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Announcements

e Assignment | is posted, due on Sep 30 | 1:59 pm

* Resource for OpenMP: https://computing.linl.gov/tutorials/openMP

* Reminder: your solutions will be run by us on zaratan to verify correctness

e Assignment 0.2 is also posted but not due until Oct 7 | 1:59 pm

* |f you have questions about this assighment, hold off working on it until the topic is covered in class

® Resources for learning MPI:

e https://mpitutorial.com

o https://rookiehpc.org

S DEPARTMENT OF ,
Zgwg COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)


https://computing.llnl.gov/tutorials/openMP
https://mpitutorial.com
https://rookiehpc.org

Distributed memory programming models

® Each process only has access to its own local memory / address space

® When it needs data from remote processes, it has to send/receive messages
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Message passing

® Each process runs in its own address space

* Access to only their memory (no shared data)

e Use special routines to exchange data among processes
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Message passing programs

® A parallel message passing program consists of independent processes

* Processes created by a launch/run script

® Each process runs the same executable, but potentially different parts of the program,
and on different data

o Often used for SPMD style of programming
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Message passing history

® PVM (Parallel Virtual Machine) was developed in 1989-1993

e MPI forum was formed in 1992 to standardize message passing models and MPI 1.0
was released in 1994

o v2.0 — 1997
e v3.0 — 2012
e v4.0 — 2021
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Message Passing Interface (MPI)

® |tis an interface standard — defines the operations / routines needed for message
passing

® |Implemented by vendors and academics for different platforms

e Meant to be “portable”: ability to run the same code on different platforms without modifications

® Some popular open-source dimplementations are MPICH, MVAPICH, OpenMPI

* Vendors often implement their own versions optimized for their hardware: Cray/HPE, Intel
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Hello world in MPI

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]) {
int myrank, numpes;
MPI Init(&argc, &argv);

MPI Comm rank(MPI COMM WORLD, &myrank)j;
MPI Comm size(MPI COMM WORLD, &numpes);
printf("Hello world! I'm %d of %d\n", myrank, numpes);

MPI Finalize();
return O;

}
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Compiling and running an MPI program

o Compiling:

mpicc -0 hello hello.c
® Running:

mpirun -n 2 ./hello

18
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Process creation / destruction

® int MPI Init( int argc, char **argv )
¢ |nitializes the MPI execution environment
@ int MPI Finalize( void )

e Jerminates the MPIl execution environment
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Process identification

® int MPT Comm size( MPI Comm comm, 1nt *size )
e Determines the size of the group associated with a communicator

¢ int MPI Comm rank( MPI Comm comm, 1nt *rank )
* Determines the rank (ID) of the calling process in the communicator

e Communicator — a set of processes identified by a unique tag

® Default communicator: MPI COMM WORLD
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Send a blocking pt2pt message

int MPI Send( const void *buf, int count,\MPI Datatype datatype,
int dest, int tag, MPI Comm comm )

buf:address of send buffer

count: number of elements in send buffer
datatype: datatype of each send buffer element
dest: rank of destination process

tag: message tag

comm: commuhnicator
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Send a blocking pt2pt message

int MPI Send( const void *buf, int count,\MPI Datatype datatype,
int dest, int tag, MPI Comm comm )
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of processes
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Receive a blocking pt2pt message

int MPI Recv( void *buf, int count, MPI Datatype datatype, 1int
source, int tag, MPI Comm comm, MPI Status *status )

buf:address of receive buffer

count: maximum number of elements in receive buffer
datatype: datatype of each receive buffer element
source: rank of source process

tag: message tag

comm: communicator

status: status object
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MPI| Status object

typedef struct MPI Status {
int count;
int cancelled;
int MPI SOURCE:
® Represents the status of the received message int MPI_TAG;
int MPI ERROR;
} MPI Status, *PMPI Status;

® count: number of received entries
e MPlI_SOURCE: source of the message
e MPI_TAG: tag value of the message

e MPI_ERROR: error associated with the message
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Semantics of point-to-point communication

® A receive matches a send if certain arguments to the calls match

* What is matched: source, tag, communicator

* |f the datatypes and count don’t match, this could lead to memory errors and correctness issues

e |f a sender sends two messages to a destination, and both match the same receive,
the second message cannot be received if the first is still pending

* “No-overtaking” messages

e Always true when processes are single-threaded

® Tags can be used to disambiguate between messages in case of non-determinism
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Simple send/receive in MPI

int main(int argc, char *argv[]) {

MPI Comm rank(MPI COMM WORLD, &myrank);

int data;
1f (myrank == 0) {

data = 7;
MPI Send(&data, 1, MPI INT, 1, 0, MPI COMM WORLD);
} else 1f (myrank == 1) {

MPI Recv(&data, 1, MPI INT, O, O, MPI COMM WORLD, MPI STATUS IGNORE);
printf ("Process 1 received data %d from process 0\n", data);
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Basic MPl Send and MPI Recv

e MPl Send and MPI_Recv routines are blocking

e Only return when the buffer specified in the call can be used again
¢ Send: Returns once sender can reuse the buffer

e Recv: Returns once data from Recyv is available in the buffer
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e MPl Send and MPI_Recv routines are blocking

e Only return when the buffer specified in the call can be used again
¢ Send: Returns once sender can reuse the buffer
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Example program

int main(int argc, char *argv[]) {

MPI Comm rank(MPI COMM WORLD, &myrank);

1f (myrank % 2 == 0) {

data = myrank;
MPI Send(&data,
} else {

data = myrank * 2;

MPI Recv(&data,

printf ("Process
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Example program

0 rank = 0 data= 0 data=0
int main(int argc, char *argv[]) {

— l rank = 1 data = 2 data=0
MPI Comm rank(MPI COMM WORLD, &myrank)j;
if (myrank 2 = 0) { 2 rank = 2 data = 2 data = 2

data = myrank;

MPI Send(&data, 1, MPI INT, myrank+l, 0, ...); 3 rank=3 data=6 data = 2
} else {

data = myrank * 2; :

MPI Recv(&data, 1, MPI INT, myrank-1, 0, ...); Time ~____________________________

printf("Process %d received data %d\n”, myrank, data);
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MPI| communicators

e Communicator represents a group or set of processes numbered O, ... , n-|

e |dentified by a unique “tag” assigned by the runtime

® Every program starts with MPl_COMM_WORLD (default communicator)

e Defined by the MPI runtime, this group includes all processes

e Several MPI routines to create sub-communicators
e MPI_Comm_ split
e MPI Cart create

e MPI_Group incl
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MPI datatypes

e Can be a pre-defined one: MPI_INT, MPI_CHAR, MPI_DOUBLE, ...

® Derived or user-defined datatypes:

* Array of elements of another datatype

® struct datatype to accommodate sending multiple datatypes together
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