
CMSC 451:Fall 2025 Dave Mount

Practice Problems 3

Problem 1. Show the result of executing the Interval Partitioning algorithm from class on the
example shown in Fig. 1. Label each interval with the color that it is assigned ({1, 2, . . .}).
What is the minimum number of colors needed?
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Figure 1: Interval partitioning.

Problem 2. Recall the interval scheduling problem: Given a set of n start-finish intervals, [si, fi],
find a maximum-sized subset of intervals that are pairwise disjoint. In class, we showed that
earliest finish first (EFF) is optimal. Consider the following alternative greedy solutions:

ESF: Earliest start first: Sort the intervals by start time si.

SDF: Shortest duration first: Sort by the intervals by duration fi − si.

If there are any ties, break them in favor of earliest finish time. We repeatedly schedule the
first interval according to the sorted order, and then remove all intervals that overlap it. For a
given set of intervals I, let Opt(I) denote the maximum number of non-overlapping intervals,
and let ESF(I) and SDF(I) denote the number of intervals scheduled by each of the above
solutions.

Answer the following questions:

(a) Show (by giving a counterexample) that ESF is not optimal. Further, explain how to
extend your counterexample to an arbitrarily large interval sets I so that the performance
ratio Opt(I)/ESF(I) is arbitrarily large.

(b) Consider the following variant ESF, called ESF∗. For simplicity, let’s assume that there
are no duplicate intervals. First, go through and remove any interval that completely
contains another. That is, as long as there exist itervals [si, fi] and [sj , fj ], such that
[si, fi] ⊂ [sj , fj ], remove [sj , fj ] from the set of requests. Repeat until there are no nested
intervals. (You do not need to explain how to do this. Assume that you are given a
procedure that does this.) Then run standard ESF on the remaining “nested-free” set
of requests.

Prove that ESF∗ is optimal (for the original set of requests).

(c) Show (by giving a counterexample) that SDF is not optimal.
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(d) Prove that for any instance I, SDF(I) ≥ Opt(I)/2, that is, SDF schedules at least half
as many as the optimum.

Problem 3. In class we presented a greedy algorithm for scheduling a set of n tasks, in which each
task is given a duration ti and deadline di. We showed that scheduling the tasks in increasing
order of deadline minimizes the maximum lateness. (Recall that if task i is scheduled at
time s(i), then its lateness is ℓi = max(0, s(i) + ti − di).) Define the average lateness to be
(1/n)

∑n
i=1 ℓi.

(a) Provide a counterexample to show that scheduling tasks in increasing order of deadline
does not minimize average lateness. Briefly explain your example.

(b) Provide a counterexample to show that scheduling tasks in increasing order of duration
does not minimize average lateness. Briefly explain your example.

(c) Suppose that we redefine lateness to be ℓi = s(i) + ti − di (ignoring the “max”). Thus,
if the task finishes before the deadline, its lateness is negative. (Intuitively, this can be
thought of as a bonus, which can be applied to reduce the positive lateness of some other
task.) Prove that if tasks are scheduled in increasing order of duration, then average
lateness (under this modified definition) will be minimized. (Hint: Use the same sort
of exchange argument we used in class to prove that earliest deadline first minimizes
maximum lateness.)

Remark: When constructing a counterexample, try to make the counterexample as simple
as possible. For example, a counterexample with three tasks is better than one with five tasks,
because it is easier to understand. Also, avoid ambiguous situations. For example, if your
algorithm schedules the earliest deadline first, you should not have two identical deadlines
and then impose assumptions about which one the algorithm will choose first.

Problem 4. Prof. DM drives his EV from College Park to Miami Florida along I-95. He starts
with a full charge and can go for R miles until he needs to recharge. Let x0 < x1 < · · · < xn
denote the locations of the various charging stations along the way, measured in miles from
College Park. Let x0 = 0 and xn be the entire distance to Miami. Present an algorithm
which, given R and ⟨x0, . . . , xn⟩, determines the fewest number of recharging stops he needs
to make, without exhausting his battery. Justify the correctness of your algorithm. (You may
assume that the gap between consecutive stations, xi − xi−1, never exceeds R.)

x0 = 0 x1 x2 x3 x4 xn

College Park Miami

xn−1. . .

R

Figure 2: Minimum recharging stops.

Briefly justify your algorithm’s correctness and derive your algorithm’s running time.

Problem 5. You are given a collection of files {f1, . . . , fn} files that are to be stored on a tape.
File fi is si bytes long. The tape is long enough to store all the files. The probability of
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accessing file fi is pi, where 0 ≤ pi ≤ 1, and
∑n

i=1 pi = 1. The tape is rewound before each
access, and so the time to access any file is proportional to the distance from the front of the
tape to the end of the file.

A layout of files on the tape is given by a permutation π = ⟨π1, . . . , πn⟩ of the numbers
{1, . . . , n}. (For example, Fig. 3 shows the layout (4, 2, 1, 3).) Given a layout π, the expected
cost of accessing the ith file on the tape is the product of its access probability and the
distance from the start of the tape to the end of the file. The total cost of a layout π is the
sum of the expected costs for all the files, denoted T (π).

(a) (b)

f1 :

f2 :

f3 :

f4 :

p1 = 0.4s1 = 300

s2 = 200

s3 = 500

s4 = 100

p2 = 0.35

p3 = 0.1

p4 = 0.15

f4 f2 f1 f3

100
300

600
1100

T (π) = 100 · 0.15 + 300 · 0.35 +

600 · 0.4 + 1100 · 0.1 = 470

Figure 3: Placing files to minimize access time.

(a) Present a (short) counterexample so show that laying out the files on the tape in in-
creasing order of size (si) is not optimal.

(b) Present a (short) counterexample so show that laying out the files on the tape in de-
creasing order of access probability (pi) is not optimal.

(c) Present an algorithm, which given si’s and pi’s, determines a layout π of minimum total
cost. Prove your algorithm’s correctness and derive its running time. (Hint: Use a
greedy approach based on some simple function of both si and pi.)

3


