
Shared Memory and OpenMP
Abhinav Bhatele, Department of Computer Science

Parallel Computing (CMSC416 / CMSC616)

Abhinav Bhatele (CMSC416 / CMSC616)

Shared memory architecture

• All processors/cores can access all memory as a single address space

2

https://computing.llnl.gov/tutorials/parallel_comp/#SharedMemory

Uniform Memory Access

Abhinav Bhatele (CMSC416 / CMSC616)

Shared memory architecture

• All processors/cores can access all memory as a single address space

2

https://computing.llnl.gov/tutorials/parallel_comp/#SharedMemory

Uniform Memory Access Non-uniform Memory Access (NUMA)

Abhinav Bhatele (CMSC416 / CMSC616)

Distributed memory architecture

• Groups of processors/cores have access to their local memory

• Writes in one group’s memory have no effect on another group’s memory

3

Shared memory (NUMA)

Distributed memory

Abhinav Bhatele (CMSC416 / CMSC616)

Distributed memory architecture

• Groups of processors/cores have access to their local memory

• Writes in one group’s memory have no effect on another group’s memory

3

Shared memory (NUMA)

Distributed memory

Abhinav Bhatele (CMSC416 / CMSC616)

Distributed memory architecture

• Groups of processors/cores have access to their local memory

• Writes in one group’s memory have no effect on another group’s memory

3

Shared memory (NUMA)

Distributed memory

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel programming models

• Shared memory model: All threads have access to all of the memory

• pthreads, OpenMP, CUDA

• Distributed memory model: Each process has access to its own local memory

• Also sometimes referred to as message passing

• MPI, Charm++

• Hybrid models: Use of both shared and distributed memory models together in the
same program

• MPI+OpenMP, Charm++ (SMP mode)

4

Abhinav Bhatele (CMSC416 / CMSC616)

Shared memory programming

• All entities (threads) have access to the entire address space

• Threads “communicate” or exchange data by directly accessing shared variables

• Programmer has to manage data conflicts

5

NUMA Multi-core Node

Abhinav Bhatele (CMSC416 / CMSC616)

Announcements

• Assignment 1 will be posted on Sep 23 and due on Sep 30 11:59 pm ET

• Reminders:

• Do not use vscode to ssh/scp to zaratan

• Do not run/execute code on the login node

• Do not run sudo on zaratan

6

Abhinav Bhatele (CMSC416 / CMSC616)

OpenMP

• OpenMP is an example of a shared memory programming model

• Provides within-node parallelization

• Targeted at some kinds of programs/computational kernels

• Specifically ones that use arrays and loops

• Potentially easier to implement programs in parallel using OpenMP with small code
changes (as opposed to distributed memory programming models, which may require
extensive modifications to the serial program)

7

Abhinav Bhatele (CMSC416 / CMSC616)

OpenMP

• OpenMP is a language extension (and library) that enables parallelizing C/C++/
Fortran code

• Programmer uses compiler directives and library routines to indicate parallel regions
in the code and how to parallelize them

• Compiler converts code to multi-threaded code

• OpenMP uses a fork/join model of parallelism

8

Abhinav Bhatele (CMSC416 / CMSC616)

Fork-join parallelism

• Single flow of control

• Primary thread spawns worker threads

9

 https://en.wikipedia.org/wiki/OpenMP

Primary Thread

Primary Thread

https://en.wikipedia.org/wiki/OpenMP

Abhinav Bhatele (CMSC416 / CMSC616)

Fork-join parallelism

• Single flow of control

• Primary thread spawns worker threads

9

 https://en.wikipedia.org/wiki/OpenMP

Primary Thread

Primary Thread

https://en.wikipedia.org/wiki/OpenMP

Abhinav Bhatele (CMSC416 / CMSC616)

Race conditions when threads interact

• Unintended sharing of data/variables can lead to race conditions

• Race condition: program outcome depends on the scheduling order of threads

• More than one thread accesses a memory location and at least one of them writes to it (without proper
synchronization)

• We want program outcome to be deterministic and same as serial program

• How can we prevent data races?

• Use synchronization, which can be expensive

• Change how data is accessed to minimize the need for synchronization

10

Abhinav Bhatele (CMSC416 / CMSC616)

OpenMP pragmas

• Pragma: a compiler directive in C or C++

• Mechanism to communicate with the compiler

• Compiler may ignore pragmas

11

#pragma omp construct [clause [clause] ...]

Abhinav Bhatele (CMSC416 / CMSC616)

• Compiling:

• Setting number of threads:

Hello World in OpenMP

12

#include “omp.h”

void main()
{
 #pragma omp parallel
 {
 int thread_id = omp_get_thread_num();
 printf(“Hello, world from %d.\n”, thread_id);
 }
}

gcc -fopenmp hello.c -o hello

export OMP_NUM_THREADS=2

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel for
• Directs the compiler that the immediately following for loop should be executed in

parallel

• Only applies to the immediately following for loop even if you have nested for
loops

13

#pragma omp parallel for [clause [clause] ...]
for (i = init; test_expression; increment_expression) {
 ...
 do work
 ...
}

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel for example

14

int main(int argc, char **argv)
{
 int a[100000];

 #pragma omp parallel for
 for (int i = 0; i < 100000; i++) {
 a[i] = 2 * i;
 }

 return 0;
}

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel for execution
• Primary thread creates worker threads

• The OpenMP runtime distributes iterations of the loop to different threads

15

Primary thread

Worker thread 1

Time

Worker thread 2

Worker thread 3

parallel for synchronize

Abhinav Bhatele (CMSC416 / CMSC616)

Number of threads

• You can set it using this environment variable before executing the program:

• From within the program, you can call this library routine to set the number of OpenMP
threads to be used in parallel regions:

• This routine returns the number of available hardware cores on the node and can be used to
decide the number of threads to create:

16

export OMP_NUM_THREADS=X

void omp_set_num_threads(int num_threads);

int omp_get_num_procs(void);

Abhinav Bhatele (CMSC416 / CMSC616)

Data sharing defaults

• Most variables in an OpenMP program are shared by default

• Global variables are shared

• Exception: loop index variables are private by default

• Exception: Stack variables in function calls from parallel regions are also private to
each thread (thread-private)

17

Abhinav Bhatele (CMSC416 / CMSC616)

Parallelizing using OpenMP

18

for (int i = 0; i < n; i++) {
 z[i] = a * x[i] + y[i];
}

• Identify compute intensive regions/loops

• Make the loop iterations independent

• Add the appropriate OpenMP directive

• saxpy (single precision a*x+y) example:

Abhinav Bhatele (CMSC416 / CMSC616)

Parallelizing using OpenMP

18

for (int i = 0; i < n; i++) {
 z[i] = a * x[i] + y[i];
}

#pragma omp parallel for

• Identify compute intensive regions/loops

• Make the loop iterations independent

• Add the appropriate OpenMP directive

• saxpy (single precision a*x+y) example:

Abhinav Bhatele (CMSC416 / CMSC616)

Overriding defaults using clauses

• Specify how data is shared between threads executing a parallel region

• private(list)

• shared(list)

• default(shared | none)

• reduction(operator: list)

• firstprivate(list)

• lastprivate(list)

19

https://www.openmp.org/spec-html/5.0/openmpsu106.html#x139-5540002.19.4

Abhinav Bhatele (CMSC416 / CMSC616)

private clause

• Each thread has its own copy of the variables in the list

• Private variables are uninitialized when a thread starts

• The value of a private variable is unavailable to the primary thread after the parallel
region has been executed

20

Abhinav Bhatele (CMSC416 / CMSC616)

default clause

• Determines the data sharing attributes for variables for which this would be implicitly
determined otherwise

• Possible values: shared or none

• shared is the default for C/C++

• So default(none) can be used as a good programming practice

• Forces listing the sharing attribute for each variable

21

Abhinav Bhatele (CMSC416 / CMSC616)

Anything wrong with this example?

22

val = 5;

#pragma omp parallel for private(val)
for (int i = 0; i < n; i++) {
 val = val + 1;
}

Abhinav Bhatele (CMSC416 / CMSC616)

Anything wrong with this example?

22

val = 5;

#pragma omp parallel for private(val)
for (int i = 0; i < n; i++) {
 val = val + 1;
}

The value of val will not be available
to threads inside the loop

Abhinav Bhatele (CMSC416 / CMSC616)

Anything wrong with this example?

23

#pragma omp parallel for private(val)
for (int i = 0; i < n; i++) {
 val = i + 1;
}

printf(“%d\n”, val);

Abhinav Bhatele (CMSC416 / CMSC616)

Anything wrong with this example?

23

#pragma omp parallel for private(val)
for (int i = 0; i < n; i++) {
 val = i + 1;
}

printf(“%d\n”, val);

The value of val will not be available to
the primary thread outside the loop

Abhinav Bhatele (CMSC416 / CMSC616)

firstprivate clause
• Initializes each thread’s private copy to the value of the primary thread’s copy upon

entry to the parallel section

24

val = 5;

#pragma omp parallel for firstprivate(val)
for (int i = 0; i < n; i++) {
 val = val + 1;
}

Abhinav Bhatele (CMSC416 / CMSC616)

lastprivate clause

• Writes the value belonging to the thread that executed the last iteration of the loop
to the primary thread’s copy

• Last iteration determined by sequential order

25

Abhinav Bhatele (CMSC416 / CMSC616)

lastprivate clause

• Writes the value belonging to the thread that executed the last iteration of the loop
to the primary thread’s copy

• Last iteration determined by sequential order

25

#pragma omp parallel for lastprivate(val)
for (int i = 0; i < n; i++) {
 val = i + 1;
}

printf(“%d\n”, val);

Abhinav Bhatele (CMSC416 / CMSC616)

reduction(operator: list) clause
• Reduce values across private copies of a variable

• Operators: +, -, *, &, |, ^, &&, ||, max, min

26

#pragma omp parallel for
for (int i = 0; i < n; i++) {
 val += i;
}

printf(“%d\n”, val);

https://www.openmp.org/spec-html/5.0/openmpsu107.html#x140-5800002.19.5

Abhinav Bhatele (CMSC416 / CMSC616)

reduction(operator: list) clause
• Reduce values across private copies of a variable

• Operators: +, -, *, &, |, ^, &&, ||, max, min

26

#pragma omp parallel for
for (int i = 0; i < n; i++) {
 val += i;
}

printf(“%d\n”, val);

reduction(+: val)

https://www.openmp.org/spec-html/5.0/openmpsu107.html#x140-5800002.19.5

Abhinav Bhatele (CMSC416 / CMSC616)

Loop scheduling

• Assignment of loop iterations to different worker threads

• Default schedule tries to balance iterations among threads

• User-specified schedules are also available

27

Abhinav Bhatele (CMSC416 / CMSC616)

User-specified loop scheduling

• Schedule clause

• type: static, dynamic, guided, runtime

• static: iterations divided as evenly as possible (#iterations/#threads)

• chunk < #iterations/#threads can be used to interleave threads

• dynamic: assign a chunk size block to each thread

• When a thread is finished, it retrieves the next block of #chunk iterations from an internal work queue

• Default chunk size = 1

28

schedule (type[, chunk])

Abhinav Bhatele (CMSC416 / CMSC616)

Other schedules

• guided: similar to dynamic but start with a large block and gradually shrinks to size
#chunk for handling load imbalance between iterations

• runtime: use the OMP_SCHEDULE environment variable

29

https://software.intel.com/content/www/us/en/develop/articles/openmp-loop-scheduling.html

Abhinav Bhatele (CMSC416 / CMSC616)

Calculate the value of

30

π = ∫
1

0

4
1 + x2

int main(int argc, char *argv[])
{
 ...

 n = 10000;

 h = 1.0 / (double) n;
 sum = 0.0;

 for (i = 1; i <= n; i += 1) {
 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x * x));
 }
 pi = h * sum;

 ...
}

Abhinav Bhatele (CMSC416 / CMSC616)

Calculate the value of

31

π = ∫
1

0

4
1 + x2

dx

int main(int argc, char *argv[])
{
 ...

 n = 10000;
 h = 1.0 / (double) n;
 sum = 0.0;

 #pragma omp parallel for private(x) reduction(+: sum)
 for (i = 1; i <= n; i += 1) {
 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x * x));
 }
 pi = h * sum;

 ...
}

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel region

• All threads execute the structured block

• Structured block: a block of one or more statements with one point of entry at the
top and one point of exit at the bottom

• Number of threads can be specified just like the parallel for directive

32

#pragma omp parallel [clause [clause] ...]
 structured block

Abhinav Bhatele (CMSC416 / CMSC616)

Synchronization

• Concurrent access to shared data may result in inconsistencies

• Use mutual exclusion to avoid that

• critical directive

• atomic directive

• Library lock routines

33

https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/appendix/adding-parallelism-to-your-program/replacing-annotations-with-openmp-code/adding-openmp-code-to-
synchronize-the-shared-resources.html

Abhinav Bhatele (CMSC416 / CMSC616)

critical directive

• Specifies that the code is only to be executed by one thread at a time

34

#pragma omp critical [(name)]
 structured block

Abhinav Bhatele (CMSC416 / CMSC616)

atomic directive

• Specifies that a memory location should be updated atomically

35

#pragma omp atomic
 expression

Abhinav Bhatele (CMSC416 / CMSC616)

GPGPUs
• GPGPU: General Purpose Graphical Processing Unit

• Many slower cores

36

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Abhinav Bhatele (CMSC416 / CMSC616)

OpenMP on GPUs

• target: run on accelerator / device

• teams distribute: creates a team of worker threads and distributes work amongst
them

37

for (int i = 0; i < n; i++) {
 z[i] = a * x[i] + y[i];
}

Abhinav Bhatele (CMSC416 / CMSC616)

OpenMP on GPUs

• target: run on accelerator / device

• teams distribute: creates a team of worker threads and distributes work amongst
them

37

for (int i = 0; i < n; i++) {
 z[i] = a * x[i] + y[i];
}

#pragma omp target teams distribute parallel for

Abhinav Bhatele (CMSC416 / CMSC616)

OpenMP on GPUs

• target: run on accelerator / device

• teams distribute: creates a team of worker threads and distributes work amongst
them

37

for (int i = 0; i < n; i++) {
 z[i] = a * x[i] + y[i];
}

#pragma omp target teams distribute parallel for

OpenMP Offload

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

