
CMSC 451:Fall 2025 Dave Mount

Solutions to Practice Problems 6

Solution 1: The DP table lcs[0..m, 0..n] is shown in Fig. 1. For example, to compute lcs[3, 3],
we observe that x3 = y3 = ‘C’, and so we set lcs[3, 3] = 1 + lcs[2, 2] = 1 + 1 = 2. On the
other hand, to compute lcs[5, 2], we observe that x5 = ‘B’ is not equal to y2 = ‘A’, and so we
set lcs[5, 2] = max(lcs[4, 2], lcs[5, 1]. These are both equal to 1, so the result is 1. (Note that we
preferred the “Skip-X” option, due to the manner in which the algorithm from class broke ties, but
it would not be incorrect to select “Skip-Y” instead.)

B A C B

C

A

C

A

B

1

2

3

4

m = 5

0

1 2 3 40

0 0 0 0 0

0

0

0

0

0

1

0 1

1

0

1 3

1 1

3

2

1 2

2

2

= n

start here (|LCS| = 3)

Add xi(= yj)

Skip xi
Skip yj

LCS = ⟨ACA⟩

5

2

A

0 1

2

0

1

0

0 2

1 3

X = ⟨CACAB⟩
Y = ⟨BACBA⟩

Figure 1: Tracing the LCS algorithm.

The final answer is lcs[m,n] = lcs[5, 5] = 3. To obtain the actual LCS, we trace back the
decisions, as illustrated by the arrows. Whenever we see a diagonal arrow (as in H[4, 5], we take
the common character in each string and decrement both i and j. These are shown with the yellow-
shaded entries. Otherwise, if we see a vertical arrow, we go up by decrementing i, and if we see a
horizontal arrow, we go left by decrementing j.) These are shown as the blue-shaded entries. This
generates the characters of the LCS in reverse order.

Solution 2: As in class, let us assume that Xi = ⟨x1 . . . xi⟩ and Yj = ⟨y1 . . . yj⟩. For 0 ≤ i ≤ m
and 0 ≤ j ≤ n, let lcs(i, j) denote the length of the LCS of Xi and Yj . The basis case (i = 0 or
j = 0) are the same (the LCS length is zero), so we will assume that both i and j are positive.

(a) (LCS with wild cards) If xi = yj , but neither is “?”, then we claim that the LCS ends with this
common character. (If it ended with a different character, then neither of these characters
are being used, and we could make the LCS longer by adding this common character.) Also,
if either xi or yj (both not both) is “?” then we may assume that the LCS ends with the
other character. (If it ended with a different character, then either we wasted the wild card,
or we used it to match with a different character. Since wild cards can be matched with any
character, we may as well use it to match the last character.) In either case, we add +1 to the
length of the LCS, and we recurse on the remaining substrings Xi−1 and Yj−1. Otherwise,
if neither character is a wild card and they are not equal, we know that one of them cannot
be in the LCS. We try removing each, calculate the cost of the resulting LCS, and take the

1

better of the two options. This leads to the following recursive DP formulation:

lcs(i, j) =


0 if i = 0 or j = 0,

lcs(i− 1, j − 1) + 1

{
if xi = yj ̸= “?” or
either xi or yj (not both) equal “?”

max(lcs(i− 1, j), lcs(i, j − 1)) otherwise.

The final answer is lcs(m,n).

(b) (LCS with swaps) We add an additional rule to the standard LCS formulation. If i, j ≥ 2,
and the last two characters of Xi and Yj are swaps of each other, that is, ⟨xi−1xi⟩ = ⟨yjyj−1⟩,
then we add both characters to the LCS and recurse on Xi−2 and Yj−2. (While I believe that
it can be proved that it is always safe to take such a swapped match whenever it emerges,
just to be safe, we will simply consider this among the possible options and take the best of
all of them.)

lcs(i, j) =


0 if i = 0 or j = 0,
lcs(i− 2, j − 2) + 2 if i, j ≥ 2 and ⟨xi−1xi⟩ = ⟨yjyj−1⟩,
lcs(i− 1, j − 1) + 1 if i, j ≥ 1 and xi = yj ,
max(lcs(i− 1, j), lcs(i, j − 1)) otherwise.

The final answer is lcs(m,n).

Solution 3:

(a) A counterexample arises by setting L = 3, and having w1 = w2 = w3 = w4 = 1 (see Fig. 2(b)).
The greedy algorithm generates a layout with the first three words on the first line (penalty
0) and the last word on the second line (penalty 2), for a maximum penalty of 2. However,
putting two words on each line (penalties 1 and 1) yields a lower maximum penalty of 1.

w1 w2

w4

L = 3

G: w3w1 w2

w4

O:

w3
2

1

1

L = 3

Figure 2: Counterexample to greedy.

You might protest that it is not reasonable to include the last line in the penalty. We can
adjust the counterexample to work even in this case. Place a word w5 after w4 that is almost
as long as L. In either case, this word will need to placed on a line by itself, and w4 will not
be on the last line.

(b) For 0 ≤ j ≤ n, let MP(j) denote the smallest achievable max-penalty for typesetting the first
j words. Ultimately, we want to compute MP(n). For the basis case we have MP(0) = 0,
since there is nothing to lay out and hence there is no penalty involved. Let us assume we
have access to a utility function len(i, j), which, for 1 ≤ i ≤ j ≤ n, returns the sum of word
lengths

∑j
k=1wk. (See the challenge problem for how this can be done.) To compute MP(j)

2

observe that wj will be the last word on the last line of the layout, but what is the first word
of this line? It will be some word wi, where 1 ≤ i ≤ j and len(i, j) ≤ L. Assuming this, the
penalty associated with this line will be L− len(i, j). Assuming that we lay out the remaining
words w1 through wi−1 in the best possible manner, the remaining penalty is MP(i − 1).
(Observe that the principle of optimality holds here.) The overall penalty is the maximum
of these quantities, that is, max(L − len(i, j),MP(i − 1)). Among the available options, we
select the one that produces the lowest value. Thus, we have

MP(j) =


0 if j = 0
min

1≤ i≤ j

len(i,j)≤L

max(L− len(i, j),MP(i− 1)) otherwise.

This solution involves a 1-parameter function, but requires a loop to determine the best split.
Another approach (which yields the same running time, but takes more space) is based on
a 2-parameter function. For 1 ≤ i ≤ j ≤ n, let MP′(i, j) denote the smallest achievable
max-penalty for typesetting the first j words, under the assumption that the last line starts
on or before wi. The final answer will be MP′(n, n). To avoid dealing with cases where the
total word length exceeds the line length, let us define

penalty(i, j) =

{
L− len(i, j) if len(i, j) ≤ L
∞ otherwise

For the basis case, observe that if i = 1, then we are putting all the words on a single line,
and the overall penalty is penalty(i, j). Otherwise, i ≥ 2. Either the last line starts with
wi, in which case the penalty for this last line is penalty(i, j). The remaining subproblem is
to typeset the first i − 1 words, which is MP′(i − 1, i − 1). The overall max-penalty is the
maximum of these two. Otherwise, the last line starts earlier than wi (or equivalently, on or
before wi−1), in which case the overall penalty is given by MP′(i− 1, j). As always, we take
the better of these two options.

MP′(i, j) =

{
penalty(i, j) if i = 1
min(max(penalty(i, j),MP′(i− 1, i− 1)),MP′(i− 1, j)) otherwise.

Note that once len(i, j) exceeds L, MP′(i, j) will be ∞, thus if we were to implement this, we
could add this additional check to avoid unnecessary recursive function calls.

(c) We present a memoized implementation in the code block below. (A bottom-up implemen-
tation is also quite straightforward). We assume that the array pred[1..n] has been pre-
computed, and we have access to the function len(i, j). The values are stored in the array
MP[0..n], which is initialized to −1. The initial call is max-penalty(n), which computes the
minimum-penalty segmentation of all n words.

Clearly, there are n + 1 values MP[0..n] to be computed, and each one involves minimizing
over O(n) possibilities. If we can compute len(i, j) runs in constant time, the overall time is
O(n2).

3

Memoized Typesetting with Max Penalty
max-penalty(j) { // max-penalty typesetting

if (MP[j] == -1) { // undefined?

if (j == 0) { // basis case

MP[0] = 0

} else {

MP[j] = infinity

for (i = j downto 1) { // try all possible splits

if (len(i,j) > L) break // too many words for this line

thisPenalty = L - len(i,j) // penalty for last line

prevPenalty = max-penalty(i-1) // penalty for prev lines

MP[j] = min(max(thisPenalty, prevPenalty))

}

}

}

return MP[j] // return the max penalty

}

4

