
CMSC 451:Fall 2025 Dave Mount

Solutions to Practice Problems 4

Solution 1:

(a) For the unweighted take-off problem, we sort the planes in increasing order of take-off time
ti and schedule them in this order. Clearly, the time needed to do this is dominated by the
sorting time, which is O(n log n). Since the take-off order can be anything, this is clearly
feasible.

To see that this is optimal, we will show that any different take-off order cannot be better
than the greedy order. It will simplify the proof to assume that the times ti are distinct. If a
take-off order does not match the greedy order, there must be two consecutive planes j and
i where tj > ti (see Fig. 1(a)).

(a)

· · · t + (t + tj) + · · ·

t t
tj

ti

t + tj
t + ti + tj

ti
tj

t + ti
t + ti + tj

· · · t + (t + ti) + · · ·

(b)

Figure 1: Proof of correctness unweighted take-off problem.

Let’s assume that t time units have already transpired. If we form a new take-off order by
swapping these planes, the waiting time for plane j changes from t to t + ti for a change of
(t + ti) − t = ti. The weighting time for plane i decreases from t + tj to t, for a change of
t − (t + tj) = −tj . No other take-off times change, so the overall change in the total wait is
the sum of differences of these two changes

change = ti − tj ,

which is negative since tj > ti. Thus, the total wait time decreases after the swap, which
implies that the improperly ordered take-off sequence is not optimal, and therefore the greedy
order is optimal.

(b) Sort the planes in increasing order of the ratio ti/pi and schedule them in this order. (Think
of this as the time per passenger.) The running time is O(n log n).

The optimality argument is the same, but now we seek two consecutive planes j and i where
tj/pj > ti/pi. In other words, pjti < pitj . By swapping them, plane-j’s pj passengers suffer
an additional delay of ti, for a change in the weighted wait time of pjti, and plane-i’s pi
passengers have their delays decrease by tj for a change in the weighted wait time of −pitj .
All the other wait times are unaffected. Thus, the change in the total wait time is

change = pjti − pitj .

1

Since pjti < pitj , this is negative. Thus, the total weighted wait time decreases after the swap,
which implies that the improperly ordered take-off sequence is not optimal, and therefore the
greedy order is optimal.

Solution 2: We are given sequences of nonnegative integers R = ⟨r1, . . . , rn⟩ and C = ⟨c1, . . . , cn⟩,
such that 0 ≤ ri, ci ≤ n, and

∑
i ri =

∑
j cj . We will determine where to place the pawns row by

row. Whenever we place a pawn in some column j, we will decrement cj . This way, the column
counts store the remaining number of pawns to be placed in each column.

For i running from 1 up to n, we first check whether the sequence c[1..n] has at least ri nonzero
entries. If not, we terminate and declare that no layout is possible. Select the ri columns of the
c-array with the largest counts. (This can be done efficiently using counting sort. We will leave
this as an exercise.) We place a pawn in each of these columns in row i. We then decrement the
corresponding entries of the c-array. The pseudo-code is shown in the code block below.

Pawn Placement
place-pawns(r, c) // place pawns row/column counts r[1..n] and c[1..n]

board[1..n][1..n] = all false

for (i = 1 to n)

identify the indices J of the r[i] largest values in c

for each (j in J)

if (c[j] == 0) return FAIL!

else

board[i][j] = true // place a pawn on row i column j

c[j]-- // decrement the column count

return board

The algorithm can be implemented to run in O(n2) time. The only non-trivial part involves
computing the ri largest enties of the current c-array. This can be done by using counting sort to
sort the c-array in decreasing order. Rather than permuting the entries of the array (which would
wreck the column indices), we use a permutation array to keep track of the sorted order. Counting
sort and all the other steps can be performed in O(n) time per row, for a total time of O(n2).

In order to prove correctness, we need to establish feasibility and optimality. To show feasibility,
we need to argue that, if the algorithm terminates, then each row and column has the desired
number of pawns. This follows easily from the algorithm, since we places ri pawns on row i, and
since we decrement the c-array with each placed pawn, we never place too many pawns in any
column. (Since the row and column sums are equal initially, it follows that the c-array will be zero
on termination.)

We establish optimality by an exchange argument. Let O denote any valid layout. Let us
consider the layout G generated by the greedy algorithm (or, if the algorithm fails, let G be the
initial portion until it fails). If O = G, we are done. If O ̸= G, we will show that it is possible to
replace O with a valid layout O′ that is a little more similar to G.

Let i denote the first row where O and G differ. Since both layouts have been identical up to
now, and O is valid, we know that there are at least ri nonzero values in the current c-vector. Let j
be any column where G places a pawn on row i but O does not. Since G selects the largest c-values
first, O must place a pawn on some other column j′ that greedy does not use, where cj′ ≤ cj (see
Fig. 2(a) and (b)).

2

G: O:

(a) (b)

i

cj

i′

cj′≥

i

cj

i′

cj′≥
O′:

i

cj

i′

cj′≥

Exists because cj′ ≤ cj

(c)

Figure 2: Proof of correctness for Solution 2. Two layouts G and L and the associated sorted
c-sequences at each stage.

We modify O to form a new layout as follows. First, we move the pawn at row/column (i, j′)
to (i, j) (thus resulting in a layout that is a little closer to G). Now column j has one pawn too
many and j′ has one too few. Since cj′ ≤ cj , after moving the pawn on row i from column j′ to
column j, column j has at least one pawn strictly fewer than column j among rows i+ 1 through
n. Therefore, by a pigeonhole argument, there exists a row i′ > i such that O places a pawn at
(i′, j) but not on (i′, j′). We move this pawn from (i′, j) to (i′, j′).

Observe that we have not altered the number of pawns on each row. By exchanging pawns
between columns j and j′, we have the proper number of pawns in these two columns. Since nothing
else has changed, this new layout, which we call O′ is valid. We have resolved one difference between
O and G, as desired. By iterating this process (that is, by an induction argument), we eventually
convert O into G through a sequence of valid layouts. This implies that G itself is valid, and hence
the greedy algorithm runs to completion, as desired.

Solution 3: All four statements hold: Because Gonzalez only adds (never removes) centers, as
more centers are added, the ∆i and Γi values can only get smaller (or stay the same). When a
new center is added in some iteration, it is placed at the point that has the maximum distance to
its closest center. This implies that Γi+1 ≤ ∆i, and hence Γ4 ≤ ∆3. In the lecture on Gonzalez’s
algorithm (Claim 2), it was proved Γi ≥ ∆i−1, and hence Γ4 ≥ ∆3.

Solution 4:

(a) We will show that, for any i ≥ 0, the smallest k such that ∆(Gk) ≤ 1/2i satisfies the following
recurrence, which we’ll call k(i).

k(i) =


1 if i = 0,
3 if i = 1,
3k(i− 1)− 3 otherwise.

Thus, for example, k(2) = 3 · 3− 3 = 6, k(3) = 3 · 6− 3 = 15, and k(4) = 3 · 15− 3 = 42.

To see this, let’s start with k(1) = 3. In general, assuming we know k(i−1), to form the next
level of the Sierpiński triangle, we make three copies at half the scale. This reduces the ∆
value by exactly 1/2. It increases the number of center points by the three copies, but three

3

of the points are replicated. Thus, we have k(i) = 3k(i− 1)− 3 = 3(k(i− 1)− 1), as desired
(see Fig. 3).

Figure 3: Fractal dimension of the Sierpiński triangle .

We claim that this recurrence solves to k(i) = 1 if i = 0, and k(i) = (3i + 3)/2. It is easy to
verify that the formula gives the correct in the basis cases (i = 0 and i = 1). We’ll prove this
works in general by induction. Suppose that i ≥ 2. By applying the induction hypothesis
and straightforward manipulations, we have

k(i) = 3k(i− 1)− 3 = 3
3(i−1) + 3

2
− 3 =

3i + 9

2
− 3 =

3i + 3

2
+

6

2
− 3 =

3i + 3

2
,

as desired.

(b) For r = 1/2i, part (a) tells us that we can cover T using k(i) = (3i+3)/2 disks of radius 1/2i.
Thus NT (1/2

i) = (3i + 3)/2. As i tends to infinity the “ + 3” term is negligible, and hence
this is roughly 3i/2. The Hausdorff dimension of T is the value of d such that NT (r) = 1/rd,
or equivalently NT (1/2

i) = (2i)d = 2id. Equating these yields,

2id =
3i

2
⇐⇒ log 2id = log

3i

2
⇐⇒ id log 2 = i log 3− log 2 ⇐⇒ d =

log 3

log 2
− 1

i
.

In the limit, as i grows to +∞, the 1/i term vanishes, and we have d = log 3/ log 2, as desired.

Solution 5:

(a) A counterexample is shown in Fig. 4(a). The optimal solution consists of two pins (see
Fig. 4(b)). The depth-based algorithm places a pin in the center, which has the highest depth
of four. It still needs to place two more pins to cover the leftmost and rightmost intervals
(see Fig. 4(c)).

(a) (b) (c)

Opt Greedy

Figure 4: Counterexample to the depth-based heuristic.

4

(b) depth(I)/opt(I) ≤ lnn: This is essentially equivalent to the greedy set cover algorithm.
We can restrict placement of pins to the n right endpoints of the intervals. (Any valid pin
placement can be slid to the right until it hits a right endpoint.) Let B denote the set of right
interval endpoints. Consider a set system (X,Σ) where the elements are intervals (X = I),
and for each right endpoint b ∈ B, we define set S(b) to be the intervals that are stabbed by
b. Let Σ denote this collection of sets.

A stabbing set is equivalent to computing a minimum-sized set of right interval endpoints
b ∈ B (pins) that stab all the intervals of I. From the perspective of our set system, this is
equivalent to computing a minimum-sized collection of sets S(b) ∈ Σ that cover all elements
X = I. These two problems are equivalent, and depth-based pinning heuristic is clearly
equivalent to the greedy set cover heuristic. We know that the approximation ratio of the
greedy heuristic for set cover is lnn, where n = |X| = |I|.

(c) The greedy solution is based on the idea of “delaying” the placement of each pin as far as
possible to the right. To begin, sort the intervals by their right endpoints b1 < · · · < bn. We
visit the intervals in this order. Place a pin at the first endpoint in the list (initially at b1).
Since this interval must contain a pin, this is the farthest right we can place this first pin.
Now, remove all the intervals that are hit by this pin, or equivalently, all those whose left
endpoint appears on or before bi (see Fig. 5(b)).

(a) (b) (c)

Opt = Greedy

Opt
Greedy

Figure 5: Greedy algorithm for 1-dimensional pinning.

It is interesting to note that this is essentially the same algorithm as the interval scheduling
problem, just applied in a different context. The running time is O(n log n), dominated by
the time it takes to sort the sequences by the right endpoints.

To see that this algorithm is correct, observe that each time we place a pin, we eliminate
exactly those intervals that are stabbed by this pin, therefore every interval will be stabbed
when the algorithm terminates. To see that this is optimal, consider list in pins in order from
left to right. By its greedy nature, the greedy solution puts the each pin in the farthest right
position possible. Thus, if greedy differs from opt, in their first difference, opt’s pin will lie
to the left of greedy’s pin (see Fig. 5(c)). We can slide this pin of opt to the right as far
as possible, until it hits the greedy pin. Since greedy is valid, the result of this sliding will
also be a valid solution. By repeating this, eventually opt will be turned into greedy, without
adding any more pins, and therefore greedy and opt use the same number of pins.

5

