CMSC 451:Fall 2025 Dave Mount

Practice Problems 9

Problem 1. In standard network flow, every vertex other that s and ¢ must satisfy flow conser-
vation, that is, the total flow into the vertex must equal the total flow out. In this problem,
we’ll consider a variant where vertices are allowed to “leak” so that some of the incoming flow
is lost due to leakage.

A leaky network is the same as a standard flow network (that is, a digraph G = (V, E),
source s and sink ¢, and edge capacities c¢(u,v) for each (u,v) € E), but in addition, each
vertex v € V, is associated with a nonnegative leak capacity, denoted h(v), which indicates
the maximum leakage that can occur at this vertex (see Fig. 1(a)).

A flow f in a leaky network is valid if it satisfies the usual capacity constraint, but (other
than s and t) the flow out of a vertex can be smaller than the flow in by up to h(v), that is,

fR(v) = h(v) < ") < (o)

The value of a flow f is the flow out of the source, f°U(s). (see Fig. 1(b)).)

Leaky Network Leaky flow f
4/4

fl=8+4=12

Figure 1: (a) A leaky network (each vertex u contains its leak capacity h(u)) and (b) a flow in the
network (dashed lines indicate leak amounts).

(a) Explain how to transform any leaky network G into an equivalent (non-leaky) network
G’ so that, for any valid leaky flow f in G there exists a flow f of equivalent value in G,
and vice versa. (Note: Your transformation is given G, the edge capacities, c¢(u,v), and
the leak capacities, h(v), but not the flow.) Justify the correctness of your construction.

(b) Demonstrate how your transformation works on the leaky network in Fig. 1(a). (Just
show the transformed non-leaky network. You do not need to show the flow.)

Problem 2. You are given a directed network G = (V, E') with a root node r and a set of terminal
nodes T' = {t1,...,tx}. Present a polynomial time algorithm to determine the minimum
number of edges to remove so that there is no path from r to any of the terminals (see Fig 2).
Prove that your algorithm is correct.



ty

Figure 2: Eliminating edges to separated r from terminals.

Problem 3. The Ford-Fulkerson algorithm operates by finding an augmenting path in the residual
network. The effect of pushing flow along this path may result in flows increasing on some
edges and decreasing on others. Consider instead an algorithm that only increases flows
along the edges of some path from s to t. (There may generally be many such paths, and the
algorithm is free to chose any of them.) We call this the nondecreasing flow algorithm.

Show that the nondecreasing flow algorithm can be arbitrarily bad. In particular, given any
positive integer b > 1, give an example of an s-t network G such that the ratio between the
optimum flow in G and the flow generated by the nondecreasing algorithm is at least as large
as b. (The structure of the network will depend of course on b. You may give your example
for a specific value of b, but it should be easy to see how to generalize it to arbitrary values
of b. Remember that you may select the sequence of paths along which augmentations are to
be performed.) Briefly explain.



