
CMSC 451:Fall 2025 Dave Mount

Solutions to Practice Problems 8

Solution 1:

(a) We claim that given n defects, there will be n+ 1 subchips. The proof by (strong) induction
on n. The basis (n = 0) is trivial (zero defects and one chip). The first cut eliminates one
defect. Suppose there are n1 and n2 defects remaining in the interiors of the two resulting
subrectangles. We have n1 + n2 = n− 1. By the induction hypothesis, cutting these results
in n1 + 1 and n2 + 1 subchips, respectively. Combining these, we have a total of

(n1 + 1) + (n2 + 1) = (n1 + n2) + 2 = (n− 1) + 2 = n+ 1

subchips, as desired.

(b) The subproblems are the possible rectangles within the original chip. Let’s assume that we
have sorted the x-coordinates of the points in ascending order x1 ≤ · · · ≤ xn and the same for
the y-coordinates y1 ≤ · · · ≤ yn. Let’s add two additional coordinates to each list to cover the
sides of the enclosing square by defining x0 = y0 = 0 and xn+1 = yn+1 = L (see Fig. 1(a)).
As a convenience, let us assume we have access to a geometry query defects(i, i′, j, j′), which
returns a count of defects in the interior of the rectangle [xi, xi′ ]× [yj , yj′ ].

L

L

x1

y1

x2 x3 x4 x5

y2

y3
y4

y5

y0

y6

x0 x6 xi xi′

yj

yj′

xi xi′

yj

yj′

xi′′

yj′′yj′ − yj

xi′ − xi

(a) (b) (c)

Figure 1: Chip cutting for n = 5.

Given 0 ≤ i < i′ ≤ n+1, and 0 ≤ j < j′ ≤ n+1, define C(i, i′, j, j′) to be the minimum total
cost of any hierarchical cutting of the rectangle [xi, xi′ ] × [yj , yj′ ]. Ultimately, our objective
is to cut the entire chip, that is, C(0, n+ 1, 0, n+ 1).

In order to compute C(i, i′, j, j′) we first observe the basis case that if this subrectangle has
no defects in its interior, that is, defects(i, i′, j, j′) = 0, then it does not need to be cut, and
hence its cost is zero. (Another possible basis case would be when i′ = i + 1 or j′ = j′, but
we assert that before we get to this point, we will encounter the defect-count basis case, since
such a rectangle cannot contain any defects in its interior.)

Otherwise, we will need to apply either a vertical or horizontal cut. There are two cases:

1



� We make a vertical cut between xi and xi′ , by considering all cuts through xi′′ , where
i < i′′ < i′. This generates a cutting cost of yj′ − yj and yields two subrectangles whose
total cost we compute recursively as C(i, i′′, j, j′) + C(i′′, i′, j, j′) (see Fig. 1(b)). Thus,
we have

C(i, i′, j, j′) = (yj′ − yj) + min
i<i′′<i′

C(i, i′′, j, j′) + C(i′′, i′, j, j′).

� Otherwise, we make a horizontal cut between yj and yj′ , by considering all cuts through
yj′′ , where j < j′′ < j′. This generates a cutting cost of xi′′ − xi and yields two
subrectangles whose total cost we compute recursively as C(i, i′, j, j′′) + C(i, i′, j′′, j′)
(see Fig. 1(c)).

C(i, i′, j, j′) = (xi′ − xi) + min
j<j′′<j′

C(i, i′, j, j′′) + C(i, i′, j′′, j′).

Observe that the principle of optimality holds, which means that when cutting the two sub-
rectangles, we should do so in a manner that minimizes the total cutting costs. Combining
these, we have the following recursive rule:1

C(i, i′, j, j′) =
0 if defects(i, i′, j, j′) = 0

min

(
(yj′ − yj) + mini<i′′<i′ C(i, i′′, j, j′) + C(i′′, i′, j, j′)
(xi′ − xi) + minj<j′′<j′ C(i, i′, j, j′′) + C(i, i′, j′′, j′)

)
otherwise.

The overall cost is C(0, n+1, 0, n+1), which covers the entire rectangle [x0, xn+1]×[y0, yn+1] =
[0, L]× [0, L].

Solution 2: For 1 ≤ i, j ≤ n, let Pi,j denote the maximum probability of any path from i to j.
Our objective is to compute Pi,j for all i and j.

(a) For 0 ≤ k ≤ n, let P
(k)
i,j denote the maximum probability of any path from i to j, subject to

the restriction that the intermediate vertices (that is, the vertices between i and j along the
path) are taken from {1, . . . , k}.
To start things off, define pi,j = p(i, j) if i ̸= j and pi,i = 1. For the basis case, we observe

that P
(0)
i,j = pi,j , since such a path consists of either a single edge (if i ̸= j) or an empty path

(if i = j). The probability of an empty path is 1 (since we do not need to traverse any edges).

For k ≥ 1, observe that any path from i to j that passes through intermediate vertices
{1, 2, . . . , k} either passes through k or it does not. If not, then the maximum probability

path has already been computed as P
(k−1)
i,j . If so, observe that there is no benefit to repeatedly

1There is something obviously wasteful about this formulation. When making the vertical cut at xi′′ , we did not
bother to check that the point having this x-coordinate even lies within the rectangle [xi, xi′ ]× [yj , yj′ ]! (The same
applies for yj′′ .) It turns out the sloppiness does not adversely affect the correctness nor the asymptotic running
time. To see why, observe first that any such cut will not be helpful in forming the optimum solution, since the cut
does not pass through a defect, and hence it does not reduce the number of defects. It can also be shown that, even
if we consider only points lying within the rectangle, the running time will be O(n5), only with a smaller constant.
Thus, while it is wasteful from a practical perspective, if we are wearing our “theoretician pants”, we just don’t care.

2



cycle through k, since this could only decrease the path probability. Thus, the path first goes
from i to k, using intermediate vertices 1 through k − 1, and then goes from k to j, using
intermediate vertices 1 through k − 1. Thus, the probability is the product of these two,

which is P
(k−1)
i,k · P (k−1)

k,j . Since we wish the maximize the probability, we take the maximum
of these two alternatives. This yields the following formulation:

P
(k)
i,j =


1 if k = 0 and i = j,
p(i, j) if k = 0 and i ̸= j,

max
(
P

(k−1)
i,j , P

(k−1)
i,k · P (k−1)

k,j

)
otherwise.

The final max probability is Pi,j = Pn
i,j . This is clearly has the same form as the Floyd-

Warshall algorithm, and hence the running time is O(n3).

(b) We note that the above algorithm is essentially equivalent to the Floyd-Warshall algorithm
where we have replaced min with max and changed addition into multiplication. This suggests
that the transformation is based on taking the logarithms of the weights.

We transformG by replacing each edge probability p(i, j) with the weight w(i, j)← − log p(i, j).
(The base of the logarithms does not matter.) Observe that if p(i, j) = 0 (that is, the edge
does not exist), then this effectively treats the weight as − log 0 = +∞. This corresponds to
the fact that in the shortest-path problem, a non-existent edge is treated as having weight
+∞. Observe that smaller probabilities correspond to larger edge weights. Let G′ denote the
digraph with modified weights.

Given any path π = ⟨v0, . . . , vk⟩, let P (π) denote the probability of this path in G and let
d(π) denote the length of the path in G′. The shortest path problem for G′ is equivalent to
finding the path π that minmizes d(π). Using the fact that the sum of logs is the log of the
product, for any path, it follows that the path length is

d(π) =
k∑

i=1

w(vi−1, vi) =
k∑

i=1

− log p(vi−1, vi) = − log
k∏

i=1

p(vi−1, vi) = − logP (π).

Since the logarithm function is monotone, it follows that minimizing the path length in G′ is
equivalent to maximizing the path probability in G. Thus, after running the Floyd-Warshall
algorithm on G′, we can obtain the max probability path by transforming the distance by
negating and exponentiating it.

Solution 3: (This is structurally equivalent to part (a) of the previous problem, but the basis
case needs to be handled carefully.) For 1 ≤ i, j ≤ n, let Ci,j denote the number of distinct paths

from i to j. For 0 ≤ k ≤ n, let C
(k)
i,j denote the number of distinct paths from i to j, subject to

the restriction that the intermediate vertices (that is, the vertices between i and j along the path)
are taken from {1, . . . , k}. It will be convenient to ignore empty paths, and set Ci,i = 0. (Formally,
there is an empty path each vertex to itself, but if we were to count this path, we’ll see below that
it results in double-counting some paths due to the way we set up our DP formulation.)

To start things off, define ai,j = adj[i, j] if i ̸= j and ai,i = 0. For the basis case, we have

C
(0)
i,j = ai,j if i ̸= j.

3



For k ≥ 1, observe that any path from i to j that passes through intermediate vertices {1, . . . , k}
either passes through k or it does not. If not, then the number of paths has already been computed

as C
(k−1)
i,j . If so, then we can concatenate any path from i to k with any path from k to j. (We

need not consider paths from k to k, since G is a DAG.) Thus, the total number of paths is the

product C
(k−1)
i,k · C(k−1)

k,j . This yields the following formulation:

C
(k)
i,j =

{
ai,j if k = 0,

C
(k−1)
i,j +

(
C

(k−1)
i,k · C(k−1)

k,j

)
otherwise.

The final count is Ci,j = Cn
i,j . This is clearly has the same form as the Floyd-Warshall algorithm,

and hence the running time is O(n3).
As mentioned above, this does not count the empty path from each vertex to itself. If this

bothers you, we can follow this up by setting Ci,i ← 1, for all i. You might wonder why we don’t
fix this by setting ai,i = 1. Unfortunately, this would result in double counting, since if i = k, the
above formulation gives

C
(i)
i,j = C

(i−1)
i,j +

(
C

(i−1)
i,i · C(i−1)

i,j

)
= C

(i−1)
i,j +

(
ai,i · C(i−1)

i,j

)
= 2C

(i−1)
i,j ,

which is not correct.

Solution 4:

(a) We convert a vertex-capacitated network G = (V,E) into an equivalent edge-capacitated
network G′ = (V ′, E′) as follows. First, we split each u ∈ V vertex other than s into t vertex
into a pair of vertices u′, u′′ ∈ V ′, which are connected by a “mini-edge”. This mini-edge has
a capacity equal to the vertex capacity. Let s′′ and t′ denote the source and sink vertices in
G′. Next, for each edge (u, v) in the original graph, create an edge (u′′, v′) of infinite capacity
in your new network (see Fig. 2(b)).

9

7

4

8

5

10

(b)

s′′ t′s t
18

9

7

4

8

5

10
16

(a)

G G′

∞

∞

∞

∞∞

∞

∞
∞

∞

∞

∞∞

u u′

u′′

2

0

4

1

5

6/8
2

0

4

1

5

u

u′ u′′

(c)

8

Figure 2: Transforming a vertex-capacitated network to an edge-capacitated network.

To establish correctness, we show that given any flow f in G there exists a flow of equal
value in G′. To go from G to G′, we just copy the flow values from each edge (u, v) to the
corresponding edge (u′′, v′). We set the flow on the mini-edge to the sum of flows on the
incoming edges. By flow conservation this must match the sum of flows on the outgoing
edges (see Fig. 2(c)). The capacity on the mini-edge enforces the vertex capacity. To go in

4



the other direction, we copy the flows on the edges (u′′, v′) to the original edge (u, v). Because
of the capacity constraint on the mini-edges, the flow through each vertex satisfies the vertex
capacities.

(b) We convert an edge-capacitated network G = (V,E) into an equivalent vertex-capacitated
network G′ = (V ′, E′) as follows. We split each edge into two edges by adding a “mini-
vertex” in the middle. We set the capacity of the mini-vertex to the capacity of the edge. We
set the capacities of the original vertices to ∞ (see Fig. 3(b)).

(b)

s t

(a)

G G′

6

7

5

2

3 8

1

5
4

8

11

7
s

t
6

7

5

2

3

1

8

5

8

4
11

7

∞

∞

∞

∞
∞

∞

u v

(c)

u v

66

6/8

8

Figure 3: Transforming an edge-capacitated network to a vertex-capacitated network.

To establish correctness, we show that given any flow f in G there exists a flow of equal value
in G′. To go from G to G′, we just copy the flow value on each edge (u, v) to the two halves
of the split edge. We set the flow on the two edges to be the same as the flow in the original
edge (see Fig. 3(c)). The capacity on the mini-vertex enforces the edge capacity constraint.
To go in the other direction, observe that the flows on the two copies of each split edge are
equal, and we copy the flow to the original edge (u, v).

5


