
CMSC 451:Fall 2025 Dave Mount

Solutions to Quiz 1

Solution 1:

(a) (iv) An undirected graph has at most
(
n
2

)
edges, consisting of all unordered pairs of size two.

(b) (ii) A directed graph has at most n2 vertices, consisting of all ordered pairs of size two,
including self loops.

(c) (iv) A DAG has at most
(
n
2

)
edges, which consists of the edges (i, j), where 1 ≤ i < j ≤ n.

Solution 2: Here are the asymptotic relationships. Justifications (which were not required) are
given below.

(a) n log n ≺ n
√
n ≺ n2

(b) 2lgn ≈ nlg 2 ≺ 2(2 lgn)

(c) n log(logn) ≺ n logn ≺ n(logn)2

(a) Ignoring the common factor of n, these follow because logn ≺ n1/2 ≺ n.

(b) Follows from the facts that 2lgn = n, nlg 2 = n, and 22 lgn = (2lgn)2 = n2.

(c) We can ignore the common factor of n. Since logm ≺ m and setting m = log n, it follows
that log log n ≺ logn. Also, since 1 ≺ log n, by multiplying by logn, we have log n ≺ (log n)2.

Solution 3: (i) It is best to process vertices/edges in (forward) topological order. (Note that
other visit orders will still produce a correct result, but the running time will be larger.)

A general principle of the Bellman-Ford algorithm is that when relaxations are performed in
order along the shortest path, then the distance values along the path are correct. This is because
we learn the distance value to each vertex before we propagate it to the next. The good thing
about a DAG is that all paths (not just shortest paths) respect the topological order, and hence a
single pass of Bellman-Ford in forward topological order will fix all the distances to their correct
value. This implies that the running time is O(n+m). The other orders may result in as many as
n− 1 passes, for a total running time of O(nm).

Solution 4:

(a) See Fig. 1. Each vertex is labeled with its discovery and finish times (d[u]/f [u]). Tree edges
are solid and the other edges are dashed and labeled by their type.

(b) The strong components are {a, c, d, e, f}, {b}, and {g}.

Solution 5: As with the alternating paths problem from the practice set, we need to keep separate
counters based on the type of paths. In our case, there two types of paths that are relevant: 0-paths
that consist of nothing by 0-label edges, and 1-paths, those that consist of a single 1-edge. For each
u ∈ V , let C0[u] denote the numbers of 0-paths originating at u, and let C1[u] denote the number
of 1-paths originating at u. We compute these values using DFS. As we are visiting a vertex u, for
each edge (u, v) we have two cases:
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Figure 1: Problem 3: Depth First Search.

� If label(u, v) = 0, we can form 0-paths by combining this edge with any 0-path out of v. We
can take the single edge (u, v). Thus, C0[u] += 1 + C0[v].

We can form 1-paths by combining this edge with all 1-paths out of v, which implies that
C1[u] += C1[v].

� If label(u, v) = 1, we cannot use the edge to form any new 0-paths. We can form 1-paths
either by taking this edge alone, or by combining this edge with all the 0-paths out of v. This
implies that C1[u] += 1 + C0[v].

This can be computed efficiently by DFS as shown in the following code block.

onePaths(G=(V,E)) // count paths with a single 1-edge

for each (u in V) mark[u] = undiscovered // initialize

for each (u in V) // visit all vertices

if (mark[u] == undiscovered) countPaths(u)

for each (u in V) one[u] = C1[u] // final counts

return one

countPaths(u)

mark[u] = visited

C0[u] = C1[u] = 0 // initialize counts

for each (v in Adj[u])

if (mark[v] == undiscovered) altCountPaths(v) // count v’s paths

switch (label(u,v))

0: C0[u] += 1 + C0[v] // accumulate 0-paths

C1[u] += C1[v] // include v’s 1-paths

1: C1[u] += 1 + C0[v] // include (u,v) and v’s 0-paths

mark[u] = finished

An example is shown in Fig. 2. Correctness follows from the above derivation. A key element
is the fact that, since G is a DAG, we access C0[v] and C1[v] only after calling countPaths(v),
which implies that these values are correctly computed. Since G is a DAG, whenever we access the
count values of any vertex, this vertex has already “finished,” and hence these counts are correct
(by a simple induction argument). As with any DFS algorithm, the running time is O(n+m).

You might wonder whether it is possible to count 1-paths one-by-one. This cannot work ef-
ficiently, since a DAG may have exponentially many paths. Consider the DAG in Fig. 3, which
consists of ℓ copies of the same structure. Let’s just consider 1-paths from each node that go all the
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Figure 2: Counting 1-paths with C0[u] and C1[u] shown for each vertex in blue.

way to the final rightmost node. A path with a single 1-edge can be formed by selecting a single
1-edge from any one of the levels ℓ, and for all the remaining ℓ − 1 levels, it can either take the
upper track or lower track, for a total of 2ℓ−1 possible paths. Thus, the total number of 1-paths
from each node to the end is ℓ · 2ℓ−1. Since n = 3ℓ+ 1, this is exponential in n.
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Figure 3: There are exponentially many 1-paths (even restricted to maximal paths).

The partial credit part (find all paths with at least one 1-edge) is similar but a bit simpler. As
before, we maintain two counts, C[u] stores all the paths starting at u, and C1[u] stores all the
paths that have at least one 1-edge. To count all paths, for each edge (u, v) (irrespective of label)
we count this edge and all paths out of v, implying that C[u] += 1+C[v]. To compute C1, if this
is a 0-edge, we just take C1[v], implying that C1[u] += C1[v]. If this is a 1-edge, we include (u, v)
and all the paths out of v, implying that C1[u] += 1 + C[v].

altCountPaths(u) // count paths with at least 1-edge

mark[u] = visited

C[u] = C1[u] = 0 // initialize counts

for each (v in Adj[u])

if (mark[v] == undiscovered) altCountPaths(v) // count v’s paths

C[u] += 1 + C[v] // update count of all paths

switch (label(u,v))

0: C1[u] += C1[v] // 0-edge: include v’s 1-paths

1: C1[u] += 1 + C[v] // 1-edge: include (u,v) and all of v’s paths

mark[u] = finished
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