
CMSC 433

Programming Language Technologies and

Paradigms

Testing

1CMSC433 Fall 2025

Program testing can be used to show the

presence of bugs, but never to show their

absence!

2

Edsger W. Dijkstra

Verification vs Testing

Verification and Static Analysis are great

• Lots of interesting ideas and tools

But can developers use it?

• Formal verification of computer programs are hard.

• Commercial static analysis tools have a huge code

mass to deal with developer confusion, false positives,

warning management, etc.

3

“Software testers always go to heaven; they’ve already

had their fair share of hell.”

 (Anonymous)

4

Tony Hoare

There are two ways of constructing a

software design: One way is to make

it so simple that there are obviously no

deficiencies, and the other way is to

make it so complicated that there are

no obvious deficiencies. The first

method is far more difficult.

5

Simple Hashmap

6

let empty v = fun _-> 0;;

let update m k v = fun s->if k=s then v else m s

let m = empty 0;;

let m = update m "foo" 100;;

let m = update m "bar" 200;;

let m = update m "baz" 300;;

m "foo";; (* 100 *)

m "bar";; (* 200 *)

let m = update m "foo" 101;;

m "foo";; (* 101 *)

Testing is important

• Estimated 50% of programmers time spent on finding

and fixing bugs.

• Testing is not the only, but the primary method that

industry uses to evaluate software under development.

7

Testing is important

• Ideas and techniques of testing have become essential

knowledge for all software developers.

• Expect to use the concepts presented here many times

in your career.

• A few basic software testing concepts can be used to

design tests for a large variety of software applications.

8

9

Testing Scale

Unit testing: testing individual classes/functions

Integration Testing: testing packages/ subsystems

System tests: testing the entire system

10

Unit Test Example: https://github.com/cedar-

policy/cedar/blob/main/cedar-policy-

core/src/evaluator.rs

https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs

V Model

11

There are many variants

Testing Process

Test first: Test driven development (TDD)

• Write tests before the code

• Write the code to pass the test

Test after

• Check whether existing code passes the tests

Iteration

• Retesting

• Refactoring

12

Testing: Purpose

Functional testing

Performance Testing

Security testing

Usability testing

Availability testing

13

• a framework that repeatedly generates random

inputs, and uses them to confirm that properties hold

14

Property-based Testing

Repeatedly

generate input l

randomlyConfirm the property holds

for the given input

testList(l1:List<T>) {

 l2 = reverse(reverse(l1))

 assertEquals(l1, l2);

}

QuickCheck: Property-Based Testing

• QCheck tests are described by

• A generator: generates random input

• A property: bool-valued function

15

Generate

Input
Property

(input)?

true

false

Shrinking

the process of automatically simplifying a failing test

case to produce the smallest or simplest possible input

that still triggers the failure.

Example:

16

[123, -999999999999, 5, 0, 5]

→ [123, -1, 5, 0, 5]

→ [123, -1]

→ [-1]

How Shrinking Works

Shrinking strategies depend on the data type:

• Numbers: Try smaller magnitudes or 0.

• Lists: Try removing or shortening elements.

• Strings: Try shorter substrings or simpler characters.

• Custom objects: Shrink their fields recursively.

➢ Trees:

• Shrink the value at each node

• Remove subtrees (reduce branching)

• Replace a node with one of its subtrees

• Shrink recursively within subtrees

17

Fuzz Testing

Fuzz testing is a quality assurance technique

used to discover coding errors and security

loopholes in software, operating systems or

networks.

It involves inputting massive amounts of random

data, called fuzz, to the test subject in an attempt

to make it crash.

If a vulnerability is found, a software tool called a

fuzzer can be used to identify potential causes.

18

Test Generators

generator is a component or algorithm that creates input

data for the system under test.

Instead of just using completely random bytes, a

generator produces structured, meaningful inputs —

often closer to what the program actually expects.

• Defines the structure of valid inputs (like grammar, JSON, XML,

binary protocol, etc.)

• Produces variations that test edge cases (small vs. huge values,

missing fields, weird nesting)

• Maintains validity, so the target program doesn’t reject everything

outright

19

Mutation Testing

Mutation testing involves modifying a program in small

ways.

20

if (a && b)

 { c = 1; }

else

{ c = 0; }

The condition mutation operator would replace && with || and produce

the following mutant:
if (a || b)

 { c = 1; }

else

 { c = 0; }

Mutation Operators
Many mutation operators have been explored by researchers. Here

are some examples of mutation operators for imperative languages:

• Statement deletion

• Statement duplication or insertion, e.g. goto fail;

• Replacement of boolean subexpressions with true and false

• Replacement of some arithmetic operations with others, e.g. +

with *, - with /

• Replacement of some boolean relations with others, e.g. > with

>=, == and <=

• Remove method body

• …

21

Code coverage

Function coverage – Has each function been called?

Statement coverage – Has each statement been executed?

Branch coverage – Has each branch of each control structure

(such as in if and case statements) been executed?

Condition coverage (or predicate coverage) – Has each Boolean

sub-expression evaluated both to true and false?

Many more

22

Coverage Based Randomized Testing

23

• An approach to software testing that combines

random test generation (like fuzzing) with code

coverage feedback to intelligently explore more of a

program’s behavior.

• Instead of just generating random inputs blindly,

coverage-based randomized testing observes what

parts of the program each test executes — and then

uses that feedback to guide future test generation

• Maximize code coverage by generating inputs

that explore new execution paths.

Coverage Based Randomized Testing

24

• Generate random input (e.g., random file, data, request)

• Run the program under instrumentation

• Measure coverage (which functions, lines, or branches were

executed)

• Keep interesting inputs — those that cover new code paths

• Mutate those “interesting” inputs to explore further variations

• Repeat!

Differential Testing

25

Input

Application

Oracle

output

output

Comparator

is a software testing technique that detects bugs by

comparing the outputs of multiple implementations of the

same functionality.

Differential Testing Example: Csmith

26

• Generates random, valid C programs.

• Compiles each program with multiple C compilers and

compares results.
• gcc test.c -o a.out

• clang test.c -o b.out

• tcc test.c -o c.out

• Result: Found hundreds of bugs in GCC and Clang

Property Based Testing Demo

• Setting Up Junit-QuickCheck

• Maven

• Eclipse:

• Add the jar files

27

<dependency>
<groupId>com.pholser</groupId>
<artifactId>junit-quickcheck-core</artifactId>
<version>0.7</version>
</dependency>

@RunWith(JUnitQuickcheck.class)
public class PBT {
 @Property (trials = 1000)
 public void testList(List<String> l1) {
 List<String> l2 = l1.stream().collect(Collectors.toList());
 Collections.reverse(l2);
 Collections.reverse(l2);
 assertEquals(l1, l2);

 }
}

28

Let’s Test Our Property

Test 1000 times

...and tests the

property

Generates a random

string list

29

Buggy Reverse

Reverse(List<?> l){ return l} //returns the same list

reverse((reverse (l))) == l

The property did not catch the bug!

assertEquals (reverse ([1,2,3]), [3,2,1])

A simple unit test would catch the bug

30

Another Property

testRev (List<Integer>l1, Integer x, List<Integer l2){

 assertEquals(
 rev (l1 ++ [x] ++ l2) , rev l2 ++ [x] ++ rev l1

)

}

rev [1,2]++[3]@[4;5] = rev [4,5] ++ rev [3] ++ rev [1;2]

Junit-QuickCheck

31

• junit-quickcheck: Property-based testinga, JUnit-style

 github: https://github.com/pholser/junit-quickcheck

• Documentation:

• https://pholser.github.io/junit-quickcheck/site/1.0/

• Generator: random generators

• Shrink: Producing “smaller” values

• Seed: source of randomness

https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://pholser.github.io/junit-quickcheck/site/1.0/
https://pholser.github.io/junit-quickcheck/site/1.0/
https://pholser.github.io/junit-quickcheck/site/1.0/
https://pholser.github.io/junit-quickcheck/site/1.0/

Demo

32

https://github.com/anwarmamat/cmsc330/tree/master/ja

va/junit_quickcheck

https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck
https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck
https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck
https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck
https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck
https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck
https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck

	Slide 1: CMSC 433 Programming Language Technologies and Paradigms
	Slide 2
	Slide 3: Verification vs Testing
	Slide 4
	Slide 5: Tony Hoare
	Slide 6: Simple Hashmap
	Slide 7: Testing is important
	Slide 8: Testing is important
	Slide 9
	Slide 10: Testing Scale
	Slide 11: V Model
	Slide 12: Testing Process
	Slide 13: Testing: Purpose
	Slide 14: Property-based Testing
	Slide 15: QuickCheck: Property-Based Testing
	Slide 16: Shrinking
	Slide 17: How Shrinking Works
	Slide 18: Fuzz Testing
	Slide 19: Test Generators
	Slide 20: Mutation Testing
	Slide 21: Mutation Operators
	Slide 22: Code coverage
	Slide 23: Coverage Based Randomized Testing
	Slide 24: Coverage Based Randomized Testing
	Slide 25: Differential Testing
	Slide 26: Differential Testing Example: Csmith
	Slide 27: Property Based Testing Demo
	Slide 28: Let’s Test Our Property
	Slide 29: Buggy Reverse
	Slide 30: Another Property
	Slide 31: Junit-QuickCheck
	Slide 32: Demo

