
CMSC 451:Fall 2025 Dave Mount

Solutions to Quiz 2

Solution 1:

(a) True: Latest start time is optimal. This is the same as earliest finish time, but run in
reverse-time order.

(b) (iii) - Interval partitioning is equivalent to coloring an interval graph. The vertices of this
graph are the intervals, and two vertices are adjacent if the intervals overlap. Coloring the
graph is equivalent to partitioning the intervals into non-overlapping subsets.

(c) All are true except (iv). Claims (i) and (ii) are trivially true. Claim (iii) is true by the
corollary to Claim 2. To see why Claim (iv) fails, consider a set of three points at the vertices
of an equilateral triangle. After adding any two of these as center, the third point is the same
distance from the centers as they are from each other.

(d) ln a: The greedy set-cover’s approximation ratio is ln |X|, which in this case is ln a.

Solution 2:

(a) Sort the bottles in increasing order ci/pi. Another way to think about this is that every time
we put a pill in a bottle, we are paying a fraction of 1/pi of the bottle’s overall cost of ci, and
therefore a single pill of bottle i costs us an incremental cost of ci/pi. A good strategy is to
select bottles so that this incremental “cost per pill” is minimized.

(b) We will show partial optimality, by showing that the first bottle that greedy selects is in
some optimal solution, even if it only has one pill. (The general proof is a straightforward
extension, based on determining where the optimal first differs from greedy.) It will simplify
the proof to assume that all the ci/pi ratios are distinct.

Let us assume the bottles are sorted so that c1/p1 is the smallest cost-per-pill ratio. Consider
any optimal solution O, and suppose towards a contradiction that it does not use bottle 1.
Take any other bottle j ̸= 1 that is in O, and remove one pill from bottle j and put it into
bottle 1. Clearly, this is feasible, since bottle 1 was not used in O, so this bottle has room
for this pill.

How has the overall cost been affected? Since the pill has been moved from bottle j to bottle
1, the incremental cost for bottle j has decreased by cj/pj , and the incremental cost of bottle
1 has increased by c1/p1. Thus, the net change in the total cost is

c1
p1
− cj

pj
.

But, since c1/p1 has the smallest ratio, this quantity is negative, implying that this change
decreases the cost. However, this implies that O is not optimal, a contradiction.

A note about grading: A number of people lost points because their justification was too
vague. A typical incorrect justification could be briefly summarized as, “Since ci/pi is the

1

cost per pill, it is clearly best to minimize this quantity.” While this is a correct assertion, it
alone is not a convincing argument. For example, if we altered the cost model so that each
bottle that is used must be paid for in full, the greedy algorithm would not be optimal. But
this argument does not clearly distinguish why greedy works in one case but not in the other.
We were looking for an exchange-style argument, like those appearing in lectures and in the
homework solutions.

Solution 3: See Fig. 1. (For completeness, we also show the accept array). For example, when
computing W [5], we have a choice between

W [4] = 7 (don’t take) or
v[5] +W [prior[5]] = v[5] +W [3] = 3 + 7 = 10 (take).

The latter is larger so we take the request, setting W [5] ← 10 and accept[5] = T. The final total
value is W [5] = 10, consisting of the intervals {2, 3, 5}.

(a) (b) (c)

1

2

3

4

5

j
0 2 4 6 8 10

1

5

2

4

3

W

0

1

0

2

0

7

0

7

0

1

2

3

4

5

0

1

10

7

2

1

2

1

7

7

2

1 T

accept

F

T

T

1

2

3

4

5

T

Figure 1: Weighted interval scheduling.

Solution 4: Define W (j) to be the maximum value, including penalties to schedule the first j
intervals. The basis is W (0) = 0. Otherwise, for 1 ≤ j ≤ n, we have two possibilities, depending on
whether we accept or reject the interval. To avoid subscripting out of bounds, let us define f0 = 0.

Interval j is not accepted: If j is not included in the schedule, then we should do the best we
can with the remaining j−1 requests, which ends at time fj−1. This leaves a gap size fj−fj−1,
which is included in the penalty (see Fig. 2(a)). Thus, we have W (j) = W (j−1)−(fj−fj−1).

It is important to account for this penalty correctly. Note, for example, that we do not know
which of the prior intervals will be included in the optimal solution for W (j). If a string of
intervals are rejected, our approach will effectively add up all of these gaps, and include them
in the penalty for W (j).

Interval j is accepted: If we add j to the schedule, we gain vj units of value, but we cannot
take any of the requests following prior(j). This leaves a gap from the finish of prior(j) to
the start of j, that is, sj − fprior(j) (see Fig. 2(b)). Thus, we have W (j) = vj +W (prior(j))−
(sj − fprior(j)).

2

(a)

sjfprior[j]

vj

prior[j]
sj − fprior[j]

fj−1 fj

vj

j − 1
fj − fj−1

(b)

Figure 2: Weighted interval scheduling with penalties.

Clearly, we should take the better of these two options. This yields the following DP forulation:

W (j) =


0 if j = 0 (basis)

max

{
W (j − 1)− (fj − fj−1) (reject j)
vj +W (prior(j))− (sj − fprior(j)) (accept j)

}
if j > 0

The final optimal answer is W (n).

3

