
CMSC 451:Fall 2025 Dave Mount

Solutions to Practice Problems 10

Solution 1: We show how to modify Dijkstra’s algorithm in order to solve the single-source
maximum capacity path problem. We will focus only on the final capacities, and not on how to
compute the actual path (but this is an easy extension).

For any two vertices u, v ∈ V , let µ(u, v) denote the capacity of the maximum capacity path
from u to v. (If v is not reachable from u, then µ(u, v) = 0.) To compute the max-capacity path
from s to t, we solve the single-source max-capacity problem.

We modify Dijkstra’s algorithm as follows. For each v ∈ V , define m[v] to be the current
estimate on the max-capacity path from s to v. Initially, m[s] = +∞, and for all other vertices
v, m[v] = 0. Because we are maximizing, rather than minimizing, the priority queue returns the
maximum, rather than the minimum, element.

We also modify the relax operator relax(u, v) as follows. Given that m[u] is the max-capacity
of getting from s to u, we know that there is a path from s to v of capacity min(m[u], c(u, v)). If
this is larger than the current estimate, m[v], we should take it. Thus, the relaxation rule for edge
(u, v) is changed as follows (see Fig. 1(a)):

relax(u, v) : m[v]← max

(
m[v],
min(m[u], c(u, v))

)

s
u

x y

m[y] ≤ m[u]

s

u

v∞

11

4

7
s

u

v
0

relax(u, v)

if (min(m[u], c(u, v)) > m[v])

then m[v]← min(m[u], c(u, v))

11

7

7

µ(s, y) ≥ µ(s, u)

(a) (b)

Figure 1: Adapting Dijkstra to compute the max-capacity path.

The final change to Dijkstra’s algorithm is that the queue is reverse-ordered, returning the
unprocessed vertex with the highest m-value. The running time is clearly the same as Dijkstra’s
algorithm. To establish the algorithm’s correctness, we adapt the correctness proof of Dijkstra’s
algorithm.

Claim: Whenever the algorithm processes a vertex u, m[u] contains its correct capacity value,
that is, m[u] = µ(s, u).

Proof: Suppose to the contrary that this fails to be true for some vertex, and let u be the first
such instance. Since m[u] is based on evidence of an actual path, we have m[u] < µ(s, u).

1

Since this is incorrect, consider the true max-capacity path from s to u. This path must first
cross an edge (x, y) where x is among the set of processed vertices and y is not (see Fig. 1(b)).
(Possibly x = s and/or y = u.)

Since x was processed earlier (and u is the first mistake), we know that m[x] = µ(s, x). Since
(x, y) is an edge along the max-capacity path, we have µ(s, y) = min(µ(s, x), c(x, y)). Since
we performed relax(x, y), we have correctly propagated this information along the edge. This
implies that

m[y] = m[x] + c(x, y) = µ(s, x) + c(x, y) = µ(s, y).

Since u was chosen before y to be processed, we know that m[u] ≥ m[y]. Furthermore, any
edges along the remaining max-capacity path from y to u can only decrease its capacity,
implying that µ(s, u) ≤ µ(s, y). Combining these observations, we have

µ(s, u) > m[u] ≥ m[y] = µ(s, y) ≥ µ(s, u),

which is a clear contradiction.

Solution 2: We solve the drone delivery problem via reduction to circulations with vertex
demands and lower and upper flow capacities on each edge. The flow on each edge will reflect the
number of drone flights made.

We generate a network G = (V,E) as follows. We create a source vertex s and a sink vertex
t. We create two sets of vertices, one for the drone stations, denoted {d1, . . . , dm}, and one for the
customers, denoted {c1, . . . , cm}. We create the following edges (see Fig. 2(a)):

• For i ∈ [1,m], and j ∈ [1, n], edge (di, cj) of capacity range [0, 2] if dist(di, cj) ≤ 10. (The
capacity constraint enforces the condition that there are at most 2 drone flights from any
station to any one customer, and the distance condition enforces the restriction that the
drone station must be within 10 miles of the customer.)

• For i ∈ [1,m], edge (s, di) of capacity range [0, 5]. (This enforces the FAA requirement that
each drone station can launch at total of at most 5 deliveries per day.)

• For j ∈ [1, n], edge (cj , t) of capacity range [max(1, oj − 2), oj]. (This enforces the condition
that at least max(1, oj − 2) deliveries succeed and at most the number of requested orders.)

• Edge (t, s) of capacity range [0,∞]. (This is just a technical requirement that the flow be
balanced throughout the system. This is because we cannot predict the total number of
deliveries in advance, so we do not know exactly how much flow will travel from the source
to the sink.)

All the vertex demands are set to 0, meaning that flow is conserved at every vertex. We then
invoke the circulation algorithm to generate an integer-valued circulation f . If no circulation exists,
we declare that there is no valid delivery schedule. Otherwise, for each edge (di, cj), we ship f(di, cj)
deliveries from station di to customer cj . (For example, in Fig. 2(b), f(1, 2) = 2, implying that
we would ship two deliveries from di to cj .) The following claim establishes the correctness of this
reduction.

Claim: There exists a valid delivery schedule if and only if G has a feasible circulation.

2

Connect if dist ≤ 10

Customers

[max(1, oj − 2), oj]

ts

[0, 5]

[0, 5]

[0, 5]

[0,∞]

[0, 2]Stations
Drone

All vertex demands = 0

1

2

3

1

2

n

3 ts 4/[0, 5]

1

2

3

1

3

2

2/[0, 2]3/[0, 5]

1/[0, 5]
2/[0, 2]

2/[0, 2] 4/[2, 4]

3/[1, 3]

1/[1, 3]

8/[0,∞]

1/[0, 2]

1/[0, 2]
o1 = 3

o2 = 4

o3 = 3

(a) (b)

Figure 2: Solving the drone delivery problem by network flow.

Proof: (⇒) Suppose that there is a valid delivery schedule, where station di makes g(di, cj) deliv-
eries to customer cj . We create a circulation f in G as follows. First, for each edge (di, cj),
we assign it a flow of g(di, cj). Next, define the flow on edge (s, di) to be the total number
of deliveries made by station di, and define the flow on edge (cj , t) to be the total number of
deliveries made to customer cj . Finally, define the flow from t to s to be the total number of
deliveries to all customers.

To see that this yields a feasible circulation in G, observe that each edge (di, cj) receiving flow
must exist, because the fact that the delivery was made implies that dist(di, cj) ≤ 10. Next,
to see that the capacity constraints are satisfied, observe that the validity of the schedule
implies the following:

• No single drone station sends more than 2 deliveries to any customer (satisfying the
capacity constraint on (di, cj)).

• No drone station sends more than 5 deliveries (satisfying the capacity constraint on
(s, di)).

• Each customer receives between max(1, oj − 2) and oj deliveries (satisfying the capacity
constraint on (cj , t)).

It is also easy to see that the node demands (all zero) are satisfied, since the flow on each
edge incoming to di is balanced by the outgoing deliveries from this station, and the flow on
each edge leaving cj is balanced by the incoming deliveries to this customer. Finally, the flow
coming into and out of s and t are easily seen to equal the total number of deliveries in the
entire schedule. Therefore, this is a valid circulation in G.

(⇐) Suppose that G has a feasible circulation, denoted by f . We may assume that this
is an integer flow. We define a delivery schedule as follows. For each edge (di, cj) where
f(di, cj) > 0, we make this number of deliveries from station di to customer cj . We will
show that this is a valid delivery schedule. First, observe that flow is only sent along existing
station-customer edges, meaning that they are all within the 10-mile radius. By the capacity
constraints, we know that:

• f(di, cj) ≤ 2, implying that no customer receives more than 2 deliveries from any station.

3

• By the upper capacity constraint of 5 on edge (s, di) and flow conservation, no station
sends more than 5 deliveries

• By the capacity constraints of [max(1, oj − 2), oj] on edge (cj , t) and flow conservation,
each customer receives between max(1, oj − 2) and oj deliveries.

Therefore, this satisfies all the requirements of a valid schedule.

Solution 3: The tutor-assignment problem can be reduced to a network circulation problem
with lower and upper edge constraints. Given an instance of the student-tutor pairing problem (see
Fig. 3(a)), we construct a network G as follows. First, we create student vertices {s1, . . . , sn} and
tutor vertices {t1, . . . , tm}, a special source vertex s∗, and a special sink vertex t∗. All the node
demands are set to 0. We also create the following edges (see Fig. 3(b)). Intuitively the flow on
an edge will be 1 to model the fact that a tutor has been assigned to a student. Recall that the
notation [a, b] on an edge means that the flow on the edge must be at least a and at most b.

• For each student sj , create edge (s∗, sj) of capacity [1, 1]. (This enforces the condition that
each student is paired with exactly one tutor.)

• For each suitable student-tutor pair, create edge (sj , ti) of capacity [0, 1]. (This enforces the
condition that students are only paired with suitable tutors.)

• From each tutor ti, create edge (ti, t
∗) of capacity [ai, bi]. (This enforces the condition that

tutor ti is paired with at least ai and at most bi students. Remember that lower and upper
bounds can only be placed on edges. They do not apply to vertex demands.)

• Create edge (s∗, t∗) of capacity [n, n]. Equivalently, we could have defined s∗ to have a demand
of −n and t∗ to have a demand of n. (Since each of n students is paired with exactly one
tutor, this enforces the condition that there will be a total of n assignments in any valid
solution.)

(a) (b)

Students Tutors
s1
s2
s3
s4
s5
s6
s7

t1

t2

t3

t4

suitable
all [1,1]

all [0,1]

[7, 7]

s∗ t∗

[ai, bi]

[2,2]

(c)

all 1

7

s∗ t∗

[2, 2]

[2, 3]

[1, 5]

[1, 4]

2

3

1

1[1,4]

[1,5]

[2,3]
1
0

Figure 3: Solution to the tutor-assignment problem.

Correctness follows from the next lemma.

Lemma: There is a feasible solution to the student-tutor pairing instance if and only if G has a
feasible circulation.

4

Proof: (⇐) Let f be a feasible circulation for G. Because the edge capacities are integers, we may
assume that this is an integer flow. We define a pairing as follows. For each student-tutor edge
(sj , ti) that carries a nonzero flow, we pair student sj to tutor ti. We assert that this is a valid
student-tutor pairing. Because we only create edges between suitable student-tutor pairs, the
pairings selected are all suitable. Because the demands are all zero, and each student has
an incoming capacity of [1, 1] it follows that each student is paired with exactly one tutor.
Analogously, because each tutor has an outgoing capacity of [ai, bi], it follows that each tutor
is paired with the appropriate number of students.

(⇒) Suppose there is a valid student-tutor pairing. We create a circulation for G as follows.
First, we generate one unit of flow along each edge (s∗, sj). For each student-tutor pairing
(sj , ti), we create a singly unit of flow on the corresponding edge, and otherwise we set the
flow to 0. For each tutor ti, let cj denote the number of students paired to this tutor. We set
the flow along edge (ti, t

∗) to cj . Finally, we set the flow along edge (t∗, s∗) to n. We assert
that this flow function defines a valid circulation for G. Because the pairing is valid, each
student is paired with exactly one tutor, and thus its demand of zero is satisfied. Also, each
tutor is paired with between ai to bi students, and so its flow demand is also satisfied.

Solution 4:

(a) We reduce the roadblock problem to that of computing the maximum flow in a network with
vertex capacities. (A reduction from this problem to standard network flows was given in
Practice Problems 9.) In particular, construct a network where the network G′ is equal to
the given graph G, where each undirected edge {u, v} is replaced by a pair of directed edges
(u, v) and (v, u). Let s ← p denote the source node and t ← q denote the sink node for the
network. Assign s and t capacities of ∞ and all the other vertices are assigned a capacity of
1. Then compute the maximum flow in the resulting vertex-capacitated network using the
reduction mentioned above. Correctness is established in the following lemma.

Lemma: G′ has an s-t cut of capacity k if and only if k roadblocks suffice to separate p from
q in G.

Proof: (⇒) Given an s-t cut in G′ of capacity k, we construct k roadblocks as follows. The
reduction generates two types of edges, those of capacity 1 and those of capacity ∞.
The unit capacity edges each correspond to a vertex in G. Since the cut has capacity k,
none of the infinite capacity edges cross the cut, only the edges of unit capacity. There
are clearly k such edges. Define the roadblocks to be the corresponding set of k vertices.
Because this is a cut, there cannot be a path from p to q that avoids these vertices,
therefore this is a valid roadblock set, as desired.

(⇐) Given a set of k roadblock vertices in G, consider the corresponding k edges in G′.
Since these vertices all have unit capacity, these edges all have unit capacity. Because
there is no path from p to q in G that avoids these vertices, the removal of these k edges
disconnects s from t, implying that they define a cut in G′ of capacity k, as desired.

The total running time is O(n+m) to construct the networks G and G′, T (n,m) to solve the
max-flow problem, and O(n+m) to compute the reachable vertices X by an graph traversal
algorithm (e.g., BFS or DFS). Thus, the total time is O(n+m+ T (n,m)) = O(T (n,m)).

5

https://www.cs.umd.edu/class/fall2025/cmsc451-0101/handouts.html

(b) This variant corresponds to a multi-source, multi-sink variant of the max-flow problem. We
create a super source node s and a super sink node t. Both of these have capacity ∞. We
then add edges from s to each of the vertices of P and add edges from each node of Q to t.
We then apply part (a) of this problem to the resulting network. (Observe that neither s nor
t can be be in the minimum cut since both have infinite capacity.) Since we have added only
two vertices to the network, its size is essentially the same as before, so the overall asymptotic
running time is unchanged.

Solution 5: Suppose that G[f] has a cycle, say ⟨u0, u1, . . . , uk⟩, where uk = u0. Let h =
min1≤i≤k f(ui−1, ui) be the minimum flow value on all of these edges. Construct a new flow f ′,
which is equal to f on all the edges of G except those of the cycle, where we define

f ′(ui−1, ui)← f(ui−1,ui)− h.

We assert that f ′ is a valid flow and |f ′| = |f |. First, because we have subtracted the minimum of
the flows on the cycle, no flow value has become negative. Second, observe that for every vertex
of G, the number of edges of the cycle entering the vertex equals the number of edges of the cycle
exiting the vertex, and thus, the decrease in the incoming flow equals the decrease in the outgoing
flow. Therefore, f ′ satisfies flow conservation. Finally, the value of the flow has not changed,
because by our definition of an s-t network, s has no incoming edges, and therefore the value of
the flow (sum of flows out of s) has not changed.

In going from G[f] to G[f ′], the flow values on edges has only decreased, and at least one
edge has been removed (the one whose flow defined h). Such a process must eventually terminate.
Therefore, after a finite number of applications of this process, we will arrive at a valid flow f ′′

such that |f ′′| = |f |, and f ′′ has no cycles. For example, in Fig. 4(a), we show a flow of value 3
with a cycle. We reduce the flow on the cycle by 3 units. There is still another cycle, and reduce
its flow also by 3 units. The final network has no flow cycles and the same flow value.

(a) (b)

ts

2/5

5/7

1/3

2/2

1/1

3/6
4/6

7/8

6/9

ts

2/5

2/7

1/3

0/6
4/6

4/8

3/9

−3

(c)

ts

2/5

2/7

1/3

0/6
1/6

1/8

0/9

−3

2/2

1/1

2/2

1/1

Figure 4: Removing cycles from a flow.

Solution to the For-Fun problem: In order to satisfy the conditions, you must be holding
either a 4 or 5 and your roommate holds the next higher number. If you see a 4, you announce that
your roommate holds a 5 (and your roommate announces that you hold the 4), and if you see a 5,
you announce that your roommate holds a 6 (and your roommate announces that you hold the 5).
We’ll show that if your numbers had been smaller, then answer would have been discovered earlier
in the process. If your numbers had been larger, then you both would have wound up losing.

6

Assuming you and your roommate are both pretty smart, you each reason as follows from the
starting of the process:

• If you saw the number 1 on your card, you would know that your roommate must hold the
number 2, since there is no number 0 and they differ by 1. When you say “no,” your roommate
can infer that you do not have a 1.

• Once you say “no”, if your roommate had either a 1 or 2, they would be able to infer your
number. If they had a 1, then they know you have the 2. If they had a 2, they already know
that you cannot have a 1, so you must have a 3. When your roommate says “no,” you know
that your roommate has neither a 1 nor a 2.

• Once your roommate says “no”, you know that your roommate has neither 1 nor 2. If you had
either 2 or 3, you would now know your roommate’s number. (If you had 2 your roommate
must have 3, and if you had 3, your roommate must have 4.) When you say “no,” your
roommate knows that do not have any of the numbers 1–3.

• After your second “no”, if your roommate had either a 3 or 4, they would be able to infer
your number. If they had a 3, then they know you have the 4. If they had a 4, they already
know that you cannot have a 3, so you must have a 5. The second time your roommate says
“no,” you know that your roommate has none of the numbers 1–4.

• Generalizing this inductively, with each pair of exchanges 2 more numbers are eliminated
from the pool of possibilities. In particular, after the kth round of no’s, you have been able
to infer that your roommate has none of the numbers 1 through 2k, and so if you are holding
either of the numbers 2k or 2k + 1, you can infer that your roommate must be holding the
next larger number.

Just as the devil has given up, you get lucky. The number on your card happens to be either
4 or 5. Since your roommate cannot hold 1–4, if you see a 4, you know that your roommate must
hold a 5. If you see a 5, you know that your roommate must hold a 6. Your roommate reasons
similarly that you hold the other number.

7

