CMSC 451:Fall 2025 Dave Mount

CMSC 451: Quick Reference Guide

This document contains a short summary of information about algorithm analysis and data structures, which may be useful later in the semester.

Asymptotic Forms: The following gives both the formal "c and n_0 " definitions and an equivalent limit definition for the standard asymptotic forms. Assume that f and g are nonnegative functions.

Asymptotic Form	Relationship	Limit Form	Formal Definition
$f(n) \in \Theta(g(n))$	$f(n) \equiv g(n)$	$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$	$\exists c_1, c_2, n_0, \forall n \ge n_0, \ 0 \le c_1 g(n) \le f(n) \le c_2 g(n).$
$f(n) \in O(g(n))$	$f(n) \leq g(n)$	$\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$	$\exists c, n_0, \forall n \ge n_0, \ 0 \le f(n) \le cg(n).$
$f(n) \in \Omega(g(n))$	$f(n) \succeq g(n)$	$\lim_{n \to \infty} \frac{\overline{f}(n)}{g(n)} > 0$	$\exists c, n_0, \forall n \ge n_0, \ 0 \le cg(n) \le f(n).$
$f(n) \in o(g(n))$	$f(n) \prec g(n)$	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$	$\forall c, \exists n_0, \forall n \ge n_0, \ 0 \le f(n) \le cg(n).$
$f(n) \in \omega(g(n))$	$f(n) \succ g(n)$	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$	$\forall c, \exists n_0, \forall n \ge n_0, \ 0 \le cg(n) \le f(n).$

Polylog-Polynomial-Exponential: For any constants a, b, and c, where b > 0 and c > 1.

$$\log^a n \prec n^b \prec c^n.$$

Common Summations: Let c be any constant, $c \neq 1$, and $n \geq 0$.

Name of Series	Formula	Closed-Form Solution	Asymptotic
Constant Series	$\sum_{i=a}^{b} 1$	$= \max(b - a + 1, 0)$	$\Theta(b-a)$
Arithmetic Series	$\sum_{i=0}^{n} i = 0 + 1 + 2 + \dots + n$	$=\frac{n(n+1)}{2}$	$\Theta(n^2)$
Geometric Series	$\sum_{i=0}^{n} c^{i} = 1 + c + c^{2} + \dots + c^{n}$	$=\frac{c^{n+1}-1}{c-1}$	$ \begin{cases} \Theta(c^n) \ (c > 1) \\ \Theta(1) \ (c < 1) \end{cases} $
Quadratic Series	$\sum_{i=0}^{n} i^2 = 1 + 4 + \dots + n^2$	$=\frac{2n^3+3n^2+n}{6}$	$\Theta(n^3)$
Polynomial Series	$\sum_{i=0}^{n} i^{c} = 1 + 2^{c} + \dots + n^{c}$	(No simple formula)	$\Theta(n^{c+1})$
Linear-geom. Series	$\sum_{i=0}^{n-1} ic^i = c + 2c^2 + \dots + (n-1)c^{n-1}$	$ = \frac{(n-1)c^{(n+1)} - nc^n + c}{(c-1)^2} $	$\Theta(nc^n)$
Harmonic Series	$\sum_{i=1}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$	$pprox \ln n$	$\Theta(\log n)$

(Simplified) Master Theorem for Recurrences: Let $a \ge 1$, b > 1 be constants and let T(n) be the recurrence $T(n) = aT(n/b) + cn^k$, defined for $n \ge 0$.

Case 1: $a > b^k$ then T(n) is $\Theta(n^{\log_b a})$.

Case 2: $a = b^k$ then T(n) is $\Theta(n^k \log n)$.

Case 3: $a < b^k$ then T(n) is $\Theta(n^k)$.

Sorting: The following algorithms sort a set of n keys over a totally ordered domain. Let [m] denote the set $\{0,\ldots,m\}$, and let $[m]^k$ denote the set of ordered k-tuples, where each element is taken from [m].

- A sorting algorithm is *stable* if it preserves the relative order of equal elements.
- A sorting algorithm is *in-place* if it uses no additional array storage other than the input array (although $O(\log n)$ additional space is allowed for the recursion stack).
- A sorting algorithm is *comparison-based* if it assumes only the existence of a *comparator function* comp(x, y) that determines whether x < y, x = y, or x > y.

Algorithm	Domain	Time	Space	Stable	In-place	Comparison
CountingSort	Integers [m]	O(n+m)	O(n+m)	Yes	No	No
RadixSort	Integers $[m]^k$	O(k(n+m))	O(kn+m)	Yes	No	No
	or $[m^k]$					
InsertionSort						Yes
SelectionSort	Total order	$O(n^2)$	O(n)	Yes	Yes	Yes
BubbleSort						Yes
MergeSort				Yes	No	Yes
HeapSort	Total order	$O(n \log n)$	O(n)	No	Yes	Yes
QuickSort				Yes/No*	No/Yes	Yes

^{*}There are two versions of QuickSort, one which is stable but not in-place, and one which is in-place but not stable.

Order statistics: For any k, $1 \le k \le n$, the kth smallest element of a set of size n (over a totally ordered domain) can be computed in O(n) time.

Useful Data Structures: All these data structures use O(n) space to store n objects.

Unordered Dictionary: (by randomized hashing) Insert, delete, and find in O(1) expected time each. (Note that you can find an element exactly, but you cannot quickly find its predecessor or successor.)

Ordered Dictionary: (by balanced binary trees or skip-lists) Insert, delete, find, predecessor, successor, merge, split in $O(\log n)$ time each. (Merge means combining the contents of two dictionaries, where the elements of one dictionary are all smaller than the elements of the other. Split means splitting a dictionary into two about a given value x, where one dictionary contains all the items less than or equal to x and the other contains the items greater than x.) Given the location of an item x in the data structure, it is possible to locate a given element y in time $O(\log k)$, where k is the number of elements between x and y (inclusive).

Priority Queues: (by binary heaps) Insert, delete, extract-min, union, decrease-key, increase-key in $O(\log n)$ time. Find-min in O(1) time each. Make-heap from n keys in O(n) time.

Priority Queues: (by Fibonacci heaps) Any sequence of n insert, extract-min, union, decrease-key can be done in O(1) amortized time each. (That is, the sequence takes O(n) total time.) Extract-min and delete take $O(\log n)$ amortized time. Make-heap from n keys in O(n) time.

Disjoint Set Union-Find: (by inverted trees with path compression) Union of two disjoint sets and find the set containing an element in $O(\log n)$ time each. A sequence of m operations can be done in $O(\alpha(m,n))$ amortized time. That is, the entire sequence can be done in $O(m \cdot \alpha(m,n))$ time. (α is the extremely slow growing inverse-Ackerman function.)