
Course Overview
Abhinav Bhatele, Department of Computer Science

Parallel Computing (CMSC416 / CMSC616)

Abhinav Bhatele (CMSC416 / CMSC616)

About the instructor — Dr. Bhatele

• Ph.D. from the University of Illinois at Urbana-Champaign

• Spent eight years at Lawrence Livermore National Laboratory

2

• Started at the University of Maryland in
2019

• Research areas:

• High performance computing

• Distributed AI

Abhinav Bhatele (CMSC416 / CMSC616)

Introductions

• Name

• Junior/Senior/Graduate student

• Something interesting/unique about yourself

• (optional) Why this course?

3

Abhinav Bhatele (CMSC416 / CMSC616)

This course is

• An introduction to parallel computing

• 416: Upper Level CS Coursework / General Track / Area 1: Systems

• 616: Qualifying course for MS/PhD: Computer Systems

• Work expected:

• Five to six programming assignments

• Three to four quizzes (no advance notice)

• Midterm exam: in class on October 30

• Final exam: December 15 10:30 am-12:30 pm

4

Abhinav Bhatele (CMSC416 / CMSC616)

Course topics
• Introduction to parallel computing (1 week)

• Shared-memory parallel programming (1 week)

• Parallel algorithm design (2 weeks)

• Distributed memory parallel programming (3 weeks)

• Performance analysis and tools (2 weeks)

• GPU programming (1 week)

• Parallel architectures and networks (1 week)

• Parallel simulation codes (2 weeks)

5

Abhinav Bhatele (CMSC416 / CMSC616)

Tools we will use for the class

• Syllabus, lecture slides, programming assignment descriptions on course website:

• https://www.cs.umd.edu/class/fall2025/cmsc416

• Programming assignment submissions on gradescope

• Quizzes on ELMS

• Discussions: Piazza

• https://piazza.com/umd/fall2025/cmsc416cmsc616

• If you want to contact the course staff outside of piazza, send an email to:
cmsc416@cs.umd.edu

6

https://www.cs.umd.edu/class/fall2025/cmsc416
https://piazza.com/umd/fall2025/cmsc416cmsc616
mailto:cmsc416@cs.umd.edu

Abhinav Bhatele (CMSC416 / CMSC616)

Zaratan accounts

• Zaratan is the UMD DIT cluster we’ll use for the programming assignments

• You should receive an email when your account is ready for use

• Helpful resources:

• https://hpcc.umd.edu/hpcc/help/usage.html

• https://missing.csail.mit.edu

• https://www.cs.umd.edu/~mmarsh/books/cmdline/cmdline.html

• https://www.cs.umd.edu/~mmarsh/books/tools/tools.html

7

https://hpcc.umd.edu/hpcc/help/usage.html
https://missing.csail.mit.edu
https://www.cs.umd.edu/~mmarsh/books/cmdline/cmdline.html
https://www.cs.umd.edu/~mmarsh/books/tools/tools.html

Abhinav Bhatele (CMSC416 / CMSC616)

Programming assignments

• You can write and debug most of your assignment locally:

• Use a virtual linux box

• Docker containers

• MacOS: use macports or homebrew

• On zaratan:

• Use command line editors such as vim

8

Abhinav Bhatele (CMSC416 / CMSC616)

Excused absence

9

Any student who needs to be excused for an absence from a single lecture, due to a medically
necessitated absence shall make a reasonable attempt to inform the instructor of his/her illness prior to
the class. Upon returning to the class, present the instructor with a self-signed note attesting to the date
of their illness. Each note must contain an acknowledgment by the student that the information provided
is true and correct. Providing false information to University officials is prohibited under Part 9(i) of the
Code of Student Conduct (V-1.00(B) University of Maryland Code of Student Conduct) and may result in
disciplinary action.

Self-documentation may not be used for Major Scheduled Grading Events (midterm and final exams) and
it may only be used for one class meeting during the semester. Any student who needs to be excused for
a prolonged absence (two or more consecutive class meetings), or for a Major Scheduled Grading Event,
must provide written documentation of the illness from the Health Center or from an outside health
care provider. This documentation must verify dates of treatment and indicate the timeframe that the
student was unable to meet academic responsibilities. In addition, it must contain the name and phone
number of the medical service provider to be used if verification is needed. No diagnostic information
will ever be requested.

Abhinav Bhatele (CMSC416 / CMSC616)

Use of LLMs

10

AI assistance (ChatGPT, Copilot, DALL-E, etc.) is not permitted for coding, writing, editing, or any other
part of the quizzes and programming assignments. Even though we expect you will use these tools in the
future, this approach will help you build a solid understanding of the subject matter, which will benefit
your future career.

You can use AI tools such as ChatGPT as you would use Google for research. However, you cannot
generate your solutions using ChatGPT. You must demonstrate independent thought and effort. If you use
any AI tools for anything class related, you must mention that in your answer/report. Please note that
LLMs provide unreliable information, regardless of how convincingly they do so. If you are going to use an
LLM as a research tool in your submission, you must ensure that the information is correct and addresses
the actual question asked.

Abhinav Bhatele (CMSC416 / CMSC616)

Academic dishonesty

• In the last few years, we have discovered that 10-15% of students have been involved
in academic dishonesty

• We use software to detect plagiarism in programming assignments

• If we suspect something, we must report it to the Office of Student Conduct (OSC)

11

Abhinav Bhatele (CMSC416 / CMSC616)

What is parallel computing?

• Serial or sequential computing: doing a task in sequence on a single processor

• Parallel computing: breaking up a task into sub-tasks and doing them in parallel
(concurrently) on a set of processors (often connected by a network)

• Some tasks do not need any communication: embarrassingly parallel

12

Abhinav Bhatele (CMSC416 / CMSC616)

What is parallel computing?

• Does it include:

• Grid computing: processors are dispersed geographically

• Distributed computing: processors connected by a network

• Cloud computing: on-demand availability, typically pay-as-you-go model

• Does it include:

• Superscalar processors

• Vector processors

• Accelerators (GPUs, FPGAs)

13

Abhinav Bhatele (CMSC416 / CMSC616)

The need for parallel computing or HPC

14

https://www.nature.com/articles/nature21414

Drug discovery Weather forecasting

https://www.ncl.ucar.edu/Applications/wrf.shtml

Study of the universe

https://www.nas.nasa.gov/SC14/demos/demo27.html

HPC stands for High Performance Computing

Abhinav Bhatele (CMSC416 / CMSC616)

Why do we need parallelism?

• Make some science simulations feasible in the lifetime of humans

• Typical constraints are speed or memory requirements

• Either it would take too long to do the simulations

• Or the simulation data would not fit in the memory of a single processor

• Made possible by using more than one core/processor

• Provide answers in realtime or near realtime

15

Abhinav Bhatele (CMSC416 / CMSC616)

Large supercomputers

• Top500 list: https://www.top500.org/lists/top500/2025/06

16

El Capitan @ LLNL
https://en.wikipedia.org/wiki/El_Capitan_(supercomputer)

https://www.top500.org/lists/top500/2025/06

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel architecture

• A set of nodes or processing elements connected by a network.

17

https://computing.llnl.gov/tutorials/parallel_comp

Abhinav Bhatele (CMSC416 / CMSC616)

Interconnection networks

• Different topologies for connecting nodes together

• Used in the past: torus, hypercube

• More popular currently: fat-tree, dragonfly

18

Column all-to-all (black) links Row all-to-all (green) links

A group with 96 Aries routers

Inter-group (blue) links
(not all links are shown)

Two-level dragonfly with multiple groups

Fig. 3: Example of a Cray Cascade (XC30) installation with four groups and 96 Aries routers per group. Within a group, a
message is routed in at most two hops (on the black and/or green links) if congestion does not exist; between groups, the
inter-group blue links are used leading to a shortest path of at most five hops.

thousand nodes. In either case, the top-level switches only have
downward connections from their ports to other switches (thus
if there are n leaf-level switches, only n

2 top-level switches are
needed).

Traffic in current fat-tree networks is usually forwarded
using a static routing algorithm, meaning that all messages
between a given pair of nodes take the same (shortest)
path through the fat-tree every time. Each path consists of
a sequence of links going up from the source node to a
nearest common ancestor, followed by a sequence of links
going down to the destination node. A commonly-used static
routing algorithm is the “destination mod k” or D-mod-k
algorithm [4], which load balances routes across links on a
fat-tree and is believed to have good performance. In this
scheme, the next upward link in the path is chosen at each
level based on the destination node’s ID, until the common
ancestor is reached. After that, downward links that lead to
the destination are selected.

B. Dragonfly Topology and Adaptive Routing

The dragonfly topology is becoming another popular choice
for interconnection networks in post-petascale supercomput-
ers [5]. In this paper, we focus on Cray Cascade [6] (or Cray
XC30), one of the implementations of the dragonfly topology.
Figure 3 illustrates a four-group Cray Cascade installation.
Ninety-six routers are connected together to form a group,
arranged in a 6 ⇥ 16 grid. Sixteen routers in each row
are connected in an all-to-all manner by green links, and
six routers in each column are also connected in an all-to-
all configuration by sets of three black links per router-pair.
Routers in different groups are connected together via blue
links.

In contrast to fat-trees, the Cray Cascade uses adaptive
routing to minimize hotspots [6]. In adaptive routing schemes,
each router can dynamically choose between multiple paths for
any given message. Some paths are minimal in the number
of hops and others go indirectly through a randomly selected
third group. Based on the amount of load on the minimal paths,
the router may randomly select one of the other non-minimal
paths along which to send messages. This random scheme is
expected to help mitigate real-time congestion.

C. Inter-Job Network Interference

As mentioned in Section I, jobs in HPC systems typically
execute concurrently and contend for shared resources. In this
work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
lowered system utilization, and most modern machines are
configured to let jobs share the interconnect.

The effects of network contention may manifest differently
on each machine based on its link bandwidth and topology. In
this work we study the effects of network contention on fat-
tree and dragonfly machines. While the fat-tree topology has
good properties in terms of total available bandwidth across
the system, congestion can still be a problem [10]. Under the
D-mod-k routing scheme, the next upgoing link in a message’s
path is selected based on a modulo of its destination ID.
Therefore, inter-switch traffic belonging to different jobs may
contend at a switch if their destination IDs have the same
modulo. In a typical fat-tree installation, multiple many-node
jobs are likely to contend for network links and interfere with
each other’s communication performance.

As mentioned above, dragonfly machines typically use
adaptive routing to attempt to load balance traffic, but inter-job
network contention can occur regardless. For example, con-
tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.

III. EXPERIMENTAL SETUP

Below, we describe the machines, benchmarks, and produc-
tion applications used in the experiments for this paper.

Column all-to-all (black) links Row all-to-all (green) links

A group with 96 Aries routers

Inter-group (blue) links
(not all links are shown)

Two-level dragonfly with multiple groups

Fig. 3: Example of a Cray Cascade (XC30) installation with four groups and 96 Aries routers per group. Within a group, a
message is routed in at most two hops (on the black and/or green links) if congestion does not exist; between groups, the
inter-group blue links are used leading to a shortest path of at most five hops.

thousand nodes. In either case, the top-level switches only have
downward connections from their ports to other switches (thus
if there are n leaf-level switches, only n

2 top-level switches are
needed).

Traffic in current fat-tree networks is usually forwarded
using a static routing algorithm, meaning that all messages
between a given pair of nodes take the same (shortest)
path through the fat-tree every time. Each path consists of
a sequence of links going up from the source node to a
nearest common ancestor, followed by a sequence of links
going down to the destination node. A commonly-used static
routing algorithm is the “destination mod k” or D-mod-k
algorithm [4], which load balances routes across links on a
fat-tree and is believed to have good performance. In this
scheme, the next upward link in the path is chosen at each
level based on the destination node’s ID, until the common
ancestor is reached. After that, downward links that lead to
the destination are selected.

B. Dragonfly Topology and Adaptive Routing

The dragonfly topology is becoming another popular choice
for interconnection networks in post-petascale supercomput-
ers [5]. In this paper, we focus on Cray Cascade [6] (or Cray
XC30), one of the implementations of the dragonfly topology.
Figure 3 illustrates a four-group Cray Cascade installation.
Ninety-six routers are connected together to form a group,
arranged in a 6 ⇥ 16 grid. Sixteen routers in each row
are connected in an all-to-all manner by green links, and
six routers in each column are also connected in an all-to-
all configuration by sets of three black links per router-pair.
Routers in different groups are connected together via blue
links.

In contrast to fat-trees, the Cray Cascade uses adaptive
routing to minimize hotspots [6]. In adaptive routing schemes,
each router can dynamically choose between multiple paths for
any given message. Some paths are minimal in the number
of hops and others go indirectly through a randomly selected
third group. Based on the amount of load on the minimal paths,
the router may randomly select one of the other non-minimal
paths along which to send messages. This random scheme is
expected to help mitigate real-time congestion.

C. Inter-Job Network Interference

As mentioned in Section I, jobs in HPC systems typically
execute concurrently and contend for shared resources. In this
work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
lowered system utilization, and most modern machines are
configured to let jobs share the interconnect.

The effects of network contention may manifest differently
on each machine based on its link bandwidth and topology. In
this work we study the effects of network contention on fat-
tree and dragonfly machines. While the fat-tree topology has
good properties in terms of total available bandwidth across
the system, congestion can still be a problem [10]. Under the
D-mod-k routing scheme, the next upgoing link in a message’s
path is selected based on a modulo of its destination ID.
Therefore, inter-switch traffic belonging to different jobs may
contend at a switch if their destination IDs have the same
modulo. In a typical fat-tree installation, multiple many-node
jobs are likely to contend for network links and interfere with
each other’s communication performance.

As mentioned above, dragonfly machines typically use
adaptive routing to attempt to load balance traffic, but inter-job
network contention can occur regardless. For example, con-
tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.

III. EXPERIMENTAL SETUP

Below, we describe the machines, benchmarks, and produc-
tion applications used in the experiments for this paper.

Torus Fat-tree Dragonfly

Abhinav Bhatele (CMSC416 / CMSC616)

I/O sub-system / Parallel file system

• Home directories and scratch space on
clusters are typically on a parallel file
system

• Compute nodes do not have local disks

• Parallel filesystem is mounted on all login
and compute nodes

19

http://wiki.lustre.org/Introduction_to_Lustre

Abhinav Bhatele (CMSC416 / CMSC616)

System software: models and runtimes
• Parallel programming model

• Parallelism is achieved through language constructs or by making calls to a
library and the execution model depends on the model used.

• Parallel runtime [system]:

• Implements the parallel execution model

• Shared memory/address-space

• Pthreads, OpenMP, Chapel

• Distributed memory

• MPI, Charm

20

User code

Parallel runtime

Communication library

Operating system

Terminology and Definitions
Abhinav Bhatele, Department of Computer Science

Parallel Computing (CMSC416 / CMSC616)

Abhinav Bhatele (CMSC416 / CMSC616)

Announcements

• Zaratan accounts have been created for everyone

• Quiz 0 has been posted on ELMS

• Assignment 0.1 will be posted next week

• Midterm has been scheduled for October 30

• No class on Tuesday (September 9)

• Undergrads interested in research — look out for a Piazza post

22

Abhinav Bhatele (CMSC416 / CMSC616)

Getting started with zaratan

• Over 360 nodes with AMD Milan processors (128 cores/node, 512 GB memory/
node)

• 20 nodes with four NVIDIA A100 GPUs (40 GB per GPU)

23

ssh username@login.zaratan.umd.edu

Abhinav Bhatele (CMSC416 / CMSC616)

Cores, sockets, nodes
• Core: a single execution unit that has

a private L1 cache and can execute
instructions independently

• Processor: several cores on a single
Integrated Circuit (IC) or chip are
called a multi-core processor

• Socket: physical connector into which
an IC/chip or processor is inserted.

• Node: a packaging of sockets —
motherboard or printed circuit board
(PCB) that has multiple sockets

24

https://hpc-wiki.info/hpc/HPC-Dictionary

Abhinav Bhatele (CMSC416 / CMSC616)

Rackmount servers

25

Abhinav Bhatele (CMSC416 / CMSC616)

Zaratan CPU compute node

26

Abhinav Bhatele (CMSC416 / CMSC616)

Zaratan racks / cabinets

27

Abhinav Bhatele (CMSC416 / CMSC616)

Job scheduling

• HPC systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” scheduler

• The scheduler decides:

• what job to schedule next (based on an algorithm: FCFS, priority-based, ….)

• what resources (compute nodes) to allocate to the ready job

28

Job Queue

#Nodes
Requested

Time
Requested

128 30 mins
64 24 hours
56 6 hours

192 12 hours
… …
… …

1
2
3
4
5
6

• Compute nodes: dedicated to each job

• Network, filesystem: shared by all jobs

Abhinav Bhatele (CMSC416 / CMSC616)

Compute nodes vs. login nodes

• Compute nodes: dedicated nodes for running jobs

• Can only be accessed when they have been allocated to a user by the job scheduler

• Login nodes: nodes shared by all users to compile their programs, submit jobs etc.

• Service/managements nodes: I/O nodes, etc.

29

Abhinav Bhatele (CMSC416 / CMSC616)

Supercomputers vs. commodity clusters

• Supercomputer refers to a large expensive installation, typically using custom
hardware

• High-speed interconnect

• IBM Blue Gene, Cray XT, Cray XC

• Cluster refers to a cluster of nodes, typically put together using commodity (off-the-
shelf) hardware

30

Abhinav Bhatele (CMSC416 / CMSC616)

Serial vs. parallel code

• Thread: a thread or path of execution managed by the operating system (OS)

• Threads share the same memory address space

• Process: heavy-weight, processes do not share resources such as memory, file
descriptors etc.

• Serial or sequential code: can only run on a single thread or process

• Parallel code: can be run on one or more threads or processes

31

Abhinav Bhatele (CMSC416 / CMSC616)

Scaling and scalable

• Scaling: the action of running a parallel
program on 1 to n processes

• 1, 2, 3, … , n

• 1, 2, 4, 8, …, n

• Scalable: A program is scalable if its
performance improves when using more
resources

32

Ex
ec

ut
io

n
tim

e
(m

in
ut

es
)

0.1

1

10

100

1000

10000

Number of cores

1 4 16 64 256 1K 4K 16K

Actual
Extrapolation

Abhinav Bhatele (CMSC416 / CMSC616)

Weak versus strong scaling

• Strong scaling: Fixed total problem size as we run on more resources (processes or
threads)

• Sorting n numbers on 1 process, 2 processes, 4 processes, …

• Weak scaling: Fixed problem size per process but increasing total problem size as we
run on more resources

• Sorting n numbers on 1 process

• 2n numbers on 2 processes

• 4n numbers on 4 processes

33

Abhinav Bhatele (CMSC416 / CMSC616)

Speedup and efficiency

• (Parallel) Speedup: Ratio of execution time on one process to that on p processes

• (Parallel) efficiency: Speedup per process

34

Speedup =
t1
tp

Efficiency =
t1

tp × p

Abhinav Bhatele (CMSC416 / CMSC616)

Amdahl’s law

• Speedup is limited by the serial portion of the code

• Often referred to as the serial “bottleneck” — the portion that cannot be parallelized

• Lets say only a fraction f of the program (in terms of execution time) can be
parallelized on p processes

35

Speedup =
1

(1 − f) + f/p

Abhinav Bhatele (CMSC416 / CMSC616)

Amdahl’s law

36

Speedup =
1

(1 − f) + f/p

 fprintf(stdout,"Process %d of %d is on %s\n",
 myid, numprocs, processor_name);
 fflush(stdout);

 n = 10000; /* default # of rectangles */
 if (myid == 0)
 startwtime = MPI_Wtime();

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

 h = 1.0 / (double) n;
 sum = 0.0;
 /* A slightly better approach starts from large i and works back */
 for (i = myid + 1; i <= n; i += numprocs)
 {
 x = h * ((double)i - 0.5);
 sum += f(x);
 }
 mypi = h * sum;

 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

Speedup =
1

(1 − 0.6) + 0.6/p

Total time on 1 process = 100s
Serial portion = 40s
Portion that can be parallelized = 60s

f =
60

100
= 0.6

Abhinav Bhatele (CMSC416 / CMSC616)

Communication and synchronization

• Each process may execute serial code independently for a while

• When data is needed from other (remote) processes, messaging is required

• Referred to as communication or synchronization (or MPI messages)

• Intra-node communication: among cores within a node

• Inter-node communication: among cores on different nodes connected by a network

• Bulk synchronous programs: All processes compute simultaneously, then synchronize
(communicate) together

37

Abhinav Bhatele (CMSC416 / CMSC616)

Different models of parallel computation

38

Flynn’s Taxonomy

SISD: Single Instruction Single Data SIMD: Single Instruction Multiple Data

https://en.wikipedia.org/wiki/Flynn's_taxonomy

Example: Vector / array processors

Abhinav Bhatele (CMSC416 / CMSC616)

Different models of parallel computation

39

MIMD: Multiple Instruction Multiple Data
• Two other variations

• SIMT: Single Instruction Multiple Threads

• Threads execute in lock-step

• Example: GPUs

• SPMD: Single program Multiple Data

• All processes execute the same program but act on
different data

• Enables MIMD parallelization

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

