ⊭ F1 or I ⊨ F2 

Valid



Proof by Deduction: semantic arguments 

A proof rule consists of

• premise: facts that must hold to apply the rule. 

• conclusion: facts derived from applying the rule. 

Commas indicate derivation of multiple facts; pipes 

indicate alternative facts (branches in the proof). 
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Premise

Conclusion



Proof by Deduction: semantic arguments 
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Proof by Deduction: semantic arguments 
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Proof by deduction: another example 1 

Prove p ∧ ¬q is valid or find a falsifying interpretation. 
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1. I ⊭ p ∧ ¬q (assumed) 

a. I ⊭ p  (1, ∧)

b. I ⊭ ¬q   (1, ∧) 

i. I ⊨ q (1b,¬) 

The formula is invalid, and I = {p↦false,q↦true} is a falsifying 

interpretation. 



Proof by deduction: another example 2

Prove (p ∧ (p→q)) → q  or find a falsifying interpretation. 
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We have reached a contradiction in every branch of the proof, 

so the formula is valid. 

1. I ⊭ (p ∧ (p→q))→q

2. I ⊭ q   (1,→) 

3. I ⊨ (p ∧ (p→q))  (1,→) 

4. I ⊨ p   (3,∧) 

5. I ⊨ p→q   (3,∧) 

1. I ⊭ p   (5,→)

2. I ⊨ q   (5,→)

I ⊨ F1 →F2 iff 

I ⊭ F1 or I ⊨ F2 



Semantic Judgement

Formulas F1 and F2 are equivalent, written F1 ⟺ F2, iff F1  F2 is 

valid. 

Formula F1 implies F2, written F1 ⟹ F2, iff F1 → F2 is valid. 

F1 ⟺F2 and F1 ⟹F2 are not propositional formulas (not part of 

syntax). They are properties of formulas, just like validity or 

satisfiability. 
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Normal Form

A normal form for a logic is a syntactic restriction such 

that every formula in the logic has an equivalent formula 

in the normal form. 

• Assembly language for a logic. 

Three important normal forms for propositional logic: 

• Negation Normal Form (NNF)

• Disjunctive Normal Form (DNF)

• Conjunctive Normal Form (CNF) 
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Negation Normal Form (NNF)

Atom := Variable | ⊤ | ⊥ 

Literal := Atom | ¬Atom

Formula := Literal | Formula op Formula 

op := ∧ | ∨ 

The only allowed connectives are ∧, ∨, and ¬.  ¬ can appear only in 

literals. 

Conversion to NNF performed using DeMorgan’s Laws: 

¬(F ∧ G) ⟺ ¬F ∨ ¬G 

¬(F ∨ G) ⟺ ¬F ∧ ¬G 
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NNF Examples

The following formulae are all in negation normal form:

 The following formulae are not in negation normal form: 
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Disjunctive Normal Form (DNF)

Atom := Variable | ⊤ | ⊥ 

Literal := Atom | ¬Atom 

Formula := Clause ∨ Formula 

Clause := Literal | Literal ∧ Clause 
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To convert to DNF, convert to NNF and distribute ∧ over ∨: 

(F∧(G∨H))⟺ (F∧G)∨(F∧H) 

((G∨H)∧F)⟺ (G∧F)∨(H∧F) 

• Disjunction of 

conjunction of literals. 

• Deciding satisfiability of 

a DNF formula is trivial. 



DNF Examples

The following formulas are in DNF:

The following formulas are not in DNF:
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Conjunctive Normal Form (CNF) 

Atom := Variable | ⊤ | ⊥ 

Literal := Atom | ¬Atom 

Formula := Clause ∧ Formula 

Clause := Literal | Literal ∨ Clause 

To convert to CNF, convert to NNF and distribute ∨ over ∧ 

(F∨(G∧H))⟺ (F∨G)∧(F∨H) 

((G∧H)∨F)⟺ (G∨F)∧(H∨F) 
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• Conjunction of disjunction of 

literals. 

• Deciding the satisfiability of a CNF 

formula is hard. 

• SAT solvers use CNF as their input 

language. 

However, this can result in an exponential increase in equation size.



CNF Examples

the following formulas are in conjunctive normal form:

The following formulas are not in conjunctive normal form:
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Translation to CNF: Example 
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(x1 ∧ x2) ∨ (¬ (x3 ∧ ¬ x4))

= (x1 ∧ x2) ∨ (¬ x3 ∨ ¬(¬ x4)) ... #de Mogans’s Law 

= (x1 ∧ x2) ∨ (¬ x3 ∨ x4) ... ¬ simplification 

= (x1 ∨ ¬ x3 ∨ x4) ∧ (x2 ∨ ¬ x3 ∨ x4) ...#Distribute (x1 ∧ x2) 

= (x1 ∨ ¬ x3 ∨ x4) ∧ (x2 ∨ ¬ x3 ∨ x4) 



Tseitin Transformation

By introducing fresh variables, Tseitin transformation can 

translate every formula inro an equisatisfiable CNF 

formula. 

Main idea: Introduce fresh variable for each subformula 

and write ”equations” .

The CNF grows linearly with the size of the original 

formula.
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Tseitin Transformation Example 

z = x ∧ y   (x ∨ ¬z) ∧ (y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) 

z → (x ∧ y) Equivalently: ¬z ∨ (x ∧ y)

This gives us two clauses: 

• (¬z ∨ x)

• (¬z ∨ y)

(x ∧ y) → z  Equivalently: ¬(x ∧ y) ∨ z

Using De Morgan's law: (¬x ∨ ¬y ∨ z)

z = x ∧ y   (x ∨ ¬z) ∧ (y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) 
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Tseitin Transformation Example 

37

New variables: y1, y2, y3, y4, y5 

Equations

y1 = x1 ∧ x2

y2 = y1 ∨ y3 

y3 = ¬ y4 

y4 = x3 ∧ y5 

y5 = ¬ x4 

Equation  CNF to implement the Equation 

z = ¬ x   (x ∨ z) ∧ (¬ x ∨ ¬ z)
z = x ∧ y   (x ∨ ¬z) ∧ (y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) 
z = x ∨ y   (¬x ∨ z) ∧ (¬y ∨ z) ∧ (x ∨ y ∨ ¬z) 

CNF 

(x1 ∨ ¬ y1) ∧ (x2 ∨ ¬ y1) ∧ (¬ x1 ∨ ¬ x2 
∨ y1) ∧ (¬ y1 ∨ y2) ∧ (¬ y3 ∨ y2) ∧ (y1 ∨ 
y3 ∨ ¬ y2) ∧ (y3 ∨ y4) ∧ (¬ y3 ∨ ¬ y4) ∧
(x3 ∨ ¬ y4) ∧ (y5 ∨ ¬ y4) ∧ (¬ x3 ∨ ¬ y5 
∨ y4) ∧ (x4 ∨ y5) ∧ (¬ x4 ∨ ¬ y5) ∧ 

(y2) 



Tseitin Transformation

• For a given formula f, let Tseitin(f) denote the 

generated CNF formula

• Size of Tseitin(f) is linear in the size of f 

• Tseitin(f) is equi-satisfiable with f 

• i.e., Tseitin(f) is satisfiable if and only if f is 

satisfiable 
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Solving real problems with SAT

N-Queens Problem

• Given an N x N chess board, find a placement of N queens such 

that no two queens can take each other
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N-Queens as a SAT

Introduce variables xi j for 0 ≤ i,j < N, 

• xij = T if queen at position (i,j) F otherwise

Constraints

• Exactly one queen per row

➢Rowi = xij, j=0…N-1

• Exactly one queen per column

➢Columnj = xij, i=0…N-1

• At most one queen on diagonal

➢Diagonalk- = xij, i-j = k = -N+1…,N-1

➢Diagonalk+ = xij, i+j = k = 0…,2N-2

40

00 01 02 03

1310 11 12

20 21 22 23

3330 31 32



4-Queens SAT input 
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00 01 02 03

1310 11 12

20 21 22 23

3330 31 32

Exactly one queen in row I

• xi0  xi1  xi2  xi3 

• xi0→ xi1  xi2  xi3

• xi1→ xi2  xi3

• xi2→  xi3

At least one queen by line:
(assert (or x00  x01  x02 x03))

At most only one queen by line
(assert (not 

  (or(and x01 x00)(and x02 x00)

     (and x02 x01)(and x03 x00)

     (and x03 x01)(and x03 x02))))



4-Queens SAT input 
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00 01 02 03

1310 11 12

20 21 22 23

3330 31 32

Exactly one queen in column j

•x0j  x1j  x2j  x3j 

•x0j→ x1j  x2j  x3j

•x1j→ x2j  x3j 

•x2j→  x3j



4-Queens SAT input 
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00 01 02 03

1310 11 12

20 21 22 23

3330 31 32

At most one queen in diagonal k-

•x20→  x31

•           …

• x00→ x11  x22  x33

• x11→ x22  x33

• x22→  x33

•           …

• x02→  x13



N-queens Demo
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