CMSC 451 Dave Mount

CMSC 451: Lecture 9
DP: Longest Common Subsequence and Edit Distance

Strings: In this lecture we continue our study of dynamic programming algorithms. One impor-
tant area of algorithm design is the study of algorithms for character strings. Finding patterns
or similarities within strings is fundamental to various applications, ranging from document
analysis to computational genomics. We study two widely studied measures of string simi-
larity, longest common subsequence and edit distance. Today, we will consider efficient DP
solutions to these problems.

Longest Common Subsequence: Consider two character sequences, that is, strings,
X = (x1,m2,...,Tm) and Z = (21,22, .., 2k),

where x; and z; are elements over some given alphabet, ¥. (For example ¥ = {a,b,c,..., 2}
or X ={A,G,C,T}.) Let | X| denote the number of characters in X.

We say that Z is a subsequence of X its characters all appear in order in X. More formally,
there is a strictly increasing sequence of k indices (i1,72,...,i;) (1 <13 <i2 < ...< i <n)
such that Z = (z;,, 4, . .., xi,) (see Fig. 2).

x = |A[B[R][A[C]A[D[A|B|R]A]

Z = |A|A|D|A|A

Fig. 1: The string Z = (AADAA) is a subsequence of X = (ABRACADABRA).

Given two strings X and Y, the longest common subsequence of X and Y is a longest sequence
Z that is a subsequence of both X and Y. For example, let X = (ABRACADABRA) and let
Y = (YABBADABBADOO). Then the longest common subsequence is Z = (ABADABA)
(see Fig. 2).

X = [A[B[R]A[C|A[D]|A[B|R]A]

" 1cs = [A[BJATD[ATB]A]

v = [Y|A[B|B[A[D[A[B[B][A[D[O]O]

Fig. 2: An example of the LCS of two strings X and Y.

The Longest Common Subsequence Problem (LCS) is the following. Given two sequences X =
(X1,...,2m) and Y = (y1,...,yy) determine the length of their longest common subsequence,
and more generally the sequence itself. Note that the subsequence is not necessarily unique.
For example the LCS of (ABC) and (BAC) is either (AC) or (BC).

DP Formulation for LCS: The simple brute-force solution to the problem would be to try all
possible subsequences from one string, and search for matches in the other string, but this is
hopelessly inefficient, since there are an exponential number of possible subsequences.

Lecture 9 1 Fall 2025

CMSC 451 Dave Mount

Instead, we will derive a dynamic programming solution. In typical DP fashion, we decompose
the problem into subproblems, which can be solved recursively. There are many ways to do
this for strings, but it turns out for this problem that considering all pairs of prefixes will
suffice for us. Given 0 < ¢ < |X|, the ith prefiz of X, denoted Xj, is the initial substring
length 4, that is, X; = (x1,..., ;). Define Xy = () to be the empty sequence.

The idea will be to compute the longest common subsequence for every possible pair of
prefixes. For 0 < i < |X| and lcs(4, j) denote the length of the longest common subsequence
of X; and Yj. For example, in the above case we have X5 = (ABRAC) and Ys = (YABBAD).
Their longest common subsequence is (ABA). Thus, les(5,6) = 3.

Let us start by deriving a recursive formulation for computing les(4, 7). Later, we will consider
how to implement this recursion efficiently.

Basis: If either sequence is empty, then the longest common subsequence is clearly empty.
Therefore, lcs(i,0) = les(0,7) = 0.

Last characters match: Suppose x; = y;. For concreteness. We assert that LCS(X;,Y;)
must end in this letter. This is shown in the following lemma.

Lemma: If two strings X and Y share the same last character, then their LCS ends in
this character. Furthermore, we may assume that the LCS is constructed using this
lasat instance from each string.

Proof: For concreteness, let’s suppose that both X and Y end with the letter ‘A’

Suppose towards a contradiction that LCS(X,Y") did not end with ‘A’. This means
that neither string contributed its last letter ‘A’ to the LCS. By adding this ‘A’ we
can create a longer common subsequence, a contradiction.
Okay, the LCS ends with ‘A’, but can we infer that each string contributed this par-
ticular instance of ‘A’? (For example, X could have contributed an earlier instance
‘A’ to the LCS.) Since this is the last character of the LCS, we may replace the
what instance of ‘A’ that X contributed with X’s last letter. This is still a valid
subsequence of X and it has the same length. The same argument applies to Y.

By the above lemma, we may add x; = y; to the LCS and remove this character from both
strings. To complete the LCS, we recursively compute the LCS of remaining substrings,
X;—1 and Y;_. Since the removal of the last character has no impact on this subproblem,
we should solve it optimally.! Therefore, the length of the final LCS is les(X;—1,Yj_1)+1
(see Fig. 3). This provides us with the following rule:

if (z; =y;) then les(i,j) =les(i —1,5—1)+1

For example, suppose that X; = (ABCA) and let ¥; = (DACA). We match the final
‘A’ characters, compute the LCS length of X;_; = (ABC) and Y;_; = (DAC), which is
(AC). We then ‘A’ back, which yields the final LCS of (ACA).

Last characters do not match: Suppose that z; # y;. In this case z; and y; cannot both
be in the LCS (since they would have to be the last character of the LCS). Thus either

Tsn’t this obvious? Well no. Suppose that we altered the LCS problem to require, say, that it cannot have two
consecutive equal characters. This would constrain the subproblem we generate, since it cannot end with this same
character. Thus, we may prefer a suboptimal solution to the subproblem, in order to satisfy this global constraint.

Lecture 9 2 Fall 2025

CMSC 451 Dave Mount

Ly

X | N Xiq

Y >— les(i — 1,5 — 1)

il 1A Y1

Fig. 3: LCS of two strings, where x; = y;.

x; is not part of the LCS, or y; is not part of the LCS (and possibly both are not part
of the LCS). Let’s consider these two options.

z; is not in the LCS: Since we know that x; is out, we can remove the last character
from X;, which leaves us with X;_;. We continue to compute the LCS of X;_; and
Y;, which is given by les(i — 1, 7).

y; is not in the LCS: Since we know that y; is out, we can remove the last character
from Y;, which leaves us with Y;_;. We continue to compute the LCS of of X; and
Y;_1, which is given by les(i,j — 1).

At this point it may be tempting to try to make a “smart” choice. By analyzing the
last few characters of X; and Y}, perhaps we can figure out which character is best to
discard. This is not a good idea. It will lead to a more complicated, possibly less efficient
algorithm. Remember the DP selection principle: When given a set of feasible options
to choose from, try them all and take the best.

X1]X[skip x;

Ly les(i — 1, 5)
x| B v T8

max -
Y > -
- L S—Y

les(i, 7 — 1)

Y1]Z[skip y;

Fig. 4: LCS of two strings, where x; # y;.

We compute both options and take the one that gives us the longer LCS (see Fig. 4).
(Hey, did we forget Option 3, where neither symbol is in the LCS? Yes, this can happen,
but these two rules suffice to handle this. Try it out and you’ll see.) Thus, we have the
following rule:

if (x; # y;) then les(i,j) = max(les(i — 1, j),les(4,5 — 1))

Lecture 9 3 Fall 2025

CMSC 451 Dave Mount

Combining these observations we have the following recursive DP formulation:

0 ifi=0orj=0,
les(i,j) = § les(i—1,5—1)+1 ifi,j >0 and z; = yj,
max(les(i — 1, 7),les(i, j — 1)) if 7,7 > 0 and z; # y;.

The final answer is les(m, n).

Memoized implementation: The principal source of the inefficiency in a naive implementation
of the recursive rule is that it makes repeated calls to lcs(, j) for the same values of i and
j. To avoid this, it creates a 2-dimensional array lcs[0..m, 0..n], where m = | X| and n = |Y|.
We initialize its elements to —1, which indicates that the entry is currently undefined. The
memoized version first checks whether the requested value has already been computed, and
if so, it just returns the cached value. Otherwise, it invokes the recursive rule to compute it.
Our objective is to compute the LCS of the entire strings of lengths m and n, so the initial
call is memo-lcs(m, n).

Because we will eventually want to construct the final LCS, we will also add some “hooks” to
our code to record our decisions. We create a parallel hook table, H[0..n,0..m|, which stores
three possible values.

+ : Add z;(= y;) to the end of the LCS. (Represented by the symbol N .)
X : Do not include x; to the LCS. (Represented by the symbol “".)
Y : Do not include y; to the LCS. (Represented by the symbol ‘<)

The algorithm is presented in the code block below. The final answer is memo-lcs(m,n). See
Fig. 5(a) for an example. (We’ll discuss the H-table later.)

Memoized LCS with Hooks

memo-lcs(i,j) { // memoized implentation of LCS
if (lesli,jl == -1) { // undefined?
if @==01|3==0 A // basis case
les[i,jl =0
} else if (x[i] == y[j]) { // last characters match
lcs[i,j] = memo-lcs(i-1, j-1) + 1
H[l,_]] = 14
} else { // last chars don’t match
skipX = memo-lcs(i-1, j) // length if we skip X
skipY = memo-lcs(i, j-1) // length if we skip Y
if (skipX >= skipY) // better to skip X
lcs(i,jl = skipX; H[i,jl = ’X’
else // better to skip Y
lcs[i,j] = skipY; H[i,j] = ’Y’
}
}
return lcs[i,j] // return lcs length

Lecture 9 4 Fall 2025

CMSC 451 Dave Mount

X = (BACDB) ——
= (BDCB) ———

0 0 0 N Add z(= y;)

1 B 1 Bl t Skip ;

2 A 2 A fo - Skip y;

3 C 3 Cllp

4 D 4 D .1“0 LCS = (BCB)
m=5 B m=5 B f(); start here

Fig. 5: (a) Contents of the lcs array for the input sequences X = (BACDB) and Y = (BCDB).
The numeric table entries are the values of lcs[i, j]. (b) Illustrates the H-table and the extraction
of the final sequence.

Correctness follows from the correctness of the DP formulation. The running time is O(mn).
To see this, observe that there are (m 4 1)(n + 1) = O(mn) entries in the table. The body
of each recursive call runs in O(1) time. Each call either returns immediately or fills in one
more entry in the tables. Thus, the total time is proportional to the total number of table
entries, which is O(mn).

Extracting the LCS: Next, let us see how to use our hooks to extract the final LCS. We will start
at the end with H[m,n] and trace the optimal recursion path back to H[0,0]. If H[i, j] = +,
this means that z; = y;, and we are putting this common character into the LCS. We add
this character to the LCS, and continue with H[i — 1,5 — 1]. If H[i, j] = X, this means that
we are skipping character z;, and continuing with H[i — 1,j]. Finally, if H[i, j] = Y, this
means that we are skipping character y;, and continuing with H{[i, j —1]. Since each iterations

decrements either ¢ or j, the running time is O(m+n). An example of the trace-back is shown
in Fig. 5(b).

Extracting the LCS using the Hints

get-lcs-sequence() { // get the LCS sequence
LCS = empty
i=m; j=n // start at lower right
while(i !'= 0 or j !=0) // loop until i == j ==
switch (H[1,j])
case ’+’ -> // add x[i] (= y[jD)
prepend x[i] to LCS; i--; j--—;
case X’ -> // skip x[i]
i__
case 'Y’ —> // skip yl[j]
j__
return LCS
}

Bottom-up implementation: (Optional) The alternative to memoization is to just create the

Lecture 9 5 Fall 2025

CMSC 451 Dave Mount

lcs table in a bottom-up manner, working from smaller entries to larger entries. By the
recursive rules, in order to compute lcs[i, j], we need to have already computed les[i —1, j —1],
les[i—1, j], and les[i, j—1]. Thus, we can compute the entries row-by-row or column-by-column
in increasing order. See the code block below and Fig. 5(a). The running time and space
used by the algorithm are both clearly O(mn).

Bottom-up Longest Common Subsequence
bottom-up-lcs() { // bottom-up implementation of LCS
lcs = new array [0..m, O..n]

for (i = 0 to m) 1lcs[i,0] =0 // basis cases
for (j = 0 to n) 1lcs[0,j] =0
for (i = 1 tom) { // fill rest of table
for (j =1 ton) {
if (x[i] == y[3]) // take x[i] (= y[jl) for LCS
les[i,jl = les[i-1, j-11 + 1
else
lcs[i,j]l = max(les[i-1, jl, les[i, j-11)
}
}
return lcs[m, n] // final lcs length

Edit Distance: A more widely used measure of string similarity than LCS is the edit-distance.
This is widely used in the field of computational genomics, when analyzing the similarity of
DNA/RNA sequences.

Given two strings X = (z1,...,2,) and Y = (y1,...,yy), the edit distance is the minimum
number of primitive operations needed to convert X into Y. Primitive operations include
things like inserting a character, deleting a character, changing the value of a character, or
swapping two adjacent characters. Generally, we may apply weights to these choices (e.g.,
favoring insertion over deletion). Let’s keep this simple by focusing on just three operations:
insert, delete, and change in the unweighted case. (For example, in Fig. 6) we show that
the X and be converted Y through 9 edit operations.) The minimum number of insertions,
deletions, and changes to convert one string to another is called the Levenshtein distance
between these strings. It is named for the Soviet mathematician Vladimir Levenshtein, who
invented way back in 1965.

oo Delete ‘R’ oo Change ‘R’ to ‘B’
x = DIXIR]A] 4 [C[A]D[A]BIR]A] Lev(X,Y) =9

R—Y Blicos ros D[O]O - Insert ‘O

v = |Y]A[B[B]A|[D|A[B|B|A[D]O]O]

Fig. 6: Levenshtein distance for X = (ABRACADABRA) and Y = (YABBADABBADOO).

Let’s develop a DP formulation for this problem. We will follow a pattern similar to the LCS
problem. For 0 <i <m and 0 < j < n, let Lev(i, j) denote the Levenshtein distance between

Lecture 9 6 Fall 2025

CMSC 451 Dave Mount

the prefixes X; = (z1,...,2;) and Y; = (y1,...,y;). Let’s explore the various cases.

Basis: If either sequence is empty, then the edit distance is equal to the number of characters
in the other string. If X; is empty, then we need to insert all j characters of Y;. If Y; is
empty, then we need to delete all ¢ characters of X;. Thus, we have following rules:

if i =0 then Lev(i,j) =7
if j =0 then Lev(i,j) =1

Last characters match: If x; = y;, then we should go ahead and match these characters.
(It costs us nothing to do so, and if we were to hold out to match one of these with
an earlier instance of the same character, this would only limit our future options.)
This does not incur any increase in the edit distance, and what remains is to match the
remaining prefixes, X;_1 and Y;_;. Since the removal of the last character has no impact
on this subproblem, we should solve it optimally. Therefore, the Leveshtein distance is
Lev(X;—1,Yj—1) (see Fig. 3). This provides us with the following rule:

if (z; =y;) then Lev(i,j) =Lev(i—1,5 — 1)

L fal Yi

Fig. 7: LCS of two strings, where z; = y;.

For example, suppose that X; = (ABCA) and let ¥; = (DACA). We match the final
‘A’ characters, compute the LCS length of X;_; = (ABC) and Y;_; = (DAC), which is
(AC). We then ‘A’ back, which yields the final LCS of (ACA).

Last characters do not match: If the last character do not match, that is, z; # y;. We
know that some edit operation will be needed, but which? There are three options (see
Fig. 8).

Insert y; at the end of X;: This increases the distance by +1. After doing so, the
character y; has been accounted for. What remains is to compute the distance
between X; with the remainder, Y;_;. In this case, Lev(i,j) = 1 + Lev(i, j — 1).

Delete x;: This increases the distance by +1. After doing so, the character x; has been
accounted for. What remains is to compute the distance between the remainder,
Xi—1, with Yj. In this case, Lev(i,j) = 14 Lev(i — 1, 7).

Change z; into y;: This increases the distance by +1. After doing so, both the char-
acters z; and y; have been accounted for. What remains is to compute the distance
between the remainders, X;_; and Y;_;. In this case, Lev(i,j) = 1+Lev(i—1,j—1).

At this point it may be tempting to try to make a “smart” choice. But, in customary
DP fashion, we do not attempt to determine which action is best. We just try them all
and take the best, that is, the one that achieves the minimum value. Thus, we have the
rule:

Lecture 9 7 Fall 2025

CMSC 451 Dave Mount

— xZ
Xi [A]
] Lo v(i,j —1) +1: insert y;

S — T
x| EYR e —
, %

yj — Lev(i —1,7) +1: delete z;
- -
O —
— Lev(i — 1,7 — 1) | +1: change z; to y;

vl] [B

Fig. 8: LCS of two strings, where z; = y;.

if (z; # y;) then Lev(i,j) =1+ min(Lev(i,j —1),Lev(i —1,5),Lev(i — 1,j — 1))

In summary, we have the following recursive DP formulation for the Levenshtein distance:

; ifi =0,
) Lev(i—1,5-1) if min(i, j) > 0 and ; = y;,
Lev(i,j) = Lev(i,j — 1),
1 4+ min Lev(i — 1,7), if min(é, j) > 0 and ; # y;.
Lev(i—1,j —1)

The final answer is Lev(m,n).

We will leave the implementation (whether memoized or bottom-up) as an exercise. Both are
quite similar in structure to the LCS code. The same is true for adding the necessary “hooks”
(match, insert, delete, or change). As with LCS, the running time is O(mn). Once the table
has been constructed along with the helpers, the edits can be reconstructed in O(m-+n) time.

Summary: We have presented DP algorithms for two problems in string similarity, longest com-
mon subsequence (LCS) and the edit or Levenshtein distance. Both algorithms run in time
that is proportional to the product of the lengths of the two strings. Needless to say, this is
unacceptably slow in many applications where string sizes can be large.

Can we do better? There are near linear-time algorithms for LCS (see Wikipedia). There are
many tricks and heuristics for speeding up edit distance in practice. Unfortunately, there is
pretty strong evidence that in the worst case, you cannot do much better for the Levenshtein
distance. It has been proved that the Levenshtein distance for two strings of length n cannot
be computed in time O(n?~¢), for any £ > 0, unless the Strong Exponential Time Hypothesis
(SETH, for short) is false. It is beyond the scope of this lecture to introduce SETH is, but it
is widely held to be true.

Lecture 9 8 Fall 2025

