CMSC 433
Programming Language Technologies and
Paradigms

Testing

CMSCA433 Fall 2025

Edsger W. Dijkstra

Program testing can be used to show the
presence of bugs, but never to show their
absence!

Verification vs Testing

» Verification and Static Analysis are great
* Lots of interesting ideas and tools

» But can developers use it?
* Formal verification of computer programs are hard.

 Commercial static analysis tools have a huge code
mass to deal with developer confusion, false positives,
warning management, etc.

“Software testers always go to heaven; they’ve already
had their fair share of hell.”

(Anonymous)

Tony Hoare

There are two ways of constructing a
software design: One way is to make
it so simple that there are obviously no
deficiencies, and the other way is to
make it so complicated that there are
no obvious deficiencies. The first
method is far more difficult.

Simple Hashmap

let empty v = fun -> 0;;

let update m k v = fun s->if k=s then v else m s

let m = empty O;;
let m = update m "foo" 100;;
let m = update m "bar" 200;;

let m = update m "baz" 300;;
m "foo";; (* 100 *)
m "bar";; (* 200 *)
let m = update m "foo" 101;;
m "foo";; (* 101 *)

Testing is important

. Estimated 50% of programmers time spent on finding
and fixing bugs.

. Testing is not the only, but the primary method that
industry uses to evaluate software under development.

Testing is important

. Ideas and techniques of testing have become essential
knowledge for all software developers.

. EXxpect to use the concepts presented here many times
INn your career.

. A few basic software testing concepts can be used to
design tests for a large variety of software applications.

Cost of Defects

less
15X
7X
3X
1X -
s Development
. . . . cycle
Requirements Design/ Coding Testing Deployment/

Architecture Maintenance

Testing Scale

» Unit testing: testing individual classes/functions

» Integration Testing: testing packages/ subsystems
» System tests: testing the entire system

Unit Test Example: https://github.com/cedar-
policy/cedar/blob/main/cedar-policy-
core/src/evaluator.rs

10

https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs
https://github.com/cedar-policy/cedar/blob/main/cedar-policy-core/src/evaluator.rs

V Model

Customer needs User's/client's needs met?
Requirements Analysis |
Choose components, Assembled system
i connections meets spec?

Architectural Design

B

Structure, behaviour Does components
of subsystem work together?

Subsystem Design ~ f

i Code!

Test individual methods
classes

Implementaton |

There are many variants

11

Testing Process

» Test first: Test driven development (TDD)

* Write tests before the code

* Write the code to pass the test
» Test after

* Check whether existing code passes the tests
» Iteration

* Retesting

* Refactoring

12

Testing: Purpose

» Functional testing

» Performance Testing
» Security testing
Usability testing
Avalilability testing

¥

v

13

Property-based Testing

a framework that repeatedly generates random
iInputs, and use confirm that properties hold

testList (11:LY¥st<T>) {

12 = reverse(reverse(ll))
assertEquals (11, 12);

S
Repeatedly

/ generate input |

Confirm the property holds randomly
for the given input

QuickCheck: Property-Based Testing

. QCheck tests are described by

* A generator: generates random input
* A property: bool-valued function

true

Genérate W fProperty Wfalse‘ p- 4
Input J ﬁL(input)? J ' /"\

15

Shrinking

» the process of automatically simplifying a failing test
case to produce the smallest or simplest possible input
that still triggers the failure.

» Example:

[123, -999999999999, 5, 0, 5]
. [123, -1, 5, 0, 5]

L [123, -1]

L [-1]

16

How Shrinking Works

» Shrinking strategies depend on the data type:
* Numbers: Try smaller magnitudes or 0.
* Lists: Try removing or shortening elements.

e Strings: Try shorter substrings or simpler characters.

* Custom objects: Shrink their fields recursively.
> Trees:
- Shrink the value at each node
- Remove subtrees (reduce branching)
- Replace a node with one of its subtrees
- Shrink recursively within subtrees

17

Fuzz Testing
» Fuzz testing is a quality assurance technique
used to discover coding errors and security e ;gm‘\“f
. . :1:'p7 A nx F<G* OAh%o o?‘
loopholes in software, operating systems or ;
networks.

“E&m, G- 6;
OAO Ou% §1 A

» It involves inputting massive amounts of random
data, called fuzz, to the test subject in an attempt
to make it crash.

» If a vulnerability is found, a software tool called a
fuzzer can be used to identify potential causes.

18

Test Generators

» generator is a component or algorithm that creates input
data for the system under test.

» Instead of just using completely random bytes, a
generator produces structured, meaningful inputs —
often closer to what the program actually expects.

* Defines the structure of valid inputs (like grammar, JSON, XML,
binary protocol, etc.)

* Produces variations that test edge cases (small vs. huge values,
missing fields, weird nesting)

* Maintains validity, so the target program doesn’t reject everything
outright

19

Mutation Testing

» Mutation testing involves modifying a program in small
ways.

if (a && b)
{c=1;}
else
{ ¢c=0;}
The condition mutation operator would replace && with || and produce
the following mutant:
if (a || b)
{c=1;}
else
{ c=0; 1}

20

Mutation Operators

» Many mutation operators have been explored by researchers. Here
are some examples of mutation operators for imperative languages:

Statement deletion

Statement duplication or insertion, e.g. goto fail;

Replacement of boolean subexpressions with frue and false
Replacement of some arithmetic operations with others, e.g. +
with *, - with /

Replacement of some boolean relations with others, e.g. > with
>=, == and <=

Remove method body

21

Code coverage

» Function coverage — Has each function been called?
» Statement coverage — Has each statement been executed?

» Branch coverage — Has each branch of each control structure
(such as in if and case statements) been executed?

» Condition coverage (or predicate coverage) — Has each Boolean
sub-expression evaluated both to true and false?

» Many more

22

Coverage Based Randomized Testing

* An approach to software testing that combines
random test generation (like fuzzing) with code
coverage feedback to intelligently explore more of a
program’s behavior.

 Instead of just generating random inputs blindly,
coverage-based randomized testing observes what
parts of the program each test executes — and then
uses that feedback to guide future test generation
 Maximize code coverage by generating inputs
that explore new execution paths.

23

Coverage Based Randomized Testing

« (Generate random input (e.g., random file, data, request)
* Run the program under instrumentation
« Measure coverage (which functions, lines, or branches were

executed)

« Keep interesting inputs — those that cover new code paths
« Mutate those “interesting” inputs to explore further variations

 Repeat!

Seed Pool
'S ~
aee

\, /
a

Seed Input

Selection Mutation
—— ———

}

Target Program

Coverage]4— __>® Bug

24

Differential Testing

is a software testing technique that detects bugs by
comparing the outputs of multiple implementations of the
same functionality.

(fpoe -

—-[Application]—-[output]—

—>[Comparator]

—»[Oracle]——-[output]—

25

Differential Testing Example: Csmith

« Generates random, valid C programs.
« Compiles each program with multiple C compilers and

compares results.
* gcc test.c -o a.out

* clang test.c -o b.out
* tcc test.c -o c.out

» Result: Found hundreds of bugs in GCC and Clang

26

Property Based Testing Demo

Setting Up Junit-QuickCheck

Maven
<dependency>
<groupld>com.pholser</groupld>
<artifactld>junit-quickcheck-core</artifactld>
<version>0.7</version>
</dependency>

Eclipse:

* Add the jar files

27

Let’'s Test Our Property

@RunWith(JUnitQuickcheck.class)
public class PBT {
@Property (trials = 1000)
public void testList(List<String> 11) {
List<String> 12 = |1.stream().collect(Collectors.toList());
Collections.reverse(l2);
Collections.reverse(12);

assertEquals(l1, 12); Generates a random
} . .
) string 1ist

Test 1000 times

A

...and tests the
property

28

Buggy Reverse

Reverse (List<?> 1){ return 1} //returns the same list

The property did not catch the bug!

reverse ((reverse (l))) ==

A simple unit test would catch the bug

assertEquals (reverse ([1,2,3]), [3,2,1])

29

Another Property

testRev (List<Integer>1l1l, Integer x, List<Integer 12) {
assertEquals(
rev (11 ++ [x] ++ 12) , rev 12 ++ [x] ++ rev 11

)

}

rev [1,2]++[3]Q@[4;5] = rev [4,5] ++ rev [3] ++ rev [1;2]

30

Junit-QuickCheck

. junit-quickcheck: Property-based testinga, JUnit-style
github: https://github.com/pholser/junit-quickcheck

Documentation:
* https://pholser.qgithub.io/junit-quickcheck/site/1.0/

Generator: random generators
Shrink: Producing “smaller” values
Seed: source of randomness

31

https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://github.com/pholser/junit-quickcheck
https://pholser.github.io/junit-quickcheck/site/1.0/
https://pholser.github.io/junit-quickcheck/site/1.0/
https://pholser.github.io/junit-quickcheck/site/1.0/
https://pholser.github.io/junit-quickcheck/site/1.0/

Demo

https://github.com/anwarmamat/cmsc330/tree/master/ja
va/junit quickcheck

32

https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck
https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck
https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck
https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck
https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck
https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck
https://github.com/anwarmamat/cmsc330/tree/master/java/junit_quickcheck

	Slide 1: CMSC 433 Programming Language Technologies and Paradigms
	Slide 2
	Slide 3: Verification vs Testing
	Slide 4
	Slide 5: Tony Hoare
	Slide 6: Simple Hashmap
	Slide 7: Testing is important
	Slide 8: Testing is important
	Slide 9
	Slide 10: Testing Scale
	Slide 11: V Model
	Slide 12: Testing Process
	Slide 13: Testing: Purpose
	Slide 14: Property-based Testing
	Slide 15: QuickCheck: Property-Based Testing
	Slide 16: Shrinking
	Slide 17: How Shrinking Works
	Slide 18: Fuzz Testing
	Slide 19: Test Generators
	Slide 20: Mutation Testing
	Slide 21: Mutation Operators
	Slide 22: Code coverage
	Slide 23: Coverage Based Randomized Testing
	Slide 24: Coverage Based Randomized Testing
	Slide 25: Differential Testing
	Slide 26: Differential Testing Example: Csmith
	Slide 27: Property Based Testing Demo
	Slide 28: Let’s Test Our Property
	Slide 29: Buggy Reverse
	Slide 30: Another Property
	Slide 31: Junit-QuickCheck
	Slide 32: Demo

