
CMSC 451:Fall 2025 Dave Mount

Solutions to Practice Problems 1

Solution 1:

(a) For any n ≥ 0, let L(n) =
∑n

i=1 i
3 and let R(n) = (

∑n
i=1 i)

2. It suffices to show that
L(n) = R(n). In our proof, we will make use of a standard fact on the arithmetic series,
A(n) =

∑n
i=1 i = n(n+ 1)/2.

For the basis case, n = 0, we have L(n) = 0 and R(n) = 0, so clearly, L(n) = R(n). For
the induction step, let’s fix a value n ≥ 1, and assume as the induction hypothesis that
L(n− 1) = R(n− 1). We will prove that L(n) = R(n).

By definition and straighforward manipulations, we have

L(n) =
n∑

i=1

i3 =

(
n−1∑
i=1

i3

)
+ n3 = L(n− 1) + n3. (1)

and

R(n) =

(
n∑

i=1

i

)2

=

((
n−1∑
i=1

i

)
+ n

)2

=

(
n−1∑
i=1

i

)2

+ 2n

n−1∑
i=1

i+ n2.

We can rewrite R(n) as follows, using the above fact about the arithmetic series

R(n) = R(n− 1) + 2nA(n− 1) + n2 = R(n− 1) + 2n
n(n− 1)

2
+ n2

= R(n− 1) + n3. (2)

By the induction hypothesis, L(n − 1) = R(n − 1), which implies that L(n − 1) + n3 =
R(n− 1) + n3. Combining this with Eqs. (1) and (2) yields

L(n) = L(n− 1) + n3 = R(n− 1) + n3 = R(n),

and therefore L(n) = R(n), completing the proof.

(b) Define the size of a square to be length of one of its sides. Let us group the squares of the
figures into groups of equal size. Working layer-by-layer from the inside to outside, the square
sizes grow as s(i) = i = 1, 2, 3, . . . , n. The number of squares within the various size groups
are m(i) = 4i = 4, 8, 12, . . . , 4n. Using the fact that a square of side length s has area s2, we
can compute the area of the large square by summing the areas of the squares of each size
group:

n∑
i=1

m(i)s(i)2 =

n∑
i=1

(4i)i2 = 4(13 + 23 + · · ·+ n3) = 4

n∑
i=1

i3. (3)

The other way to compute the area is to take the square of large square’s side length, which
we denote by S(n). We’ll compute the side length by summing the side lengths of the squares
that lie along the diagonal. Note that these squares do not overlap horizontally or vertically,
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Figure 1: Nicomachus’s Theorem

and they cover the entire width of the large square. It follows that the side length of the large
square is (see Fig. 1)

S(n) = (n+ . . .+ 3 + 2 + 1) + (1 + 2 + 3 + . . .+ n) = 2(1 + 2 + 3 + . . .+ n) = 2
n∑

i=1

i.

Thus, the total area of the square is Applying this to the vertical side as well, it follows that
the area of the entire square is the square of this quantity, or

S(n)2 =

(
2

n∑
i=1

i

)2

= 4

(
n∑

i=1

i

)2

. (4)

The areas computed in Eqs. (3) and (4) must be equal, and eliminating the common factor
of 4 yields

n∑
i=1

i3 =

(
n∑

i=1

i

)2

,

as desired.

Solution 2: Here are the asymptotic relationships between the various formulas. Justifications
are given below.

(a) 2(n/3) ≺ (3/2)n ≺ 3(n/2)

(b) lg n ≈ lnn ≈ log(n2)

(c) 2lgn ≺ nlg 4 ≈ 2(2 lgn)

(d) min(50n2, n3) ≺ 50n2 + n3 ≈ max(50n2, n3)
(e)

⌊
n2/20

⌋
≈ n2/20 ≈

⌈
n2/20

⌉
(a) We use the fact that abc = (ab)c, and hence 2(n/3) = (21/3)n ≈ 1.26n, 3(n/2) = (31/2)n ≈ 1.73n,

and finally (3/2)n = 1.5n. If x < y, then yn/xn = (y/x)n, which tends to infinity, and
therefore xn ≺ yn.

(b) The first two are equivalent because changing the base of a logarithm only changes the function
by a constant factor. (Recall that loga b = logc b/(logc a).) The last one can be rewritten as
lg(n2) = 2 lg n ≈ lg n.
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(c) 2lgn = n, nlg 4 = n2, and finally 22 lgn = (2lgn)2 = n2.

(d) A nice fact to use here is that max(f, g) ≈ f + g, which follows from the observation that

max(f, g) ≤ f + g ≤ 2 ·max(f, g).

This shows the second relationship. To see the first observe that for all sufficiently large n,
min(50n2, n3) = 50n2 = Θ(n2) for all sufficiently large n, whereas the middle term is Θ(n2).

(e) The floor and ceiling are within an additive constant of 1 of the original value. Since all three
values tend to infinity, this difference is negligible in the limit.

Solution 3: See Fig. 2. Each vertex is labeled with its discovery and finish times (d[u]/f [u]).
Tree edges are solid and the other edges are dashed and labeled by their type.
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Figure 2: Problem 3: Depth First Search.

Solution 4: A bipartite graph G = (V1 ∪ V2, E), where n1 = |V1| and n2 = |V2| can have at most
n1n2 edges. The reason is that each of the n1 vertices of V1 can be adjacent to at most all the n2

vertices of V2.

Solution 5:

Lemma: For any graph G = (V,E), at least one of the two graphs G and G is connected.

Proof: If the graph G is connected, then the lemma holds. Otherwise, let V1 denote any connected
component of G and let V2 = V \ V1 denote the remaining vertices. Clearly, there is no edge
between V1 and V2 in G, which implies that in G there is an edge between every pair of
vertices (u1, u2) where u1 ∈ V1 and u2 ∈ V2.

To show that G is connected, consider any two vertices u and v. If u and v are in different
subsets V1 and V2, then by the above observation they are connected by an edge. On the
other hand if both are in the same set (say, V1) then there is a path ⟨u,w, v⟩, where w is any
vertex from the other subset (V2). Therefore, G is connected.
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