Parallel Computing (CMSC416 / CMSCé616)

Message Passing and MPI

Abhinav Bhatele, Department of Computer Science

UNIVERSITY OF

MARYLAND

Announcements

e Assignment | is posted, due on Sep 30 | 1:59 pm

* Resource for OpenMP: https://computing.linl.gov/tutorials/openMP

* Reminder: your solutions will be run by us on zaratan to verify correctness

e Assignment 0.2 is also posted but not due until Oct 7 | 1:59 pm

* |f you have questions about this assighment, hold off working on it until the topic is covered in class

® Resources for learning MPI:

e https://mpitutorial.com

o https://rookiehpc.org

S DEPARTMENT OF ,
Zgwg COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

https://computing.llnl.gov/tutorials/openMP
https://mpitutorial.com
https://rookiehpc.org

Distributed memory programming models

® Each process only has access to its own local memory / address space

® When it needs data from remote processes, it has to send/receive messages

Process 0 /‘

Process |

Time W e e —

S DEPARTMENT OF ,
1:%“5; COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 3

Message passing

® Each process runs in its own address space

* Access to only their memory (no shared data)

e Use special routines to exchange data among processes

5@ DEPARTMENT OF
474%4@ COMPUTER SCIENCE

Process 0

Process |

Process 2

Process 3

Time

1

l/:\]

Abhinav Bhatele (CMSC416 / CMSC616)

Message passing programs

® A parallel message passing program consists of independent processes

* Processes created by a launch/run script

® Each process runs the same executable, but potentially different parts of the program,
and on different data

o Often used for SPMD style of programming

S DEPARTMENT OF ,
1:741;;»@56 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 5

Message passing history

® PVM (Parallel Virtual Machine) was developed in 1989-1993

e MPI forum was formed in 1992 to standardize message passing models and MPI 1.0
was released in 1994

o v2.0 — 1997
e v3.0 — 2012
e v4.0 — 2021

S DEPARTMENT OF ,
" 5 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

44444

Message Passing Interface (MPI)

® |tis an interface standard — defines the operations / routines needed for message
passing

® |Implemented by vendors and academics for different platforms

e Meant to be “portable”: ability to run the same code on different platforms without modifications

® Some popular open-source dimplementations are MPICH, MVAPICH, OpenMPI

* Vendors often implement their own versions optimized for their hardware: Cray/HPE, Intel

S DEPARTMENT OF ,
1:741;;»@56 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Hello world in MPI

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]) {
int myrank, numpes;
MPI Init(&argc, &argv);

MPI Comm rank(MPI COMM WORLD, &myrank)j;
MPI Comm size(MPI COMM WORLD, &numpes);
printf("Hello world! I'm %d of %d\n", myrank, numpes);

MPI Finalize();
return O;

}

S DEPARTMENT OF ,
" éo COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

44444

Compiling and running an MPI program

o Compiling:

mpicc -0 hello hello.c
® Running:

mpirun -n 2 ./hello

18

S DEPARTMENT OF .
B 5 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

RyLd

Process creation / destruction

® int MPI Init(int argc, char **argv)
¢ |nitializes the MPI execution environment
@ int MPI Finalize(void)

e Jerminates the MPIl execution environment

@@ DEPARTMENT OF Abhinav Bhatele (CMSC416 / CMSC616)

44444

10

Process identification

® int MPT Comm size(MPI Comm comm, 1nt *size)
e Determines the size of the group associated with a communicator

¢ int MPI Comm rank(MPI Comm comm, 1nt *rank)
* Determines the rank (ID) of the calling process in the communicator

e Communicator — a set of processes identified by a unique tag

® Default communicator: MPI COMM WORLD

RSI
QERSIT
QS

=% DEPARTMENT OF :
1:74&%; COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Send a blocking pt2pt message

int MPI Send(const void *buf, int count,\MPI Datatype datatype,
int dest, int tag, MPI Comm comm)

buf:address of send buffer

count: number of elements in send buffer
datatype: datatype of each send buffer element
dest: rank of destination process

tag: message tag

comm: commuhnicator

S DEPARTMENT OF ,
1:741§(Lbe°56 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

12

Send a blocking pt2pt message

int MPI Send(const void *buf, int count,\MPI Datatype datatype,
int dest, int tag, MPI Comm comm)

Between a pair

buf:address of send buffer
of processes

count: number of elements in send buffer
datatype: datatype of each send buffer element
dest: rank of destination process

tag: message tag

comm: commuhnicator

S DEPARTMENT OF ,
Zgwg COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

12

Receive a blocking pt2pt message

int MPI Recv(void *buf, int count, MPI Datatype datatype, 1int
source, int tag, MPI Comm comm, MPI Status *status)

buf:address of receive buffer

count: maximum number of elements in receive buffer
datatype: datatype of each receive buffer element
source: rank of source process

tag: message tag

comm: communicator

status: status object

SUr
S * DEPARTMENT OF

18

2,

W) COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

RyLd

|3

MPI| Status object

typedef struct MPI Status {
int count;
int cancelled;
int MPI SOURCE:
® Represents the status of the received message int MPI_TAG;
int MPI ERROR;
} MPI Status, *PMPI Status;

® count: number of received entries
e MPlI_SOURCE: source of the message
e MPI_TAG: tag value of the message

e MPI_ERROR: error associated with the message

@@ D o e A ENCE Abhinav Bhatele (CMSC416 / CMSC616)
«11{‘;”&0

Semantics of point-to-point communication

® A receive matches a send if certain arguments to the calls match

* What is matched: source, tag, communicator

* |f the datatypes and count don’t match, this could lead to memory errors and correctness issues

e |f a sender sends two messages to a destination, and both match the same receive,
the second message cannot be received if the first is still pending

* “No-overtaking” messages

e Always true when processes are single-threaded

® Tags can be used to disambiguate between messages in case of non-determinism

S DEPARTMENT OF :
1:74;;9@56 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) |5

Semantics of point-to-point communication

® A receive matches a send if certain arguments to the calls match Between a pair
of processes
* What is matched: source, tag, communicator

* |f the datatypes and count don’t match, this could lead to memory errors and correctness issues

e |f a sender sends two messages to a destination, and both match the same receive,
the second message cannot be received if the first is still pending

* “No-overtaking” messages

e Always true when processes are single-threaded

® Tags can be used to disambiguate between messages in case of non-determinism

i@/"; %ES?\I/}{)%%‘\EROSFCIENCE Abhinav Bhatele (CMSC416 / CMSC616) >
41§LP§Q

Simple send/receive in MPI

int main(int argc, char *argv[]) {

MPI Comm rank(MPI COMM WORLD, &myrank);

int data;
1f (myrank == 0) {

data = 7;
MPI Send(&data, 1, MPI INT, 1, 0, MPI COMM WORLD);
} else 1f (myrank == 1) {

MPI Recv(&data, 1, MPI INT, O, O, MPI COMM WORLD, MPI STATUS IGNORE);
printf ("Process 1 received data %d from process 0\n", data);

:@ D e NG Abhinav Bhatele (CMSC416 / CMSC616)
«11{‘;”@

16

Basic MPl Send and MPI Recv

e MPl Send and MPI_Recv routines are blocking

e Only return when the buffer specified in the call can be used again
¢ Send: Returns once sender can reuse the buffer

e Recv: Returns once data from Recyv is available in the buffer

Process 0 .
Process | .
Time —————————F7————F 77—
SME:* DEPARTMENT OF Abhinav Bhatele (CMSC416 / CMSC616)

) COMPUTER SCIENCE

MPI_Send

MPI_Recv

|7

Basic MPl Send and MPI Recv

e MPl Send and MPI_Recv routines are blocking

e Only return when the buffer specified in the call can be used again
¢ Send: Returns once sender can reuse the buffer

e Recv: Returns once data from Recyv is available in the buffer

Process 0 . '
Process | . '
Time — S — 55—
SME:* DEPARTMENT OF Abhinav Bhatele (CMSC416 / CMSC616)

) COMPUTER SCIENCE

MPI_Send

MPI_Recv

|7

e MPl Send and MPI_Recv routines are blocking

e Only return when the buffer specified in the call can be used again
¢ Send: Returns once sender can reuse the buffer

e Recv: Returns once data from Recyv is available in the buffer

Process 0 . .
Deadlock!
Process | . '
Time ———5—"
SAE> DEPARTMENT OF Abhinav Bhatele (CMSC416 / CMSC616)

) COMPUTER SCIENCE

Basic MPl Send and MPI Recv

MPI_Send

MPI_Recv

|7

e MPl Send and MPI_Recv routines are blocking

e Only return when the buffer specified in the call can be used again
¢ Send: Returns once sender can reuse the buffer

e Recv: Returns once data from Recyv is available in the buffer

Process 0 ' '
Deadlock!
Process | . '
Time ———5—"
SAE> DEPARTMENT OF Abhinav Bhatele (CMSC416 / CMSC616)

) COMPUTER SCIENCE

Basic MPl Send and MPI Recv

MPI_Send

MPI_Recv

|7

Example program

int main(int argc, char *argv[]) {

MPI Comm rank(MPI COMM WORLD, &myrank);

1f (myrank % 2 == 0) {

data = myrank;
MPI Send(&data,
} else {

data = myrank * 2;

MPI Recv(&data,

printf ("Process

%\@ DEPARTMENT OF
@ﬂ%éo COMPUTER SCIENCE

0

I

2
1, MPI INT, myrank+l, 0, ...); 3
1, MPI INT, myrank-1, 0, ...); TJime

%d received data %d\n”, myrank, data);

Abhinav Bhatele (CMSC416 / CMSC616)

rank =0
rank = 1
rank = 2
rank = 3

|18

Example

program

int main(int argc, char *argv[]) {

MPI Comm rank(MPI COMM WORLD, &myrank);

1f (myrank % 2 ==
data = myrank;
MPI Send(&data,
} else {
data = myrank *
MPI Recv(&data,

printf ("Process

}

%\@ DEPARTMENT OF
@ﬂméo COMPUTER SCIENCE

0

l
0) { 2
1, MPI INT, myrank+1l, 0, ...); 3
2;
1, MPI INT, myrank-1, 0, ...); Jime

%d received data %d\n”, myrank, data);

Abhinav Bhatele (CMSC416 / CMSC616)

rank =0
rank = 1
rank = 2
rank = 3

data= 0
data = 2
data = 2
data =6

|18

Example

program

int main(int argc, char *argv[]) {

MPI Comm rank(MPI COMM WORLD, &myrank);

1f (myrank % 2 ==
data = myrank;
MPI Send(&data,
} else {
data = myrank *
MPI Recv(&data,

printf ("Process

}

%\@ DEPARTMENT OF
@ﬂ%éo COMPUTER SCIENCE

0

l
0) { 2
1, MPI INT, myrank+1l, 0, ...); 3
2;
1, MPI INT, myrank-1, 0, ...); Jime

%d received data %d\n”, myrank, data);

Abhinav Bhatele (CMSC416 / CMSC616)

rank =0
rank = 1
rank = 2
rank = 3

data= 0
data = 2
data = 2
data =6

|18

Example

program

int main(int argc, char *argv[]) {

MPI Comm rank(MPI COMM WORLD, &myrank);

1f (myrank % 2 ==
data = myrank;
MPI Send(&data,
} else {
data = myrank *
MPI Recv(&data,

printf ("Process

}

Wg@é} DEPARTMENT OF
@d%éo COMPUTER SCIENCE

0

l
0) { 2
1, MPI INT, myrank+1l, 0, ...); 3
2;
1, MPI INT, myrank-1, 0, ...); Jime

%d received data %d\n”, myrank, data);

Abhinav Bhatele (CMSC416 / CMSC616)

rank =0
rank = 1
rank = 2
rank = 3

data= 0
data = 2
data = 2
data =6

|18

Example program

0 rank = 0 data= 0 data=0
int main(int argc, char *argv[]) {

— l rank = 1 data = 2 data=0
MPI Comm rank(MPI COMM WORLD, &myrank)j;
if (myrank 2 = 0) { 2 rank = 2 data = 2 data = 2

data = myrank;

MPI Send(&data, 1, MPI INT, myrank+l, 0, ...); 3 rank=3 data=6 data = 2
} else {

data = myrank * 2; :

MPI Recv(&data, 1, MPI INT, myrank-1, 0, ...); Time ~____________________________

printf("Process %d received data %d\n”, myrank, data);

i@z %ES?\I/}{)%%‘\EROSFCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 8
‘YR“{(LP&Q

MPI| communicators

e Communicator represents a group or set of processes numbered O, ... , n-|

e |dentified by a unique “tag” assigned by the runtime

® Every program starts with MPl_COMM_WORLD (default communicator)

e Defined by the MPI runtime, this group includes all processes

e Several MPI routines to create sub-communicators
e MPI_Comm_ split
e MPI Cart create

e MPI_Group incl

SUr
S * DEPARTMENT OF

18

2,

W) COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Ry1LM

19

MPI datatypes

e Can be a pre-defined one: MPI_INT, MPI_CHAR, MPI_DOUBLE, ...

® Derived or user-defined datatypes:

* Array of elements of another datatype

® struct datatype to accommodate sending multiple datatypes together

SUr
S * DEPARTMENT OF

184741{\;&5 COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

20

UNIVERSITY OF

MARYLAND

Abhinav Bhatele
5218 Brendan Iribe Center (IRB) / College Park, MD 20742
phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

