CMSC 451:Fall 2025 Dave Mount

Solutions to Quiz 3

Solution 1: See the table below. The times to compute the objective values come straight from
the lecture notes. The construction times are explained below.

Algorithm Parameters Objective Value | Solution
Longest Common m,n mn m+n
Subsequence (sequence lengths)
Chain Matrix n n3 n
Multiplication (no. of matrices)
Floyd-Warshall n n3 n
(shortest paths) (no. of vertices)

LCS: We trace a path through the m x n helper matrix from entry [m, n] down to [0, 0]. Each step
decrements either the row index or the column index or both, so it runs in O(m + n) time.

CMM: Each access to the helper matrix splits the sequence. After n — 1 splits, we have broken
the sequence into singletons. Thus, the total time is O(n).

FW: Each access to the helper matrix yields an additional vertex along the shortest path. Since
any shortest path can have at most n vertices in total, the overall time to construct any path

is O(n).

Solution 2: For 0 < i <m and 0 < j < n, define scs(i,j) to be the length of the SCS of X; and
Y;. As a basis, observe that if one sequence is empty, the SCS is just the other sequence, and hence
scs(i,0) =4 and scs(0,5) = j. If ¢ and j are both strictly positive, we consider the following cases:

e If z; = y; then we claim that the SCS must end in this common symbol (since using any other
symbol would only make the sequence longer). We add this common symbol into the end of
the SCS and recurse on remaining strings X; 1 and Y;_1, for a cost of 1 +scs(i — 1,5 — 1).

o If x; # y;, then the SCS must end with either x; or y; (since if it were to end in any other
symbol, it could be made shorter by removing it). There are two options, and we try both
and take the better of the two.

— The SCS ends in x;. We add z; to the end of the SCS and recurse on X;_; and Y}, for
a cost of 1 +scs(i — 1, ).

— The SCS ends in y;. We add y; to the end of the SCS and recurse on X; and Y;_4, for
a cost of 1 +scs(i,j — 1).



The principal of optimality applies, since each subproblem should be solved optimally. This gives
the following DP formulation:

i if j =0,
j ifi=0,
scs(i, j) = 1+scs(i—1,7—1) if i,j > 0 and z; = yj,

. 1 +scs(i —1,7), e ' .
m1n< |+ ses(i,j — 1) if i,7 > 0 and x; # y;.

The final answer is scs(m,n). If implemented, this would run in O(mn) time, since each of the
O(mn) tables entries can be computed in constant time.

By the way, is a rather tricky alternative solution, which is based on using the longest common
subsequence. Let lcs(X,Y") denote the length of the longest common subsequence of X and Y. It can
be shown by an inductive argument that each character of the LCS appears in the SCS exactly once,
and the remaining characters of X and Y are added individually to the SCS. (We omit the proof,
but it would be required for a proper justification.) It follows that scs(X,Y) =m +n —les(X,Y).

Solution 3:  The length of the longest non-increasing sequence (LNS) is based on dynamic
programming. We assume that the points have been sorted by the z-coordinates. For 0 < i < n,
let Ins(i) denote the length of the LNS ending at point p;. (Thus, the sequence must end with
pi.) To avoid subscripting out of bounds, it will be convenient to prepend a “sentinel point”
Po = (—OO, +OO).

For the basis case, we have Ins(0) = 0. For ¢ > 0, the LNS that ends with p; can be expressed
as an LNS that ends at some point p;, where 0 < j <4 and y; > y; and to this we add p;. Since we
do not know what this point is, let us try them all and take the largest. This leads to the following
DP formulation

0 if 1 =0,

Ins(i) = { 1 + maxo<;; Ins(j) otherwise.
Yj2Yi

Since we do not know which point the LNS ends with, the overall answer is the maximum over all
the possibilities. Thus, we have

Ins(P) = nax. Ins(i).
(A common mistake is to return Ins(n). However, this is incorrect, since the overall LNS may not
end with p,, for example, if y,, is very large.) If implemented this would take O(n?) time, since we
are computing a table with O(n) entries, each of which can be computed in O(n) time.

A natural (but incorrect) alternative approach is to define Ins’(7) to be the length of the longest
non-increasing subsequence among {pi,...,p;}, but not requiring that the sequence ends at p;.
This suggests the following DP formulation:

0 if i =0,
o 1 4+ max,<;.; Ins'(j)
Ins’(7) max Yi>Yi otherwise.
Ins'(i — 1)

The final answer would be Ins’(n). Unfortunately, this does not work since it loses the context of
y-coordinate of the last point in the sequence. Consider the sequence ((1,2),(2,1),(3,4), (4,3)). It



is easy to verify that Ins'(2) « 2, Ins'(3) + Ins’(2) = 2, and so Ins'(4) + 1 + Ins/(3) = 3, but this
is incorrect, since the longest nonincreasing subsequence is of length 2.

Solution 4: For 1 <i < j < n, let M(i,7) denote the minimum cost (number of operations)
needed to compute the product A(i,j) = AjAi1 ... Aj.

Basis: If i = j then the sequence contains only one matrix, and so the cost is 0. (There is nothing
to multiply.) Thus, M(i,i) = 0.

General case: If i < j, then the product A(i,j) can be split into two groups A(i, k) times A(k +
1,7), by considering each k, i < k < j and taking the best. The cost of computing A(i, k) is
given recursively by M (i, k), and the cost of computing A(k + 1,7) is given by M (k + 1, j).
The time needed for the final product is either ]01271 (if these are square matrices, that is,
Pi—1 = p;j = pg) or the standard time, p;_1pxp;, otherwise.

This yields the following DP formulation:
0 ifi = j,

2 .
. . . Di—1 if Pi—1 =Pk =Dy oo .
ig%lgl?—l M@, k)+M(k+1,j)+ { pi_ipep; otherwise } iti<j.

The final cost is M(1,n). If implemented, this would take O(n?) time, since we are building a
table of size O(n?), and each entry can be computed in O(n) time.

Solution 5:

(a) The residual network Gy is shown in Fig. 1.

Figure 1: Network flow.

b) There is one s-t path in Gy, (s,c,b,a,t).
f

(¢) The minimum capacity edge on this path is 2, which means that the maximum flow that can
be pushed along this path has value 2.



