CMSC 451:Fall 2025 Dave Mount

Practice Problems 4

Problem 1. A set of n planes are ready to take off at the airport. Let ¢; denote the time (duration)
that it takes for plane-i to take off. You are to determine an order for them to take off. If
a plane is jth in the take-off order, it must wait for the j — 1 planes that come before. The
total wait time is the sum of the wait times for all the planes. The objective is to compute a
take-off order that minimizes the total wait time.

For example, in Fig. 1(a) we show an input with three planes. In Fig. 1(b) we show that the
take-off order (2,3,1) has a total wait time of 7 units. Plane-2 doesn’t wait at all, plane-3
waits 2 units, and plane-1 waits (2 4+ 3) = 5 for the prior two planes.

Time: 0 2 5 11

Take-off times

Total wait =0+2+5=7
(a) (b)

Figure 1: Scheduling planes for take-off.

(a) Design an algorithm, which given an array t[1..n] of take-off times determines the op-
timum take-off order. Prove your algorithm’s correctness and derive its running time.
(Prove correctness from first principles, without using results from class or homework
solutions.) Hint: Use a greedy approach and prove correctness by an exchange argu-
ment.

(b) Suppose that in addition to the take-off times ¢[1..n] you are also given the number of
passengers p[l..n] on each plane. Delaying a plane with many passengers is bad. Define
the weighted total delay to be the sum of delays for each plane weighted by the number
of passengers on the plane.

For example, in Fig. 2(a) we show an input with three planes. In Fig. 2(b) we show that
the take-off order (2,3, 1) has a total wait time of 360 units. Plane-2 doesn’t wait at all,
plane-3 has a total weight of 2100, and plane-1 has a total weight of 32-(2+3) =32-5
for the prior two planes.

Answer the same problem as in part (a), but for this weighted version of the problem.
(Same hint applies. If there are common elements between the two algorithms and their
analyses, you can simply explain the modifications needed for this version.)

Problem 2. You are given an integer n and two sequences of nonnegative integers R = (r1,...,ry,)
and C = (c1,...,cp), such that 0 < rj,¢; <n,and), = Zj c;.

1

Time: 0 2 5 11
Passengers Take-off times : - ey
50 . I
p1 =32 Spt————+—+—t; =6 - 50 - 0o
...... > 1 0 . 2 I I
P2 = 50 dhmb—t—rt Ly = 2 o 00 - 239
T . 32 . 5»7J>: I I I I I

Py =100 bty =3 o
Total wait = (50 - 0) + (100 - 2) + (32 - 5) = 360

(a) (b)

Figure 2: Weighted version of plane scheduling problem.

Given these sequences, you are asked to determine whether it is possible to place pawns on an
n X n chess board such for 1 < 4,7 <n, row i has exactly r; pawns and column j has exactly
¢; pawns (see Fig. 3). If so, specify which squares of the board contain pawns. (There may
be many valid solutions, and your algorithm can generate any one of them.)

Cji Cji
2211 3 4 2211 3 4
i 210 O rit 2 0|0
3 O|0 O 3100 O
0 0
3 O O|0 3 O O|0
1 O 110
410]0 O|0 4 O|0|0|0

Figure 3: Two possible solutions to Challenge Problem 2 for the inputs R = (2,3,0,3,1,4) and
C=(2,21,1,3,4).

Show that there exists an algorithm that solves this problem in O(n?) time. Prove that your
algorithm is correct. (Hint: Fill rows one by one (in any order), using a greedy strategy to
select which columns to fill.)

Problem 3. Gonzalez’s algorithm (the greedy k-center heuristic) is run on a set P of n = 100
points in the plane. For ¢ > 1, let C; denote the set of centers after i iterations. Let A;
denote the maximum distance of any point of P to its closest center in C;. Let I'; denote
the minimum distance between any two centers of C;. Which of the following statements
necessarily holds? (Select all that apply.)

(i) Ay < As

(ii) Iy < T3

(iii) Iy < Ag

(iv) Ty > Ag

Problem 4. An interesting feature of Gonzalez’s algorithm is that it can be applied even to sets
of infinite size. (Formally, we need the set to be closed and bounded, but let’s not worry

about these formalities.) In this problem, we will explore an intriguing connection between
Gongzalez’s algorithm and the concept of fractal dimension.

Consider the sequence of geometric sets shown in Fig. 4 below. If this sequence is carried out in
the limit to infinity, the result is an a set T" of infinite cardinality, called the Sierpirisk: triangle.
This is a famous example of a fractal, that is, a self-similar shape whose Hausdorff dimension
is a fraction. (The Hausdorff dimension of the Sierpinski triangle is log3/log 2 ~ 1.585.)

. . .
------------------ > B RRSIEEN 5 . . B RRSIEEN 5 e T
L] L] L] L] e e e e e
] . . .
. AAAAAAAAL

Figure 4: The limit of this process is the Sierpiriski triangle.

Let’s apply Gonzalez’s algorithm to T'. Let’s assume that T has a side length of 1. Let
G ={q1,...,gr} denote the first k& Gonzalez points. Recall that for any £ > 0, A(G}) denotes
the maximum distance of any point of T" to its closest point in G. Let’s start by placing g1
at the lower-left vertex of T', yielding A(G1) =1 (see Fig. 5(a)). The next two points will be
placed at the other two vertices of the triangle, yielding A(G3) = 1 (see Fig. 5(b)). The next
three points will be placed at the midpoints of the triangle edges, yielding A(Gg) = L (see

4
Fig. 5(c)). We can continue this process forever.

WI3

1.
-2,

Figure 5: Running Gonzalez on the Sierpinski triangle.

(a) From the above example, it should be clear that after adding a sufficient number of points
k, A(Gy) decreases to a power of % How many points do we need for this to happen?
For any i > 0, let k(i) denote the minimum number of points such that A(Gy;)) < 1/2".
(The example in the figure shows that k£(0) =1, k(1) = 3, and k(2) =6.)

Give a formula for k(7). (For full credit, your answer should be an exact closed-form
formula. For partial credit, you can express k(i) as a recurrence or a closed-form formula
that is within a constant factor of the exact value.)

Justify your answer. (That is, explain how you derived it.)

(b) We can use Gonzalez’s algorithm to bound the Hausdorff dimension of any fractal. Let’s
do this for the Sierpinski triangle. Here is the definition of Hausdorff dimension.

Given a set T and real r > 0, define Np(r) to be the number of balls of radius
at most r required to cover T' completely. The Hausdorff dimension of T is the
unique number d such that Np(r) grows as 1/r%, as r approaches zero.

Prove that the Hausdorff dimension of the Sierpinski triangle is d = log 3/log 2. (Hint:
Use your result from (a). Express the radius 7 and covering number Np(r) in terms of
i and k(7). Consider the limit as i grows to infinity.)

Problem 5. You are given a collection of intervals I = {[a1, b1], [a2, b2], ..., [an, by]} along the real
line (see Fig. 6(a)). You may assume that the interval endpoints are distinct. Your objective
is to place the minimum number of pins X = {z1,x9,..., 2k} to stab all of these intervals

(see Fig. 6(b)). A pin z is said to stab an interval [a;, b;] if a; < x < b;. (Note that you can
place a pin through either of the interval endpoints.)

T IRCTN R A

——e —o

a; b;

() (b)

Figure 6: One-dimensional pinning.

(a) Here is an obvious depth-based greedy heuristic. Place a pin that stabs the maximum

number of intervals, remove all the intervals that this pin stabs, and then repeat on the
remaining set of intervals.
Present a counterexample that shows that this depth-based greedy heuristic is not op-
timal. It suffices to give a drawing and a brief explanation. (Hint: There is an example
involving 6 intervals where the optimum pinning set consists of 2 pins, but greedy gen-
erates 3 pins. Of course, any valid counterexample is acceptable.)

(b) Given a set of n intervals I, let opt(/) denote the size of the minimum stabbing set and
let depth(/) denote the number of pins generated by the above depth-based. Explain
why the depth-based heuristic is essentially the same as the greedy set-cover heuristic.
(What are the elements and what are the sets?) Given this, what can you infer about
the approximation ratio depth(I)/opt(I)?

(c¢) Devise an optimal greedy algorithm for this problem. Justify your algorithm’s correct-
ness (both feasibility and optimality), and derive its running time. (The running time
is not critical here, as long as it runs in polynomial time.)

