
CMSC 451:Fall 2025 Dave Mount

Solutions to Practice Problems 5

Solution 1: The points are added in the order: ⟨0, 8, 4, 2, 6, 1, 3, 5, 7⟩. It is noteworthy that,
ignoring the initial 0, the sequence is decreasing in terms of the largest power of 2 that evenly
divides each number.

Solution 2: To compute the values of prior[1..n], we only need access to a sorting algorithm. Let
T denote the set of 2n numbers of all start and finish times. We sort the elements of T in increasing
order. (For simplicity, let us assume that there are duplicate values.) We assume that each entry
of T consists not only of the time (si or fi), but also the index i of the request, and an indication
of whether this is a start of finish time.

We create a variable prevFinish which we initialize to 0. We traverse this sorted sequence in
increasing order of time value. Whenever we encounter finish time fi, we save this in the variable
prevFinish. Whenever we see a start time si, we set prior[i] ← prevFinish. This is given in the
following code block.

Computing the prior array
get-priors(s[1..n], f[1..n]) {

let T[1..2*n] be the union of s[1..n] and f[1..n]

sort T in increasing order

prevFinish = 0

for each t in T

j = index associated with t // we store this when creating the T array

if (t is a finish time)

prevFinish = f[j] // save the most recent finish time

else

prior[j] = prevFinish // save the prior for request j

}

To see this is correct, consider any request [sj , fj]. If there is no finish time smaller than sj ,
then prevFinish will have its initial value of 0, and so, prior[j]← 0, which is correct. On the other
hand, if fi is the last finish time just prior to sj , then prevFinish = i (since the elements of T are
sorted), which implies that prior[j]← i, as desired.

The running time is dominated by the O(n log n) time that it takes to sort the 2n elements of
T .

Solution 3: See Fig. 1. For example, when computing W [5], we have a choice between W [4] = 9
(don’t take this request) or v[5] +W [prior[5]] = v[5] +W [2] = 7 + 3 = 10 (take the request). The
latter is larger so we take the request, setting W [5]← 10 and accept[5] = T.

The final solution has total value W [7] = 12. To compute the requests, we trace back from the
last entry of the accept array.

� accept[7] = F, we skip this request and continue with 7− 1 = 6.

� accept[6] = T, we take this request, with value v[6] = 3, and continue with prior[6] = 4.

� accept[4] = F, we skip this request and continue with 4− 1 = 3.

1

1

2

3

4

5

6

j

0

2

1

prior

0

2

4

W

0

3

0

3

0

9

0

9

0 0

1

2

3

4

5

6

0
3

6

2

5

(a)
(b)

T

accept

(c)

F

T

T

1

2

3

4

5

6

1

2

3

4

5

6

0 2 4 6 8 10 12 14

7 7 F757

7

3

1

3 3 3 3 3

3 3 3 3

9 9 9

9 9

12

10 10

0

12

3

3

9

9

12

10

T

F

Figure 1: Weighted interval scheduling.

� accept[3] = T, we take this request, with value v[3] = 6, and continue with prior[3] = 1.

� accept[1] = T, we take this request, with value v[1] = 3, and continue with prior[1] = 0.

At this point the algorithm terminates, returning a total value of 3 + 6 + 3 = 12 and the accepted
requests {1, 3, 6}.

Solution 4: We will show that Gonzalez’s algorithm as an approximation ratio of 4.5. We will
show that for a point set P , where G denotes the output of Gonzalez’s algorithm and O denotes
the optimum k-center solution, ∆(G) ≤ 4.5∆(O).

Recall that the proof involved three claims. The only element of the proof given in class where
symmetry and triangle inequality are used is in Claim 3. The first two claims resulted in a corollary,
which stated that every pair of greedy centers in Gk+1 is separated by a distance of at least ∆(G).
Using this, we continue with Claim 3.

Claim 3: Let ∆min = ∆(G)/4.5. Then for any set C of k cluster centers, ∆(C) ≥ ∆min.

Proof: By definition of ∆(C), every point of P lies within distance ∆(C) of some point of C. Since
Gk+1 ⊆ P , this is true for Gk+1 as well. Since |Gk+1| = k + 1, and C has only k clusters, by
the pigeonhole principle, there exists at least two centers g, g′ ∈ Gk+1 that are in the same
neighborhood of some center c ∈ C.

This implies that both δ(g, c) and δ(g′, c) are less than or equal to ∆(C). Since g, g′ ∈ Gk+1,
by the corollary, δ(g, g′) ≥ ∆(G). Combining these observations with the properties of our
(relaxed) metric space, we have

∆(G) ≤ δ(g, g′) ≤ 1.5(δ(g, c) + δ(c, g′)) (by the relaxed triangle inequality)

≤ 1.5(δ(g, c) + 2δ(g′, c)) (by relaxed distance symmetry)

≤ 1.5∆(C) + 3∆(C) = 4.5∆(C).

Rewriting this, we have ∆(C) ≥ ∆(G)/4.5 = ∆min, as desired.

Since Claim 3 applies to any set of k clusters, it applies to the optimum, O. We conclude that
∆(O) ≥ ∆min. By definition, ∆min = ∆(G)/4.5, and so ∆(G) ≤ 4.5∆(O). Therefore, Gonzalez’s
algorithm is a factor 4.5 approximation algorithm for the k-center problem.

2

Solution 5: We will prove the following theorem.

Theorem: Given any set system Σ = (X,S), let G be the output of the greedy heuristic, and let
O be any 2-cover of X. Then |G| ≤ 1 + (|O| · ln(2n)), where n = |X|.

We will use the technical lemma from the lecture, which states that for all c > 0,
(
1− 1

c

)
≤ e−1/o.

Let o = |O| denote the size of the optimum set cover, and let g = |G| − 1 denote the size of
the greedy set cover minus 1. Our approach will be to treat the set X to be covered as a multi-set,
meaning that we allow multiple copies of each element. In our case, if {x1, . . . , xn} was the original
set to be covered using a 2-cover, we will employ the greedy algorithm on a multi-set, where each
element of X is replicated twice, that is X̂ = {x1, x1, x2, x2, . . . , xn, xn}. When we refer to the size
|X̂| of a multi-set, the multiplicities of the elements are counted, thus |X̂| = 2n.

Whenever a set is added to the 2-cover, it covers one of the two duplicated elements. The set is
only 2-covered, when every element has been covered at least twice. Otherwise, the proof proceeds
essentially as before, but with this minor adjustment.

For i ≥ 0, let X̂i denote the multi-subset of X̂ that remains to be covered after the ith iteration
of the algorithm, and let ni = |X̂i|. (For example, if an element has not been covered at all, it
contributes twice to ni, if it has been covered once, it contributes once to ni, and if it has been
covered twice or more, it does not contribute to ni.) Initially, X̂0 = X̂ and n0 = 2n.

At the start of the ith iteration, there are ni−1 elements that remain to be covered. We know
that there is a 2-cover of size o for the original set X, and therefore there is a 2-cover of size o
for the multi-subset X̂i−1. Since ni−1 = |X̂i−1|, by the pigeonhole principal there exists some set
that covers at least ni−1/o elements. Since the greedy algorithm selects the set covering the largest
number of remaining elements, it selects a set that covers at least this many elements. Therefore,
the number of elements that remain to be covered is at most

ni ≤ ni−1 −
ni−1

o
= ni−1

(
1− 1

o

)
.

Since this applies to every iteration, we see that with each iteration the number of remaining
elements decreases by a factor of at least (1− 1/o). If we repeat this i times, we have

ni ≤ n0

(
1− 1

o

)i
= n

(
1− 1

o

)i
.

Since the greedy heuristic ran for g + 1 iterations, we know that just prior to the last iteration we
must have had at least one remaining uncovered element, and so we have

1 ≤ ng ≤ 2n

(
1− 1

o

)g
By the technical lemma, with c = o, we have

1 ≤ 2n
(
e−1/o

)g
= 2ne−g/o

Now, if we multiply by eg/o on both sides and take natural logs we find that g satisfies:

eg/o ≤ 2n ⇒ g

o
≤ ln(2n) ⇒ g ≤ o · ln(2n).

3

Since g = |G| − 1, o = |O| and n was the size of our original set (before duplicating elements), we
conclude that

|G| ≤ 1 + (|O| · ln(2n)), where n = |X|,

as desired.

4

