CMSC 451:Fall 2025 Dave Mount

Practice Problems 2

Problem 1. In this problem you will simulate the strong-components algorithm given in class on
the digraph shown in Fig. 1.

@ //E\\—\ g
b d O, &)

Figure 1: Computing strong components.

@

(a) Draw the reverse graph G*. (Be careful to note the directions of the edges.)

(b) Show the result of applying DFS to GF. Label each vertex u with its discovery and
finish times (d[u]/f[u]). You need only show the final DFS tree, not the intermediate
results.

To make the grader’s life easier please draw your DFS forest in the same manner as in
Fig. 5 of Lecture 3. Whenever you have a choice of which vertex to visit next, select the
lowest vertex in alphabetic order.

(¢) Show the result of running DFS to GG, where the main program selects the next vertex
to visit based on decreasing order of finish times from part (b).

(d) Hlustrate (e.g., by circling them or listing them out) the strong components of G.

Problem 2. You are given a DAG (directed acyclic graph) G = (V, E) in which each edge has a
label label(u, v) which is either 0 or 1. An alternating path is defined to be a path containing
at least one edge, such that the edges along the path alternate in label between 0 and 1.
The path may begin with a 0-label edge or a 1-label edge. Note: The empty path is not
an alternating path, and a path with a single edge is always an alternating path. Paths
need not be of maximal length. For each vertex u € V, let alt(u) denote the number of
alternating paths that start at u. For example, in Fig. 2, alt(b) = 5 because of the paths

{(b,c), (b, c,e),(b,d), (b,d,e),(be)}.

u | alt(u)
a 6
b 5
C 1
d 1
e 0

Figure 2: Alternating paths in a DAG.

https://www.cs.umd.edu/class/spring2025/cmsc451-0101/Lects/lect03-strong-components.pdf

Present an algorithm which, given a DAG G = (V, E) with 0-1 edge labels, computes alt(u)
for all w € V. Briefly justify your algorithm’s correctness and derive its running time. Ideally,
your algorithm should run in O(n + m) time.

Hint: Use DFS, where each vertex stores the two counts for the number of alternating paths,
one for paths starting with 0 and the other with 1.

Problem 3. For both parts below, assume that graphs and digraphs are represented using an
adjacency list. Given a graph or digraph G = (V, E), let n = |V| and m = |E].

(a)

Present an algorithm which, given an undirected graph G = (V, E), determines whether
G contains a cycle in O(n) time. If the graph has a cycle, it should output the vertices
of any cycle.

It is important that the running time of your algorithm is independent of the number
of edges m, which may generally be as high as Q(n?). This means that your algorithm
will need to terminate with the correct answer, possibly even before reading the entire
adjacency list. You may assume that the graph is presented to your algorithm in constant
time as reference to its existing adjacency list.

Prove that there is no corresponding algorithm for digraphs. In particular, prove that
any algorithm that correctly determines whether a digraph has a cycle may need to
inspect (n?) edges.

Hint: Prove this by contradiction. Suppose that such an algorithm existed. Show that
there exists a digraph having Q(n?) edges, such that any correct algorithm algorithm
must inspect every edge of this graph.

Problem 4. A digraph G = (V, E) is said to be semi-connected if, given any two vertices, u,v € V,
there exists a path from u to v, or there exists a path from v to u (possibly both). Give an
efficient algorithm which, given a directed acyclic graph (DAG), determines whether it is
weakly connected.

Briefly justify your algorithm’s correctness and derive its running time. Ideally, you algorithm
should run in O(n+m) time. (Hint: Try drawing a few semi-connected DAGs. What special
structure do these DAGs have in common?)

Problem 5. Dijkstra’s algorithm assumes that all the edge weights in a digraph are nonnegative.
For this problem, assume the version of Dijkstra’s algorithm that was given in class.

(a)

(b)

Present an (ideally small) example that shows that Dijkstra’s algorithm may fail to
produce a correct result if the digraph has even a single negative-weight edge. (In
particular, on termination, the d-value for at least one vertex is incorrect.)

Suppose that your digraph has negative-weight edges, but these edges all emanate from
the source vertex. Also, the digraph has not negative-cost cycles. Prove that Dijkstra’s
algorithm produces a correct result on such a digraph.

