
CMSC 451:Fall 2025 Dave Mount

Solutions to Practice Problems 7

Solution 1:

(a) Our counterexample involves three bottles. The first is absolutely low-cost, but doesn’t hold
enough pills. The second has a low per-pill cost, but it has a high absolute cost. The third
(Goldilocks) bottle, will be just right.

Let W = 2. Our first bottle holds p1 = 1 pill and costs c1 = $2, for a per-pill cost of $2. Our
second bottle holds p2 = 6 pills and costs c2 = $6, for a per-pill cost of $1. Our third bottle
holds p3 = 2 pills, and costs c3 = $4, for a per-pill cost of $2.

The optimal solution is to place both pills in bottle 3, for a total cost of $4. The cost-greedy
algorithm will select the first and third bottles, for a total cost of $2 + $4 = $6. The per-pill
greedy algorithm will select only the second bottle, for a cost of $6.

(b) For 0 ≤ i ≤ n and 0 ≤ w ≤ W , define C(i, w) to be the minimum cost assuming that we are
to place w pills using just the first i bottles (or ∞ if there is no feasible solution).

Let’s first derive the basis case. If w = 0, we can trivially put the zero pills into any number
bottles for a cost of $0, and thus C(i, 0) = 0, for all i. If i = 0 and w > 0, then there are no
bottles left in which to place a positive number of pills, and therefore, C(0, w) = ∞.

Otherwise, both i and w are at least 1. Before dealing with the general case, we begin with an
important, but subtle, observation. The bottles are indexed in some arbitrary order. Suppose
that bi0 is the bottle with the smallest index that appears in the optimal solution. We assert
that, among all the bottles in the optimal solution, we may assume that this is the only bottle
that is not completely full. To see why, observe that if any of the other bottles used in the
optimal were not completely full, we could move pills from bi0 to this bottle. Because we pay
full price for each bottle we used this will not increase the cost. If bottle bi0 runs out of pills,
we do not need it, which would contradict the hypothesis that this is an optimal solution.

There are two cases to consider. Either we do not use the ith bottle or we do. If not, we put
all w pills in the first i − 1 bottles, for a cost of C(i, w) = C(i − 1, w). Otherwise, we pay
the cost of ci and (by the above observation) put as many pills as we can in bottle i, that
is, min(pi, w). We then use the previous i− 1 bottles to place the remaining pills. Thus, the
total cost is C(i, w) = ci + C(i − 1, w − min(pi, w)). Clearly, we should take the smaller of
the two options, which leads to the following recursive DP formulation:

C(i, w) =


0 if w = 0,
∞ if i = 0 and w > 0,

min

(
C(i− 1, w),
ci + C(i− 1, w −min(pi, w))

)
otherwise.

If we implement this, there is a table of size (n + 1)(W + 1) = O(nW) to fill, and it takes
constant time to fill each entry, for a total of O(nW) time.

1

(c) The case where bottles can be used an arbitrary number of times, we need only make a minor
adjustment to the above rule. When we place pills into bottle i, the recursion is still allowed
to use (other copies of) this bottle. Rather on recursing on C(i − 1, w − min(pi, w)), we
instead recurse on C(i, w −min(pi, w)). Otherwise, the above rule is unchanged. Note that
the recursion is still well grounded, because even though we do not decrease the i parameter,
we decrease the number of pills, which must eventually go down to zero.

Solution 2: The final M and H matrices are shown in Fig. 1 along with the multiplication order.

• M [1, 3]: The choices are M [1, 1] +M [2, 3] + 2 · 2 · 3 = 42 or M [1, 2] +M [2, 3] + 2 · 5 · 3 = 50.
The first is better, and we set M [1, 3] = 29 and H[1, 3] = 1.

• M [2, 4]: The choices are M [2, 2] +M [3, 4] + 2 · 5 · 1 = 25 or M [2, 3] +M [4, 4] + 2 · 3 · 1 = 36.
The first is better, and we set M [2, 4] = 25 and H[2, 4] = 2.

• M [1, 4]: The choices are M [1, 1] +M [2, 4] + 2 · 2 · 1 = 29, M [1, 2] +M [3, 4] + 2 · 5 · 1 = 45, or
M [1, 3]+M [4, 4]+2 ·3 ·1 = 48. The first is the best, and we set M [1, 4] = 29 and H[1, 4] = 1.

15

000

20

1

2

3

4

4

3

2

1

j i 1

2

31

1

2

M [i, j]

2 2 5 3 1

p0 p1

A1
p2

A2
p3

A3
p4

A4

4

3

2

j 1

2

3

i

H [i, j]

1

2

3
A2 A3 A4A1

cost:

2 · 2 · 1 = 4

2 · 5 · 1 = 10

5 · 3 · 1 = 15

total: 29

29

25

0

42

30

Figure 1: Chain-matrix multiplication.

To get the final multiplication order we see that H[1, 4] = 1, so we multiply A1(A2 · A3 · A4).
We continue with H[2, 4] = 2, so this leaves A1(A2(A3 ·A4)). The tree is shown in the figure.

Solution 3:

(a) The solution is based on dynamic programming. Let us assume that the points have been
sorted by the x-coordinates. For 0 ≤ i ≤ n, let lis(i) denote the length of the LIS ending at
point pi. For the basis case, lis(0) = 0. For i > 0, the LIS that ends with pi can be expressed
as an LIS that ends at some point pj , where j < i and yj < yi and to this we add pi. Since
we do not know what this point is, let us try them all and take the largest. This leads to the
following DP formulation

lis(i) =


0 if i = 0,
max
0≤j<i
yj<yi

1 + lis(j) otherwise.

2

(To avoid subscripting out of bounds, we can define y0 = −∞.) Since we do not know which
point the LIS ends in, the overall answer is the maximum over all the possibilities. Thus, we
have

lis(P) = max
1≤i≤n

lis(i).

(b) The following code block gives an iterative implementation of the above DP formulation.

Longest increasing subsequence
LIS(x[1..n], y[1..n])

// we assume that x is sorted in increasing order

lis[0] = 0

for (i = 1 to n) // compute lis[i] for each i

for (j = 0 to i)

if (y[j] < y[i]) lis[i] = max(lis[i], 1 + lis[j])

result = 0 // final result is the max lis[i]

for (i = 1 to n)

result = max(result, lis[i])

return result

The running time is clearly O(n2).

Solution 4: While the problem is stated in terms of constructing two paths, one going out and
the other coming back, a straightforward implementation of this idea will not lead to an efficient
DP solution. (The issue is that the state information in the formulation would need to record the
set of points that we missed on the outbound path, and there are 2n possible such sets, which is
way too many for an efficient solution.)

We will build two paths coming out of the start node until they both converge at pn. (We
use the observation that it doesn’t matter which part of the path we call the outward path and
which we call the return path, since swapping the two yields the same total distance.) We solve
the problem through the application of dynamic programming. There are a number of ways of
formulating this as a DP problem. This one is based on a particular way of viewing the process of
growing

In order to motivate our approach, let’s consider one way of building the two paths simultane-
ously from left to right. The shorter side (the one ending with the smaller index) selects the next
point on the left to jump to. It might jump to the next point in the left-to-right sorted sequence or
it might jump ahead many points. If one of the paths jumps way ahead, the shorter path is forced
to visit all the subsequent points until it catches up. We don’t know which option is best, so our
formulation will take both possibilities into account.

In keeping with the recursive nature of DP formulations, we will think of the two paths as
being built up using recursion by adding edges to an existing partial solution. For 0 ≤ i ≤ j ≤ n,
we define C[i, j] to be the minimum possible total length of two paths that satisfy the following
requirements:

• both paths start at p0 and move monotonically to the right,

• one path ends at pi and the other ends at pj (and if i = j both end at this point),

3

• every point of {p1, . . . , pi−1} is hit by exactly one of these two paths, and none of the points
{pi+1, . . . , pj−1} is hit by either path.

Observe that the final answer is C[n, n], since (by the above conditions) this is the shortest pair
of paths starting at p0, both end at pn, and every point from p1 to pn−1 is hit by exactly one of
these paths, which is just what we want.

10 20 30 40 50 40 30 20 10

start

p0
pi

(a) (b)

pj

C[i, j] = C[i− 1, j] + dist(i− 1, i)

10 20 30 40 50 40 30 20 10

start

p0
pi

pj

C[i, j] = C[i− 1, i] + dist(i− 1, j)

pi−1pi−1

Figure 2: Solution to the double-path problem showing a possible path for C[i, j].

Let’s define dist(i, j) = dist(pi, pj). For the basis case, we set C[0, j] = dist(0, j), for 0 ≤ j ≤ n,
since the only point being hit is pj . To compute C[i, j] for i ≥ 1, we observe that one of the two
paths must visit the point pi−1. Since we don’t know which, we consider each case separately.

• If the path from p1 to pi passes through pi−1 (see Fig. 2(a)), then the path structure consists
of one path from p1 to pj , the other path from p1 to pi−1 (which has cost of C[i − 1, j])
followed by the direct edge (pi−1, pi) for a total cost of C[i− 1, j] + dist(i− 1, i).

• Otherwise, the path from p1 to pj passes through pi−1 (see Fig. 2(b)), then the path structure
consists of one path from p1 to pi, the other path from p1 to pi−1 (which has cost of C[i−1, i])
followed by the direct edge (pi−1, pj).

(Note that these two cases degenerate to the same case when i = j.) Between these two options,
we take whichever yields the lower cost. This leads to the following DP formulation:

C[i, j] =


dist(0, j) if i = 0

min

(
C[i− 1, j] + dist(i− 1, i),
C[i− 1, i] + dist(i− 1, j)

)
otherwise.

If implemented, this would involve constructing a matrix of size O(n2), in which each entry is
computed in O(1) time, for a total cost of O(n2).

We will not discuss recovery of the optimal path, but intuitively the way to do it is to maintain
a boolean helper matrix H which records which of the two options we selected between. The paths
can be reconstructed in the usual manner by tracing the decisions back from H[n, n], prepending
pi−1 to one path or the other.

Solution 5: Let W =
∑n

i=1wi. Define a boolean array a[0..n, 0..W] to be a[i, t] = 1 if there
exists a subset of {w1, . . . , wi} that sums to t and a[i, t] = 0 otherwise. We’ll see late why this is
useful.

4

As initialization, observe that a[i, 0] = 1, since we can always achieve a weight of 0 by taking no
objects. Also, for t ≥ 1, a[0, t] = 0, since we cannot achieve any positive weight using no objects.
For the induction, consider the computation of a[i, t]. If we don’t take object i, then we can try to
achieve weight t by taking any of the previous i− 1 objects, and so a[i, t] = a[i− 1, t]. If we do take
object i, then we can achieve a total weight of t if and only if we can achieve a weight of t − wi

using the previous i− 1 objects. Thus, if t ≥ wi, then a[i, t] = a[i− 1, t− wi]. Since both of these
are possible, we have

a[i, t] = a[i− 1, t] ∨ ((t ≥ wi) ∧ a[i− 1, t− wi]).

Since each entry a[i, t] can be computed in O(1) time, this can be done in O(n ·W) time.
Once we have computed a[n, t] for 0 ≤ t ≤ W , we solve the partition problem as follows. Let

W ′ = ⌊W/2⌋ be half the total weight. We want the smaller ship to get as close to W ′ as possible,
but without going over. Therefore, we access a[n, t] for t = W ′,W ′− 1,W ′− 2, . . . until finding the
first entry that is equal to 1.

We place a subset of total weight t on Ship 1 and the remainder of W − t goes on Ship 2.
Clearly, this is optimal. We return the final weight ratio of (W − t)/t. The overall running time is
O(n ·W).

5

