Parallel Computing (CMSC416 / CMSCé616)

Shared Memory and OpenMP

Abhinav Bhatele, Department of Computer Science

UNIVERSITY OF

MARYLAND

Shared memory architecture

e All processors/cores can access all memory as a single address space

Uniform Memory Access

https://computing.linl.gov/tutorials/parallel_comp/#SharedMemory

RST
,\«]ﬁ iy
)

“ DEPARTMENT OF .
1;"Rym5@56 COMPUTER 5CIENCE Abhinav Bhatele (CMSC416 / CMSCé616)

Shared memory architecture

e All processors/cores can access all memory as a single address space

Bus Interconnect

Uniform Memory Access Non-uniform Memory Access (NUMA)

https://computing.linl.gov/tutorials/parallel_comp/#SharedMemory

RST
,\s]ﬁ iy
)

“ DEPARTMENT OF .
1;"Rym5@56 COMPUTER 5CIENCE Abhinav Bhatele (CMSC416 / CMSCé616)

Distributed memory architecture

® Groups of processors/cores have access to their local memory

® Writes in one group’s memory have no effect on another group’s memory

Bus Interconnect

Shared memory (NUMA)

Distributed memory

S DEPARTMENT OF ,
1:%“9; COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Distributed memory architecture

® Groups of processors/cores have access to their local memory

® Writes in one group’s memory have no effect on another group’s memory

Bus Interconnect

Shared memory (NUMA)

Distributed memory

S DEPARTMENT OF ,
1:%“9; COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Distributed memory architecture

® Groups of processors/cores have access to their local memory

® Writes in one group’s memory have no effect on another group’s memory

Bus Interconnect

Shared memory (NUMA)

Distributed memory

RST
,\«]ﬁ iy
)

“ DEPARTMENT OF .
i’mm@% COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Parallel programming models

® Shared memory model: All threads have access to all of the memory

e pthreads, OpenMP, CUDA

e Distributed memory model: Each process has access to its own local memory

* Also sometimes referred to as message passing

e MPI, Charm++

e Hybrid models: Use of both shared and distributed memory models together in the
same program

e MPI+OpenMP, Charm++ (SMP mode)

SUr
S * DEPARTMENT OF

88" COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

RyLd

Shared memory programming

o All entities (threads) have access to the entire address space
® Threads “communicate” or exchange data by directly accessing shared variables

® Programmer has to manage data conflicts |
NUMA Multi-core Node

Bus Interconnect

1:%“5; COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 5

RST
QERSIT
o)

.
* DEPARTMENT OF

Announcements

e Assignment | will be posted on Sep 23 and due on Sep 30 11:59 pm ET

e Reminders:
* Do not use vscode to ssh/scp to zaratan
* Do not run/execute code on the login node

e Do not run sudo on zaratan

QERSIT
e&
Q

=% DEPARTMENT OF :
1:74&%; COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

OpenMP

e OpenMP is an example of a shared memory programming model
® Provides within-node parallelization

® Targeted at some kinds of programs/computational kernels

o Specifically ones that use arrays and loops

® Potentially easier to implement programs in parallel using OpenMP with small code
changes (as opposed to distributed memory programming models, which may require
extensive modifications to the serial program)

@@ D o e A ENCE Abhinav Bhatele (CMSC416 / CMSC616) 7
«11{‘;”&0

OpenMP

e OpenMP is a language extension (and library) that enables parallelizing C/C++/
Fortran code

® Programmer uses compiler directives and library routines to indicate parallel regions
in the code and how to parallelize them

o Compiler converts code to multi-threaded code

o OpenMP uses a fork/join model of parallelism

@@ D o e A ENCE Abhinav Bhatele (CMSC416 / CMSC616)
«11{‘;”&0

Fork-join parallelism

® Single flow of control
Parallel Task | Parallel Task Il Parallel Task Il

® Primary thread spawns worker threads H “
B B @—

Primary Thread

Primary Thread

https://en.wikipedia.org/wiki/OpenMP

RSI
QERSIT
QS

2% DEPARTMENT OF :
18%595 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 9

https://en.wikipedia.org/wiki/OpenMP

Fork-join parallelism

® Single flow of control
Parallel Task | Parallel Task Il Parallel Task Il

® Primary thread spawns worker threads H “
B B @—

Primary Thread

Parallel Task | Parallel Task Il Parallel Task Il

https://en.wikipedia.org/wiki/OpenMP

QERSIT
e&
Q

2% DEPARTMENT OF :
1;4RYL¢°% COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 9

https://en.wikipedia.org/wiki/OpenMP

Race conditions when threads interact

¢ Unintended sharing of data/variables can lead to race conditions

® Race condition: program outcome depends on the scheduling order of threads

* More than one thread accesses a memory location and at least one of them writes to it (without proper
synchronization)

® Ve want program outcome to be deterministic and same as serial program

® How can we prevent data races!

e Use synchronization, which can be expensive

* Change how data is accessed to minimize the need for synchronization

qeRSIT
e&
Q

=% DEPARTMENT OF :
1;4595 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 10

OpenMP pragmas

® Pragma:a compiler directive in C or C++
® Mechanism to communicate with the compiler

e Compiler may ignore pragmas

#pragma omp construct [clause [clause]

@@ D o e A ENCE Abhinav Bhatele (CMSC416 / CMSC616)
«11{‘;”&0

]

Hello World in OpenMP

#include “omp.h”

volid main()

{
#pragma omp parallel
{
int thread 1d = omp get thread num();
printf(“Hello, world from %d.\n”, thread id);
}
}

¢ Compiling: gcc -fopenmp hello.c -o hello

e Setting number of threads: export OMP_NUM THREADS=2

N DEPARTMENT OF Abhinav Bhatele (CMSC416 / CMSC616)

44444

12

Parallel for

® Directs the compiler that the immediately following for loop should be executed in
parallel

® Only applies to the immediately following for loop even if you have nested for
loops

#pragma omp parallel for [clause [clause] ...]

for (1 = 1nit; test expression; increment expression) {
do work
@ DERARTMENT OF Abhinav Bhatele (CMSC416 / CMSC616)

44444

|3

Parallel for example

int main(int argc, char **argv)

{
int a[1000007;
#pragma omp parallel for
for (int 1 = 0; 1 < 100000; 1i++) {
a[i1] = 2 * 1;
}
return 0;
}

; /Q](DZECI;?\I/}{)I\LAJ%L\ERO;CIENCE Abhinav Bhatele (CMSC416 / CMSC616)

44444

| 4

Parallel for execution

® Primary thread creates worker threads

® The OpenMP runtime distributes iterations of the loop to different threads

parallel for synchronize

Primary thread l _ l
Worker thread | _
Worker thread 2 _
Worker thread 3 _

Time Sy e T . W —

S DEPARTMENT OF ,
i’mms COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Number of threads

® You can set it using this environment variable before executing the program:

export OMP NUM THREADS=X

® From within the program, you can call this library routine to set the number of OpenMP
threads to be used in parallel regions:

volid omp set num threads(int num threads);

® [his routine returns the number of available hardware cores on the node and can be used to
decide the number of threads to create:

int omp get num procs(void);

i@"; %ES?\I/}{)I\LAJ%‘\ER(?CIENCE Abhinav Bhatele (CMSC416 / CMSC616) 16
‘71{“\’&5%0

Data sharing defaults

® Most variables in an OpenMP program are shared by default
® Global variables are shared
® Exception: loop index variables are private by default

® Exception: Stack variables in function calls from parallel regions are also private to
each thread (thread-private)

SUr
S * DEPARTMENT OF

184741{\;&5 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

|7

Parallelizing using OpenMP

¢ |dentify compute intensive regions/loops
® Make the loop iterations independent
® Add the appropriate OpenMP directive

® saxpy (single precision a*x+y) example:

for (int i1 = 0; i < n; i++) {
z[1] = a * x[1] + y[1];

}

SUr
S * DEPARTMENT OF

"8 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

444444

|18

Parallelizing using OpenMP

® |dentify compute intensive regions/loops
® Make the loop iterations independent

® Add the appropriate OpenMP directive
® saxpy (single precision a*x+y) example:

#pragma omp parallel for

for (int i1 = 0; i < n; i++) {
z[1] = a * x[1] + y[1];

}

S DEPARTMENT OF ,
1:741§(Lbe°56 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

|18

Overriding defaults using clauses

e Specify how data is shared between threads executing a parallel region
® private(list)

® shared(list)

® default(shared | none)

® reduction(operator: list)

@ firstprivate(list)

® lastprivate(list)

https://www.openmp.org/spec-html/5.0/openmpsu | 06.html#x139-5540002.19.4

SUr
S * DEPARTMENT OF

184741{\;&5 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

private clause

® Each thread has its own copy of the variables in the list
® Private variables are uninitialized when a thread starts

® The value of a private variable is unavailable to the primary thread after the parallel
region has been executed

RSI
QERSIT
QS

=% DEPARTMENT OF :
zﬁwg COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

20

default clause

® Determines the data sharing attributes for variables for which this would be implicitly
determined otherwise

® Possible values: shared or none

® shared is the default for C/C++

® Sodefault (none) can be used as a good programming practice

* Forces listing the sharing attribute for each variable

S DEPARTMENT OF :
1;4\' 40 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 21

Ry1LM

Anything wrong with this example?

val = 5;

#pragma omp parallel for private(val)
for (int 1 = 0; 1 < n; 1++) {
val = val + 1;

}

S DEPARTMENT OF ,
" 4@ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

44444

22

Anything wrong with this example?

val = 5;

#pragma omp parallel for private(val) The value of val will not be available

for (int 1 = 0; 1 < n; 1++) { to threads inside the loop
val = val + 1;

}

S DEPARTMENT OF ,
zdgwg COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

22

Anything wrong with this example?

#pragma omp parallel for private(val)
for (int i = 0; 1 < n; i++) {
val = 1 + 1;

}

printf(“%d\n”, val);

S DEPARTMENT OF ,
" 4@ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

44444

23

Anything wrong with this example?

#pragma omp parallel for private(val)
for (int 1 = 0; 1 < n; 1++) {

val = 1 + 1; The value of val will not be available to
} the primary thread outside the loop

printf(“%d\n”, val);

S DEPARTMENT OF ,
" éo COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

44444

23

firstprivate clause

® |nitializes each thread’s private copy to the value of the primary thread’s copy upon
entry to the parallel section

val = 5;

#pragma omp parallel for firstprivate(val)
for (int i = 0; i < n; i++) {
val = val + 1;

}

y X / el ENCE Abhinav Bhatele (CMSC416 / CMSC616)

44444

24

lastprivate clause

® Writes the value belonging to the thread that executed the last iteration of the loop
to the primary thread’s copy

® |ast iteration determined by sequential order

S DEPARTMENT OF ,
1:741§(Lbe°56 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

25

lastprivate clause

® Writes the value belonging to the thread that executed the last iteration of the loop
to the primary thread’s copy

e |ast iteration determined by sequential order

#pragma omp parallel for lastprivate(val)
for (int 1 = 0; 1 < n; 1++) {
val = 1 + 1;

}

printf(“%d\n”, val);

; /Q %ES?\I/}{)I\LAJ%\ERO;CIENCE Abhinav Bhatele (CMSC416 / CMSC616)

44444

25

reduction(operator: list) clause

® Reduce values across private copies of a variable

e Operators: +, -, *, &, |, A, &&, ||, max, min

#pragma omp parallel for
for (int 1 = 0; 1 < n; 1++) {
val += 1i:

printf(“%d\n”, val);

https://www.openmp.org/spec-html|/5.0/openmpsu | 07.htmI#x 140-5800002.19.5

@@ D o e A ENCE Abhinav Bhatele (CMSC416 / CMSC616)
«11{‘;”&0

26

reduction(operator: list) clause

® Reduce values across private copies of a variable

e Operators: +,-,* &, |, A, &&, ||, max, min

Identifier Initializer “Combiner

+ omp_priv = 0 omp_out += omp_in
- omp_priv = 0 omp_out += omp_in
: % omp_priv = 1 omp_out %= omp_in
#pragma omp parallel for reduction(+: val) s omp_priv = ~ @ omp_out &= omp_in
: S . - . - | omp_priv = 0 omp_out |= omp_in
for (lnt 1 O' 1 < nj l++) { n omp_priv = 0 omp_out ~= omp_in
val += 1; && omp_priv =1 omp_out = omp_1n

&& omp_out
} | | omp_priv = 0 omp_out = omp_in

| | omp_out
max omp_priv = Least omp_out = omp_in

: 1o " . representable number in the > omp_out ?
prlntf(Od\n / Val) 4 reduction list item type omp_in : omp_out
min omp_priv = Largest omp_out = omp_in

representable number in the < omp_out ?
‘reduction list item type omp_in : omp_out

https://www.openmp.org/spec-html|/5.0/openmpsu | 07.htmI#x 140-5800002.19.5

J

i@"; %ES?\I/}{)I\LAJ%‘\ER(?CIENCE Abhinav Bhatele (CMSC416 / CMSC616) 26
‘71?\’&?»%0

Loop scheduling

e Assignment of loop iterations to different worker threads
® Default schedule tries to balance iterations among threads

e User-specified schedules are also available

S DEPARTMENT OF ,
1:741§(Lbe°56 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

27

User-specified loop scheduling

e Schedule clause

schedule (type[, chunk])

® type: static, dynamic, guided, runtime

® static: iterations divided as evenly as possible (#iterations/#threads)

e chunk < #iterations/#threads can be used to interleave threads

® dynamic: assign a chunk size block to each thread

* When a thread is finished, it retrieves the next block of #chunk iterations from an internal work queue

e Default chunk size = |

S DEPARTMENT OF ,
1:74\- 5 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

RyLd

Other schedules

® guided: similar to dynamic but start with a large block and gradually shrinks to size
#chunk for handling load imbalance between iterations

¢ runtime: use the OMP SCHEDULE environment variable

https://software.intel.com/content/www/us/en/develop/articles/openmp-loop-scheduling.html

@@ D o e A ENCE Abhinav Bhatele (CMSC416 / CMSC616)
«11{‘;9%0

29

Calculate the value of 7=

int main(int argc, char *argv[])

{
n = 10000;
h = 1.0 / (double) n;
sum = 0.0;
for (1 =1; 1 <=n; 1 += 1) {
x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x * X));
}
pl = h * sum;
}

:@ D e NG Abhinav Bhatele (CMSC416 / CMSC616)
«11{‘;“&0

|

o 1+ x?

30

Calculate the value of 7=

|

o 1+ x?

int main(int argc, char *argv[])
{
n = 10000;
h = 1.0 / (double) n;
sum = 0.0;
#pragma omp parallel for private(x) reduction(+: sum)
for (1 =1; 1 <=n; 1 += 1) {
x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x * xX));
}
pl = h * sum;
}

47@ D o e A ENCE Abhinav Bhatele (CMSC416 / CMSC616)
«1R‘;LP§Q

dx

31

Parallel region

e All threads execute the structured block

#pragma omp parallel [clause [clause] ...]
structured block

e Structured block: a block of one or more statements with one point of entry at the
top and one point of exit at the bottom

e Number of threads can be specified just like the parallel for directive

; /Q](DZECI;?\I/}{)I\LAJ%L\ERO;CIENCE Abhinav Bhatele (CMSC416 / CMSC616)

44444

32

Synchronization

e Concurrent access to shared data may result in inconsistencies
e Use mutual exclusion to avoid that

® critical directive

® atomic directive

e |ibrary lock routines

https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/appendix/adding-parallelism-to-your-program/replacing-annotations-with-openmp-code/adding-openmp-code-to-
synchronize-the-shared-resources.html

i@"; %ES?\I/}{)I\LAJ%‘\ER(?CIENCE Abhinav Bhatele (CMSC416 / CMSC616) 33
‘71?\’&?»%0

critical directive

e Specifies that the code is only to be executed by one thread at a time

#pragma omp critical [(name)]
structured block

@@ D o e A ENCE Abhinav Bhatele (CMSC416 / CMSC616)
«11{‘;”&0

34

atomic directive

® Specifies that a memory location should be updated atomically

#pragma omp atomic
expression

@@ D o e A ENCE Abhinav Bhatele (CMSC416 / CMSC616)
«11{‘;”&0

35

GPGPUs

o GPGPU: General Purpose Graphical Processing Unit

® Many slower cores

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

CPU GPU

L2 Cache

DRAM

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

wRSIp

Q
R
5

B COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

TRyLAS

36

OpenMP on GPUs

® target: run on accelerator / device

for (int i = 0; i < n; i++) {
z[1] = a * x[1] + y[1];

® teams distribute: creates a team of worker threads and distributes work amongst
them

@@ D o e A ENCE Abhinav Bhatele (CMSC416 / CMSC616)
«11{‘;”&0

37

OpenMP on GPUs

® target: run on accelerator / device

#pragma omp target teams distribute parallel for

for (int i = 0; i < n; i++) {
z[1] = a * x[1] + y[1];

® teams distribute: creates a team of worker threads and distributes work amongst
them

@@ D o e A ENCE Abhinav Bhatele (CMSC416 / CMSC616)
«11{‘;9%0

37

OpenMP on GPUs

® target:run on accelerator / device OpenMP Offload

#pragma omp target teams distribute parallel for
for (int 1 = 0; 1 < n; 1++) {
z[1] = a * x[1] + y[1];

}

® teams distribute: creates a team of worker threads and distributes work amongst
them

; /Q](DZECI;?\I/}{)I\LAJ%L\ERO;CIENCE Abhinav Bhatele (CMSC416 / CMSC616)

44444

37

UNIVERSITY OF

MARYLAND

Abhinav Bhatele
5218 Brendan Iribe Center (IRB) / College Park, MD 20742
phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

