
CMSC 451:Fall 2025 Dave Mount

Practice Problems 7

Problem 1. A pharmacist has W pills and n empty bottles. Let pi denote the number of pills
that can fit in bottle i, and let ci denote the cost of purchasing bottle i. Given W , pi’s and
ci’s, we wish to compute the cheapest subset of bottles into which to place all W pills. (You
may assume that

∑
i pi ≥ W , so there is a feasible solution.)

Whenever a bottle contains even a single pill, the pharmacist must pay the full price of the
bottle (see Fig. 1).

W = 8

$5

$12

$6
$5

$6

Total = $5 + $6 = $11

Bottles

Figure 1: Filling bottles.

(a) There are two natural greedy approaches. One is to fill the bottles in increasing order of
cost ci, and the other is to fill them in increasing order of the ratio ci/pi, which intuitively
represents the per-pill cost of each bottle. Present a single counterexample that shows
that neither of these greedy solutions is optimal. (Try to make your counterexample as
simple as possible.)

(b) Present an algorithm for this problem. Justify your algorithm’s correctness and derive
its running time. (Hint: Use DP. It suffices to give the recursive formulation. Aim for a
running time of O(nW).)

(c) Suppose that there is an infinite supply of each bottle. Explain how to modify your
answer from (b) for this variant.

Problem 2. Work through the chain-matrix multiplication algorithm on a sequence of matrices
A1 ·A2 ·A3 ·A4, where matrices are of dimensions 2× 2, 2× 5, 5× 3, and 3× 1, respectively
(see Fig. 2). Following the algorithm from Lecture 10, present both the M and H matrices
and show the final multiplication order.

Show your matrices in the rotated form that is used in Figure 5 (page 5) of Lecture 10. You
may present the final multiplication order as a tree or by adding parentheses to “A1 ·A2 ·A3 ·
A4”.

Problem 3. You are given a set of n points P = {p1, . . . , pn} in 2-dimensional space sorted by
x-coordinates. Let pi = (xi, yi). An increasing subsequence is any subsequence of P such
that the y-coordinates are strictly increasing. The longest increasing subsequence (LIS) is the
increasing subsequence having the largest number of points. For example, the LIS for the set
of points in Fig. 3 has length 5, consisting of the subsequence ⟨p2, p4, p6, p7, p8⟩.

1

https://www.cs.umd.edu/class/fall2025/cmsc451-0101/Lects/lect10-dp-mat-mult.pdf

1

2

3

4

4

3

2

1

j i

M [i, j]

2 2 5 3 1

p0 p1

A1
p2

A2
p3

A3
p4

A4

4

3

2

j 1

2

3

i

H [i, j]

Figure 2: Chain-matrix multiplication.

p1

p2

p3

p4

p5

p6
p7

p9

p8
p1

p2

p3

p4

p5

p6
p7

p3 p5 LIS length = 5

p9

p8

Figure 3: Computing the length of the maximum LIS.

(a) Give a recursive DP formulation for solving this problem. (Hint: For 0 ≤ i ≤ n, let
lis(i) denote the length of the LIS that ends with point pi. You may assume that the
points are given to you in increasing order of x-coordinates, and there are no duplicate x-
or y-coordinates. Be sure to include the basis case, and how to obtain the final answer.)

(b) Express your recursive formulation in pseudocode (either recursively or iteratively). For
full credit, it should run in O(n2) time.

Problem 4. A popular game show has come to campus, and you have been selected to be one of
the participants. (Lucky you!) The host of the show explains how the game works. There is
a designated starting point in the end-zone of the football field, and a number of $100 bills
have been placed throughout the field. You are to run and pick up all the bills as fast as you
can and then return to the starting point. You get to keep the money if you are the fastest
contestant. Therefore, you want to compute a path that hits all the bills and is as short as
possible.

There is one additional constraint. Your path must consist of two parts, an outward path
where you run only to the right (x-coordinates increasing) from the starting end-zone, and
an return path where you run only to the left (x-coordinates decreasing) (see Fig. 4).

The input consists of a set of points P = {p1, . . . , pn} where the bills are and a start point p0.
Each point is given by its (x, y)-coordinates, pi = (xi, yi). You may assume that the points
are sorted from left to right (that is, by increasing x-coordinates). You may assume you have
access to a function dist(pi, pj), which computes the distance between any two points.

Give an efficient algorithm that computes the length of the shortest path that hits all the
bills and has the desired outward-return structure. (Hint: Use DP, working from left to right.
Build both paths, outward and return, simultaneously. O(n2) time is possible.)

2

(a) (b)

10 20 30 40 50 40 30 20 10

start

10 20 30 40 50 40 30 20 10

start

outward path

return path

$100 bills

x

y

x

y

Figure 4: Problem 2.

Problem 5. A shipping company wants to ship n objects of weights {w1, . . . , wn}. Each weight is
a positive integer. The company wants to partition these objects between two different cargo
ships, so that the total weight of the two ships is as similar as possible. In particular, if W1 is
the total weight of objects on Ship 1, and W2 is the total weight on Ship 2, then the objective
is to minimize the weight ratio,

max(W1,W2)

min(W1,W2)
.

Observe that this ratio is never smaller than 1, and it equals 1 if and only if the two ships
are carrying identical total weights.

For example, suppose the inputs are w1 = 40, w2 = 70, w3 = 20, w4 = 30, w5 = 60, and
w6 = 50. If we partition the elements as Ship-1 = {2, 5} and Ship-2 = {1, 3, 4, 6}, then the
total weights are 70 + 60 = 130 and 40 + 20 + 30 + 50 = 140. The final weight ratio is
140/130 ≈ 1.077.

This is called the Partition Problem. Present an efficient algorithm, which given the weights
{w1, . . . , wn}, computes the optimum weight ratio. Justify your algorithm’s correctness and
derive its running time. Express the running time as a function of both n and the total weight
W =

∑n
i=1wi.

(Hint: Use Dynamic Programming. It suffices just to give the DP formulation. You need
only compute the optimum weight ratio, not the actual partition. Justify your algorithm’s
correctness and derive its running time. Note that O(n ·W) time is possible. Additional hint:
It suffices to focus on computing the total weight carried by just one of the ships, since the
other must carry all the remaining weight.)

3

