
CMSC 451:Fall 2025 Dave Mount

Solutions to Practice Problems 3

Solution 1: The solution is shown in Fig. 1, using a total of three colors.

1

2

3d

e

j
f

i

g

h n

m

l

a k

0 5 10 15 20 25 30

c

b

Figure 1: Interval partitioning.

Solution 2:

(a) To create a counterexample, we create one very long request with the earliest start time, and
a set of n − 1 pairwise disjoint requests that overlap the first request (see Fig. 2(a)). The
ESF strategy will succeed in scheduling only the first request, while the optimum schedules
the remaining n − 1. Thus, the performance ratio (that is, the ratio between the optimum
and greedy) is n− 1/1 = n− 1. This can be made arbitrarily large by increasing n.

1

2 3 4 n

0 4 6 9

1

2

3

53

(a) (b) (c)

si fi

Opt:

SDF:

?

Figure 2: Interval scheduling.

(b) First observe that there is no loss of optimality by eliminating nesting. If [si, fi] ⊂ [sj , fj ],
then any schedule that uses [sj , fj ] cannot also use [si, fi], because they overlap. This means
that we can replace [sj , fj ] with [si, fi] in any schedule without inducing any other overlaps.
By repeating this, we convert any schedule to a nesting-free schedule without decreasing the
number of scheduled requests. Therefore, we may assume that optimum schedule is nesting-
free.

We assert that once nested intervals have been removed, sorting by start time is equivalent to
sorting by finish time. To see why, suppose that sj ≤ si. By nesting-freeness, fj ≤ fi, since
otherwise we would have sj ≤ si < fi < fj , implying that [si, fi] ⊂ [sj , fj ], a contradiction.
Since EFF (earliest finish first) is known optimal for any set of requests, it follows that ESF
is optimal on any set of nested-free intervals. Therefore ESF∗ is optimal.

1



(c) As a counterexample, consider three requests I = {[0, 4], [3, 6], [5, 9]} (see Fig. 2(b)). Requests
1 and 3 have duration 4 are non-overlapping, while request 2 has duration 3. Thus, SDF
schedules only request 2, while the optimum schedules both 1 and 3. Therefore, Opt(I) = 2,
but SDF(I) = 1.

(d) As with the proof that EFF is optimal, we will employ an induction proof where we repeatedly
modify any Opt schedule to match SDF. In that proof, we swapped one-for-one, implying that
both solutions had the same size. Here, we will swap at most two-for-one, implying that the
size of SDF is at least half as large as Opt.

Given any instance I, consider the optimum and SDF sizes, denoted Opt(I) and SDF(I),
respectively. If they are the same, then Opt(I) = SDF(I), and hence the both have the same
size. Otherwise, find the first interval (in start-time order) such that [si, fi] is in the SDF
solution but not in the Opt solution. We assert that at most two intervals from the Opt
solution can overlap this interval. To see why, suppose to the contrary that three or more
intervals of Opt were to overlap [si, fi]. Then any interval other than the first and last would
be completely contained within [si, fi], implying that this middle interval has a strictly smaller
duration than [si, fi] (see Fig. 2(c)). Thus, SDF would have chosen this interval, rather than
[si, fi], a contradiction.

Given the first difference [si, fi], we modify Opt by removing the (at most two) overlapping
intervals from Opt and add [si, fi]. The resulting schedule is clearly valid, and it has suffered
a net decrease in size by at most one interval for each greedy interval on which we differ.
By repeating this, we arrive at a schedule, denoted Opt′(I) that is identical to greedy. The
number of intervals that have been removed from the original optimum is not greater than
the number of greedy intervals. Therefore, we have

SDF(I) = Opt′(I) ≥ Opt(I)− SDF(I).

This implies that 2 · SDF(I) ≥ Opt(I), or equivalently, SDF(I) ≥ Opt(I)/2, as desired.

Here is (arguably simpler) proof, which is based on a charging argument. Assign each interval
of the optimum a token. The total number of tokens t is equal to Opt(I). Whenever an
interval of the optimum overlaps an interval of the SDF solution, transfer its token to the
SDF interval. (If there are multiple such intervals in SDF, transfer the token to any one.) By
the above observation, each interval of SDF receives at most two tokens. By adding up all
the tokens in the SDF solution, we conclude that

Opt(I) = t ≤ 2 · SDF(I),

which implies that SDF(I) ≥ Opt(I)/2, as desired.

Solution 3: Because the number of tasks is fixed, irrespective of which algorithm we use, we’ll
ignore the (1/n) factor and compare schedules based on total lateness.

(a) Consider the tasks (t1, d1) = (2, 0) and (t2, d2) = (1, 1). If we use earliest deadline first,
then (s1, f1) = (0, 2) and (s2, f2) = (2, 3), for a total lateness of (2 − 0) + (3 − 1) = 4. If
we reverse the tasks, we have (s2, f2) = (0, 1) and (s1, f1) = (1, 3), for a total lateness of
(1− 1) + (3− 0) = 3. Therefore, earliest deadline first is not optimal.

2



(b) Consider the tasks (t1, d1) = (1, 3) and (t2, d2) = (2, 2). If we use smallest duration first, then
(s1, f1) = (0, 1) and (s2, f2) = (1, 3), for a total lateness of 0 + (3− 2) = 1. If we reverse the
tasks, we have (s2, f2) = (0, 2) and (s1, f1) = (2, 3), for a total lateness of (2−2)+(3−3) = 0.
Therefore, smallest duration first is not optimal.

(c) We will show that, using this modified definition of lateness, the smallest duration first greedy
strategy minimizes total lateness. To prove this, we will employ the same sort of exchange
argument that we used in class in proving the optimality of greedy algorithm for minimizing
maximum lateness. As there, we may restrict attention to schedules that have no slack time.
To simplify the proof, we will also assume that all the durations are distinct.

Consider a set X = {x1, . . . , xn} of tasks, let G be the schedule resulting from this strategy,
and let O be an optimal schedule. We assert that G = O. Suppose not. Then, let xi and xj
denote the first pair of tasks that violate the greedy principle, in the sense that ti > tj . The
lateness of task i in schedule O will be denoted by ℓOi and the lateness of task j in O will be
denoted by ℓOj (see Fig. 3). Similarly, let ℓGi and ℓGj denote the respective latenesses of tasks
i and j in schedule G.

O :

tj ti

i j G :

tjti

ℓGiℓOi

tdi dj t

excess

ℓOj ℓGj

j i

di dj

Figure 3: Solution to part (c).

Because the two schedules are identical up to these two tasks, and because there is no slack
time in either, the first of the two tasks starts at the same time in both schedules. Let t
denote this time (see Fig. 3). In schedule O, task i finishes at time t + ti and (because it
needs to wait for task i to finish) task j finishes as time t+ (ti + tj). The lateness of each of
these tasks are

ℓOi = t+ ti − di and ℓOj = t+ (ti + tj)− dj .

Applying a similar analysis to G, we can define the latenesses of tasks i and j in G as

ℓGi = t+ (ti + tj)− di and ℓGj = t+ tj − dj .

Given the individual latenesses, we can define their contribution to the total lateness of each
schedule as their sum

LO = ℓOi + ℓOj and LG = ℓGi + ℓGj .

Our objective is to show that by swapping these two tasks, we decrease the total lateness.
Since this in the only change, it suffices to show that LG < LO. By hypothesis, we have
ti > tj . Therefore,

LO − LG = (ℓOi + ℓOj )− (ℓGi + ℓGj )

= (t+ ti − di) + (t+ (ti + tj)− dj)− (t+ (ti + tj)− di)− (t+ tj − dj)

= ti − tj > 0,

3



and therefore, LG < LO. But, since O is optimal, this is impossible. This yields the desired
contradiction.

Solution 4: We present a simple greedy algorithm. The obvious greedy strategy is to go as far
as possible before stopping to recharge. We maintain a variable prev, which indicates where we
last recharged. The next charging station is the one that is farthest, but still within R miles (see
Fig. 4(a)). The code block below provides a sketch of the algorithm. To avoid subscripting out of
bounds, let us assume that x[n+ 1] = x[n].

Greedy Algorithm for Recharging
getStops(x[0..n]) {

prev = 0

for (i = 1 to n) {

if (x[i+1] > prev + R) { // can’t make it to x[i+1]?

add i to the list of stops

prev = x[i] // save our last charge

}

}

}

Clearly the running time is O(n). First, observe that greedy produces a feasible sequence, since
we never go more than R miles before recharging. To establish optimality, let O = ⟨o1, o2, . . . , ok⟩
be the indices of an optimal sequence of recharging stops, and let G = ⟨g1, g2, . . . , gk′⟩ be the greedy
sequence. (Note that by optimality, k ≤ k′.) We will show that greedy is optimal by the usual
replacement argument.

xiprev

R

xi+1

oioi−1O

gigi−1G

o′io′i−1O′

oi+1

R

R

o′i+1

. . .

. . .

. . .

(a) (b)

Figure 4: Greedy algorithm for recharging.

If the two sequences G and O are the same, then we are done. If not, let i be the smallest
index where they differ (see Fig. 4(b)). Because greedy algorithm selects the last possible charging
station, we know that gi > oi. (This also implies that i ≤ k.) Consider an alternative solution O′

which comes about taking O, but replacing oi with gi.
We claim that O′ is a also a feasible solution. To see this observe that sequence up to gi is the

same as G (which we know is feasible). The only gap that has changed is the one between stops i
and i+1. In O, it was of length oi+1− oi, and in O′, it is of length oi+1− gi. Since gi > oi, the gap
size has decreased. Therefore, the sequence is still feasible. The sequence O′ has the same number
of stops as O, and so it is also optimal. The number of differences between G and an optimal has

4



decreased by one. By repeating this, eventually we eventually transform the optimal solution into
G, implying that G is optimal.

Solution 5:

(a) The counterexample involves two files, one slightly longer but with much higher access prob-
ability. Let (s1, p1) = (1, 0.1) and (s2, p2) = (2, 0.9). If we put f1 before f2 (size order), the
expected access cost is 1 · 0.1 + (2 + 1) · 0.9 = 2.8, but if we reverse the order of files the cost
is 2 · 0.9 + (1 + 2) · 0.1 = 2.1, which is smaller (see Fig. 5(a)).

(a) (b)

f1 :

f2 :

p1 = 0.1s1 = 1

s2 = 2 p2 = 0.9

f1 f2
Greedy:

Cost = 1 · 0.1 + (2 + 1) · 0.9 = 2.8

f1f2
Opt:

Cost = 2 · 0.9 + (1 + 2) · 0.1 = 2.1

f1 :

f2 :

p1 = 0.6s1 = 10

s2 = 1 p2 = 0.4

f1 f2
Greedy:

Cost = 10 · 0.6 + (10 + 1) · 0.4 = 10.4

Opt:

Cost = 1 · 0.4 + (1 + 10) · 0.6 = 7.0

f2 f1

Figure 5: Optimal file layout.

(b) The counterexample involves two files, one slightly more likely to be accessed but with much
larger size. Let (s1, p1) = (10, 0.6) and (s2, p2) = (1, 0.4). If we put f1 before f2 (decreasing
probability order), the expected access cost is 10 · 0.6+ (10+ 1) · 0.4 = 10.4, but if we reverse
the order of files the cost is 1 · 0.4 + (1 + 10) · 0.6 = 7.0, which is smaller (see Fig. 5(b)).

(c) Intuitively, it seems smart to store the most frequently accessed files at the front of the tape,
but it also makes sense to store the smallest files at the front of the tape. This suggests that
the best way to store the files is in increasing order of si/pi. Let us sort the files according
to this statistic and lay them out in this order. (We will make the simplifying assumption
that these ratios are distinct for all files.) To simplify notation, let us assume that the files
have been renumbered, so that s1/p1 < · · · < sn/pn. Clearly, this layout can be computed in
O(n log n) time.

We will prove that this is optimal by contradiction. Suppose that the optimum layout O is
different from the greedy layout. If so, there must be two consecutive files of the optimum
layout that are not in sorted order. That is, we have O = ⟨. . . , fj , fi, . . .⟩, where j > i
according to our greedy order. Thus, we have

sj
pj

> si
pi
, or equivalently (because sizes and

probabilities are both nonnegative), pjsi − pisj < 0.

Let us consider how the cost changes if these two files are swapped in the layout (see Fig. 6).
Call the resulting layout O′. After the swap, file fj has moved si units towards the back of
the tape, and so its individual access cost has increased by pjsi. Similarly, file i has moved
sj units closer to the front of the tape, so its individual access cost has decreased by pisj .
All the other files maintain their same placements on the tape, so there are no other changes

5



fifj

fjfi

O:

O′:

Figure 6: Optimality of the file layout solution, swapping fj and fi.

affecting the total cost. Therefore, the net change in the total access cost is:

T (O′)− T (O) = pjsi − pisj < 0.

Therefore, T (O′) < T (O), which contradicts the optimality of O, and yields the desired
contradiction.

6


