
Performance Modeling, Analysis, and Tools
Abhinav Bhatele, Department of Computer Science

Parallel Computing (CMSC416 / CMSC616)



Abhinav Bhatele (CMSC416 / CMSC616)

Announcements

• Assignment 0.2 is due on October 7 11:59 pm ET

• Quiz 1 is posted due on October 8 12 noon ET

• Assignment 2 is posted due on October 21 11:59 pm ET

2



Abhinav Bhatele (CMSC416 / CMSC616)

Weak versus strong scaling

• Strong scaling: Fixed total problem size as we run on more processes

• Sorting n numbers on 1 process, 2 processes, 4 processes, …

• Problem size per process decreases with increase in number of processes

• Weak scaling: Fixed problem size per process but increasing total problem size as 
we run on more processes

• Sorting n numbers on 1 process

• 2n numbers on 2 processes

• 4n numbers on 4 processes

3



Abhinav Bhatele (CMSC416 / CMSC616)

Amdahl’s law

• Speedup is limited by the serial portion of the code

• Often referred to as the serial “bottleneck”

• Lets say only a fraction f of the code can be parallelized on p processes

4

Speedup =
1

(1 − f ) + f/p



Abhinav Bhatele (CMSC416 / CMSC616)

Amdahl’s law

• Speedup is limited by the serial portion of the code

• Often referred to as the serial “bottleneck”

• Lets say only a fraction f of the code can be parallelized on p processes

4

Speedup =
1

(1 − f ) + f/p



Abhinav Bhatele (CMSC416 / CMSC616)

Amdahl’s law

• Speedup is limited by the serial portion of the code

• Often referred to as the serial “bottleneck”

• Lets say only a fraction f of the code can be parallelized on p processes

4

Speedup =
1

(1 − f ) + f/p



Abhinav Bhatele (CMSC416 / CMSC616)

Performance analysis

• Parallel performance of a program might not be what the developer expects

• How do we find performance bottlenecks?

• Performance analysis is the process of studying the performance of a code

• Identify why performance might be slow

• Serial performance

• Serial bottlenecks when running in parallel

• Communication overheads

5



Abhinav Bhatele (CMSC416 / CMSC616)

Different performance analysis methods

• Analytical techniques: use algebraic formulae

• In terms of data size (n), number of processes (p)

• Time complexity analysis: big O notation

• Scalability analysis: Isoefficiency

• More detailed modeling of various operations such as communication

• Analytical models: LogP, alpha-beta model

• Empirical performance analysis using profiling tools

6



Abhinav Bhatele (CMSC416 / CMSC616)

Parallel prefix sum

7

2 8 3 5 7 4 1 6

2 10 11 8 12 11 5 7

2 10 13 18 25 29 30 36

2 10 13 18 23 19 17 18



Abhinav Bhatele (CMSC416 / CMSC616)

Parallel prefix sum

7

2 8 3 5 7 4 1 6

2 10 11 8 12 11 5 7

2 10 13 18 25 29 30 36

2 10 13 18 23 19 17 18



Abhinav Bhatele (CMSC416 / CMSC616)

Parallel prefix sum for n >> p

• Assign n/p elements (block) to each process

• Perform prefix sum on these blocks on each process locally

• Number of calculations per processs:

• Then do the parallel algorithm using the computed partial prefix sums

• Number of phases: 

• Total number of calculations per process:

• Communication per process (one message containing one key/number):

8



Abhinav Bhatele (CMSC416 / CMSC616)

Parallel prefix sum for n >> p

• Assign n/p elements (block) to each process

• Perform prefix sum on these blocks on each process locally

• Number of calculations per processs:

• Then do the parallel algorithm using the computed partial prefix sums

• Number of phases: 

• Total number of calculations per process:

• Communication per process (one message containing one key/number):

8

n
p



Abhinav Bhatele (CMSC416 / CMSC616)

Parallel prefix sum for n >> p

• Assign n/p elements (block) to each process

• Perform prefix sum on these blocks on each process locally

• Number of calculations per processs:

• Then do the parallel algorithm using the computed partial prefix sums

• Number of phases: 

• Total number of calculations per process:

• Communication per process (one message containing one key/number):

8

n
p

log(p)



Abhinav Bhatele (CMSC416 / CMSC616)

Parallel prefix sum for n >> p

• Assign n/p elements (block) to each process

• Perform prefix sum on these blocks on each process locally

• Number of calculations per processs:

• Then do the parallel algorithm using the computed partial prefix sums

• Number of phases: 

• Total number of calculations per process:

• Communication per process (one message containing one key/number):

8

n
p

log(p)

×
n
p

log(p)



Abhinav Bhatele (CMSC416 / CMSC616)

Parallel prefix sum for n >> p

• Assign n/p elements (block) to each process

• Perform prefix sum on these blocks on each process locally

• Number of calculations per processs:

• Then do the parallel algorithm using the computed partial prefix sums

• Number of phases: 

• Total number of calculations per process:

• Communication per process (one message containing one key/number):

8

n
p

log(p)

×
n
p

log(p)

log(p) × 1 × 1



Abhinav Bhatele (CMSC416 / CMSC616)

Modeling communication: LogP model

• Used for modeling communication on the inter-node network

9

the assumption of a large number of data elements
per processor. This has significant impact on the
kinds of algorithms that are effective in practice.

Network technology is advancing as well, but it is
not driven by the same volume market forces as
microprocessors and memory. Currently, communi-
cation bandwidth lags far behind internal processor
memory bandwidth and the time to move data across
the network is far greater than the time to move data
between chips on a node. Moreover, the realizable
performance is limited by the interface between the
network and the node, which consumes processing
cycles just getting data into and out of the network.
Although network interfaces are improving, proces-
sors are improving in performance even faster, so we
must assume that high latency and overhead of com-
munication, as well as limited bandwidth, will contin-
ue to be problems.

There appears to be no consensus emerging on
the interconnection topology: The networks of new
commercial machines are typically different from
their predecessors and different from one another.
In addition, most production parallel machines can
operate in the presence of network faults and allow
the operating system to assign programs to collec-
tions of nodes. Thus, the physical interconnect
underlying a program may vary even on a single
machine. Attempting to exploit a specific network
topology is likely to yield algorithms that are not very
robust in practice.

The convergence of parallel architectures is reflect-
ed in our LogP model that addresses significant com-

mon issues while suppressing machine specific ones,
such as network topology and routing algorithm. The
model characterizes a parallel machine by a small set
of parameters. In our approach, a good algorithm
embodies a strategy for adapting to different
machines in terms of these parameters.

LogP Model
Starting from the technological motivations previous-
ly discussed, together with programming experience
and examination of popular theoretical models, we

have developed a model of a distributed-memory
multiprocessor in which processors communicate by
point-to-point messages. The model specifies the per-
formance characteristics of the interconnection net-
work, but does not describe the structure of the
network.

The main parameters of the model are the follow-
ing (illustrated in Figure 2):

L: An upper bound on the latency, or delay,
incurred in communicating a message containing
a word (or small number of words) from its
source processor/memory module to its target
processor/memory module.

o: The overhead, defined as the length of time that a
processor is engaged in the transmission or
reception of each message. During this time, the
processor cannot perform other operations.

g: The gap, defined as the minimum time interval
between consecutive message transmissions or
consecutive message receptions at a processor.
The reciprocal of g corresponds to the available
per-processor communication bandwidth.

P: The number of processor/memory modules.

The parameters L, o, and g are typically measured
as multiples of the processor cycle time. The model is
asynchronous, in that processors work asynchronously
and the latency experienced by any message is unpre-
dictable, but is bound above by L in the absence of
stalls. Because of variations in latency, messages direct-
ed to a given target module may not arrive in the same
order as they are sent. The basic model assumes that
all messages are of a small fixed size. Furthermore, it
is assumed that the network has a finite capacity, such
that at most ⎡L/g ⎤ messages can be in transit from any
processor or to any processor at any time. If a proces-
sor attempts to transmit a message that would exceed
this limit, it stalls until the message can be sent with-
out exceeding the capacity limit.

In analyzing an algorithm, the key metrics are the
maximum time and the maximum amount of storage
used by any processor. In order to be considered cor-
rect, an algorithm must produce correct results
under all interleavings of messages consistent with
the upper bound of L on latency. However, in esti-
mating the running time of an algorithm, we assume
that each message incurs a latency of L.

LogP models communication but does not attempt
to model local computation. We have resisted the
temptation to provide a more detailed model of the
individual processors taking into account factors such
as cache size or pipeline structure, and rely instead on
the existing body of knowledge in implementing fast
sequential algorithms on modern uniprocessor sys-
tems to fill the gap. An implementation of a good par-
allel algorithm on a specific machine will surely
require a degree of local tuning.

There is a concern that LogP has too many para-
meters, which makes analysis of interesting algo-
rithms difficult. Fortunately, the parameters are not

COMMUNICATIONS OF THE ACM November 1996/Vol. 39, No. 11 81

P M P M P M. . .
P (processors)

oo (overhead)

L (latency)

Interconnection network

g (gap)

Limited capacity

(L/g to or from

a processor)

Figure 2. The LogP model describes an abstract
machine configuration in terms of four performance
parameters: L, the latency experienced in each 
communication event; o, the overhead experienced 
by the sending and receiving processors for each 
communication event; g, the gap between successive
sends or successive receives by a processor; and P, 
the number of processor/memory modules.

L: latency or delay

o: overhead (processor busy in communication)

g: gap (required between successive sends/
receives)

P: number of processors / processes

g is the inverse of bandwidth
1/g = bandwidth



Abhinav Bhatele (CMSC416 / CMSC616)

alpha + n * beta model

• Another model for communication

10

Tcomm = α + n × β

α: latency

n: size of message

1/β: bandwidth



Abhinav Bhatele (CMSC416 / CMSC616)

Isoefficiency

• Relationship between problem size and number of processes to maintain a certain 
level of efficiency

• At what rate should we increase problem size with respect to number of processes 
to keep efficiency constant (iso-efficiency)

11



Abhinav Bhatele (CMSC416 / CMSC616)

Speedup and efficiency

• Speedup: Ratio of execution time on one process to that on p processes

• Efficiency: Speedup per process

12

Speedup =
t1
tp

Efficiency =
t1

tp × p



Abhinav Bhatele (CMSC416 / CMSC616)

Efficiency in terms of overhead

• Total time spent in all processes = (useful) computation + overhead (extra 
computation + communication + idle time + other overheads)

13

p × tp = t1 + to

Efficiency =
t1

tp × p
=

t1
t1 + to

=
1

1 + to

t1



Abhinav Bhatele (CMSC416 / CMSC616)

Isoefficiency function

• Efficiency is constant if to / t1 is constant (K)

14

Efficiency =
1

1 + to

t1

to = K × t1



Abhinav Bhatele (CMSC416 / CMSC616)

Isoefficiency analysis

15

n
p

n

n
p

n
p

• 1D decomposition:

• Computation: 

• Communication:

• 2D decomposition:

• Computation: 

• Communication



Abhinav Bhatele (CMSC416 / CMSC616)

Isoefficiency analysis

15

n
p

n

n
p

n
p

• 1D decomposition:

• Computation: 

• Communication:

• 2D decomposition:

• Computation: 

• Communication

n ×
n

p
=

n
p



Abhinav Bhatele (CMSC416 / CMSC616)

Isoefficiency analysis

15

n
p

n

n
p

n
p

• 1D decomposition:

• Computation: 

• Communication:

• 2D decomposition:

• Computation: 

• Communication

n ×
n

p
=

n
p

2 × n



Abhinav Bhatele (CMSC416 / CMSC616)

Isoefficiency analysis

15

n
p

n

n
p

n
p

• 1D decomposition:

• Computation: 

• Communication:

• 2D decomposition:

• Computation: 

• Communication

n ×
n

p
=

n
p

2 × n

to
p

tc
p

=
2 × n

n
p

=
2 × p

n



Abhinav Bhatele (CMSC416 / CMSC616)

Isoefficiency analysis

15

n
p

n

n
p

n
p

• 1D decomposition:

• Computation: 

• Communication:

• 2D decomposition:

• Computation: 

• Communication

n ×
n

p
=

n
p

2 × n

to
p

tc
p

=
2 × n

n
p

=
2 × p

n

From the point of view of a single process



Abhinav Bhatele (CMSC416 / CMSC616)

Isoefficiency analysis

15

n
p

n

n
p

n
p

• 1D decomposition:

• Computation: 

• Communication:

• 2D decomposition:

• Computation: 

• Communication

n ×
n

p
=

n
p

2 × n

n
p

×
n
p

=
n
p

to
p

tc
p

=
2 × n

n
p

=
2 × p

n

From the point of view of a single process



Abhinav Bhatele (CMSC416 / CMSC616)

Isoefficiency analysis

15

n
p

n

n
p

n
p

• 1D decomposition:

• Computation: 

• Communication:

• 2D decomposition:

• Computation: 

• Communication

n ×
n

p
=

n
p

2 × n

n
p

×
n
p

=
n
p

4 ×
n
p

to
p

tc
p

=
2 × n

n
p

=
2 × p

n

From the point of view of a single process



Abhinav Bhatele (CMSC416 / CMSC616)

Isoefficiency analysis

15

n
p

n

n
p

n
p

• 1D decomposition:

• Computation: 

• Communication:

• 2D decomposition:

• Computation: 

• Communication

n ×
n

p
=

n
p

2 × n

n
p

×
n
p

=
n
p

4 ×
n
p

to
p

tc
p

=
2 × n

n
p

=
2 × p

n

to
p

tc
p

=
4 ×

n

p
n
p

=
4 × p

n

From the point of view of a single process



Abhinav Bhatele (CMSC416 / CMSC616)

Isoefficiency analysis

15

n
p

n

n
p

n
p

• 1D decomposition:

• Computation: 

• Communication:

• 2D decomposition:

• Computation: 

• Communication

n ×
n

p
=

n
p

2 × n

n
p

×
n
p

=
n
p

4 ×
n
p

to
p

tc
p

=
2 × n

n
p

=
2 × p

n

to
p

tc
p

=
4 ×

n

p
n
p

=
4 × p

n

We only consider communication for to 

From the point of view of a single process



Abhinav Bhatele (CMSC416 / CMSC616)

Empirical performance analysis

• Two parts to doing empirical performance analysis

• measurement: gather/collect performance data from a program execution

• analysis/visualization: analyze the measurements to identify performance issues

• Simplest tool: adding timers in the code manually and using print statements

16



Abhinav Bhatele (CMSC416 / CMSC616)

Using timers

17

double start, end; 
double phase1, phase2, phase3;

start = MPI_Wtime();
 ... phase1 code ...
end = MPI_Wtime();
phase1 = end - start;

start = MPI_Wtime();
 ... phase2 ...
end = MPI_Wtime();
phase2 = end - start;

start = MPI_Wtime();
 ... phase3 ...
end = MPI_Wtime();
phase3 = end - start;



Abhinav Bhatele (CMSC416 / CMSC616)

Using timers

17

double start, end; 
double phase1, phase2, phase3;

start = MPI_Wtime();
 ... phase1 code ...
end = MPI_Wtime();
phase1 = end - start;

start = MPI_Wtime();
 ... phase2 ...
end = MPI_Wtime();
phase2 = end - start;

start = MPI_Wtime();
 ... phase3 ...
end = MPI_Wtime();
phase3 = end - start;

Phase 1 took 2.45 s

Phase 2 took 11.79 s

Phase 3 took 4.37 s



Abhinav Bhatele (CMSC416 / CMSC616)

Performance tools

• Tracing tools

• Capture entire execution trace, typically via instrumentation

• Profiling tools

• Provide aggregated information

• Typically use statistical sampling

• Many tools can do both

18



Abhinav Bhatele (CMSC416 / CMSC616)

Metrics recorded

• Counts of function invocations

• Time spent in each function/code region

• Number of bytes sent (in case of MPI messages)

• Hardware counters such as floating point operations, cache misses, etc.

• To fix performance problems — we need to connect metrics to source code

19



Abhinav Bhatele (CMSC416 / CMSC616)

Tracing tools

• Record all the events in the program with enter/leave timestamps

• Events: user functions, MPI and other library routines, etc.

20

Timeline visualization of a 2-process execution trace



Abhinav Bhatele (CMSC416 / CMSC616)

Examples of tracing tools

• VampirTrace

• Score-P

• TAU

• Projections

• HPCToolkit

21



Abhinav Bhatele (CMSC416 / CMSC616)

Profiling tools
• Ignore the specific times at which events 

occurred

• Provide aggregate information about time 
spent in different functions/code regions

• Examples:

• gprof, perf

• mpiP

• HPCToolkit, caliper

• Python tools: cprofile, pyinstrument, scalene

22

gprof data in hpctView



Abhinav Bhatele (CMSC416 / CMSC616)

Calling contexts, trees, and graphs

• Calling context or call path: Sequence of function invocations 
leading to the current sample (statement in code)

• Calling context tree (CCT): dynamic prefix tree of all call 
paths in an execution

• Call graph: obtained by merging nodes in a CCT with the 
same name into a single node but keeping caller-callee 
relationships as edges

23

SC ’19, November 17–22, 2019, Denver, CO, USA Bhatele et al.

the names of �elds as much as possible over di�erent sources to
enable comparison of data across measurement tools, but this is
not a requirement.

3.1.2 Nodes. Frames are associated with nodes in the Hatchet
graph, and node objects de�ne connectivity and structure of the
Hatchet model. Each node knows its children and its ancestors in
the graph, and each node has a unique key. The key is not meant to
be accessed by Hatchet users. Rather, like Frames, Hatchet nodes
expose their own comparison operations (==, >, <, etc.), which
opaquely operate on this key. This means that we can insert Node
objects directly into a pandas DataFrame column and make it an
index. By default, we use the Python id() function for the node
key. This is equivalent, roughly, to C’s & operator, in that it returns
an integer representing the address of the Python object in memory.
We require only that the node key be unique for each node. We
can optionally use keys that provide certain useful orderings (like
pre-order, post-order, etc.), if we want to pay the cost of a graph
traversal (or sort) to generate more structured keys. We default to
only guaranteeing uniqueness and not order in our keys.

3.2 GraphFrame
The central data structure in the Hatchet library is a GraphFrame,
which combines the structured indexGraphwith a pandasDataFrame.
Figure 3 shows the two objects in a GraphFrame – a graph object
(the index), and a DataFrame object storing the metrics associated
with each node.

main

physics solvers

mpi

psm2

hypre mpi

psm2

Figure 3: InHatchet, theGraphFrame consists of a graph and
a DataFrame object.

Because of the way we have architected the structured index
Graph, we can insert Node objects directly into the pandasDataFrame.
The nodes are sorted using their basic comparison operators, which
operate on their key attribute. Thus, the �rst column in theDataFrame
(the node) is the index column. As a convenience, we may also add
columns (like name) based on attributes from each node’s Frame.
For example, in the �gure, we have added the name and nid columns
from the Frame subclass for HPCToolkit. This allows us to use reg-
ular pandas operations (selection, �ltering) on these values directly.
As we will see later, the node column itself also allows various
graph-semantic functions to be used, as well. Finally, in addition to
the identifying information for each node, we also add columns for
each associated performance metric (inclusive and exclusive time
in the �gure).

Graphs vs. Trees: Hatchet stores the structure (typically a pre�x
tree generated from call paths) in the input data as a directed graph
(instead of a tree) for two reasons. First, subsequent operations on a
tree can create edges or merge nodes, turning the tree into a graph.
Additionally, output from tools such as callgrind is already in the
form of a DAG. Hatchet’s directed graph could be connected or
have multiple disconnected components. Each entity in the graph,
such as a callsite, procedure frame, or function, is stored as a node
and the caller-callee relationships are stored as directed edges. Each
node in the graph can have one or multiple parents and children.

Bene�ts of DataFrames: We use a pandas DataFrame to store
all the numerical and categorical data associated with each node.
Pro�le data can be inherently high-dimensional when metrics are
gathered per-MPI process and/or per-thread. In such cases, each
node in the call tree or graph has metrics per-MPI process and/or
thread and this data needs to be stored and indexed hierarchically.
To index the rows of the data frame in such cases, a MultiIndex
consisting of the structured index for the node and MPI rank or
thread ID is used. In the most general case, a row in the data frame
is indexed by a process and/or thread ID (and any other needed
identi�ers in even higher dimensional cases).

3.3 Immutable Graph Semantics
Astute readers may have noted that we are adding direct references
to graph nodes into the DataFrame. The risk this poses in our API
is that client code can extract a subset of a DataFrame and hand
it o� to other client code, which then modi�es the graph index
nodes directly and corrupts all DataFrames that use the same nodes.
One key aspect of Hatchet is that its graph nodes use immutable
semantics. The GraphFrame API is responsible for ensuring that
operations between any two GraphFrames use immutable graph
node references, and that any operations that would modify a graph
node in place instead create an entirely new graph index for the new
GraphFrame to work with. So, we implement immutable semantics
using copy-on-write to simplify the management of the graph and
DataFrame together.

One further consequence of our index model is that to use two
DataFrames together, we require that their graphs be uni�ed. That
is, that they share the same index. This should be obvious when con-
sidering that the nodes are compared by their key values, and two
nodes can only be considered identical within an index if they have
identical keys, which means that theymust be in the same graph for
comparison to make sense. We accomplish this by traversing the
graphs and computing their union according to their connectivity
and Frame values (described further in the API section). Incidentally,
this type of restriction is not unusual in pandas, where comparing
two data frames frequently requires reconciling their indexes, as
well. We abstract the details of these graph operations in Hatchet
through the GraphFrame API, which determines when and how
GraphFrames should be uni�ed.

3.4 Reading a CCT Dataset
With all of these components, the structured index Graph models
the edge relationships between nodes in the structured data, and
a DataFrame stores the numerical (performance metrics such as
time, performance counter data, etc.) and categorical data (e.g., load



Abhinav Bhatele (CMSC416 / CMSC616)

Calling context trees, call graphs, …

24

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

Calling context tree (CCT)



Abhinav Bhatele (CMSC416 / CMSC616)

Calling context trees, call graphs, …

24

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

Calling context tree (CCT)



Abhinav Bhatele (CMSC416 / CMSC616)

Calling context trees, call graphs, …

24

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

File
Line number
Function name
Callpath
Load module
Process ID
Thread ID

Contextual information

Calling context tree (CCT)



Abhinav Bhatele (CMSC416 / CMSC616)

Calling context trees, call graphs, …

24

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

File
Line number
Function name
Callpath
Load module
Process ID
Thread ID

Contextual information

Time
Flops
Cache misses

Performance Metrics

Calling context tree (CCT)



Abhinav Bhatele (CMSC416 / CMSC616)

Calling context trees, call graphs, …

24

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

foo

bar

qux waldo

bazgrault

quux

corge

garply

fred

plugh xyzzy

thud

File
Line number
Function name
Callpath
Load module
Process ID
Thread ID

Contextual information

Time
Flops
Cache misses

Performance Metrics

Calling context tree (CCT) Call graph



Abhinav Bhatele (CMSC416 / CMSC616)

Output of profiling tools

• Flat profile: Listing of all invoked functions with counts and 
execution times

• Call graph profile: unique node per function

• Calling context tree: unique node per calling context

25

The static call graph can be constructed from 
the source text of the program. However, discover- 
ing the static call graph from the source text would 
require two moderately difficult steps: finding the 
source text for the program (which may not be 
available), and scanning and parsing that text, 
which may be in any one of several languages. 

In our programming system, the static calling 
information is also contained in the executable ver- 
sion of the program, which we already have avail- 
able, and which is in language-independent form. 
One can examine the instructions in the object pro- 
gram, looking for calls to routines, and note which 
routines can be called. This technique allows us to 
add arcs to those already in the dynamic call graph. 
If a statically discovered arc already exists in the 
dynamic call graph, no action is required. Statically 
discovered arcs that do not exist in the dynamic 
call graph are added to the graph with a traversal 
count of zero. Thus they are never responsible for 
any time propagation. However, they may affect 
the structure of the graph. Since they may com- 
plete strongly connected components, the static 
call graph construction is done before topological 
ordering. 

5. Data Presentation 
The data is presented to the user in two 

different formats. The first presentation simply 
lists the routines without regard to the amount of 
time their descendants use. The second presenta- 
tion incorporates the call graph of the program. 

5.1. The Flat Profile 
The fiat profi le  cons i s t s  of a l is t  of all  t h e  rou-  

t ines  t h a t  a r e  ca l led  dur ing  execu t ion  of t he  p ro -  
g r a m ,  wi th  t he  c o u n t  of t he  n u m b e r  of t i m e s  t h e y  
a r e  ca l led  and the  n u m b e r  of s e c o n d s  of e x e c u t i o n  
t i m e  for  which  t h e y  a re  t h e m s e l v e s  a c c o u n t a b l e .  
The r o u t i n e s  a re  l i s t ed  in d e c r e a s i n g  o r d e r  of execu-  
t ion  t ime .  A l is t  of the  r o u t i n e s  t h a t  a r e  n e v e r  
ca l l ed  dur ing  e x e c u t i o n  of t he  p r o g r a m  is also ava i l -  
ab le  to  ver i fy  t h a t  no th ing  i m p o r t a n t  is o m i t t e d  by  
th is  execu t ion .  The fiat  prof i le  g ives  a quick over-  
view of the  r o u t i n e s  t h a t  a r e  used ,  and shows the  
r o u t i n e s  t h a t  a re  t h e m s e l v e s  r e s p o n s i b l e  for  l a rge  
f r ac t i ons  of the  e x e c u t i o n  t ime .  In p r a c t i c e ,  th i s  
profi le  usua l ly  shows t h a t  no single func t ion  is 
overwhe lming ly  r e s p o n s i b l e  for t he  t o t a l  t i m e  'of t h e  
p r o g r a m .  Notice t h a t  for  th is  profi le ,  t he  ind iv idua l  
t i m e s  sum to t he  t o t a l  execu t ion  t ime .  

5.'b-. The Call Graph Profile 
Ideal ly ,  we would l ike to  p r i n t  t h e  cal l  g r a p h  of  

the p r o g r a m ,  b u t  we a re  l imi t ed  by  the  two- 
d i m e n s i o n a l  n a t u r e  of our  o u t p u t  dev ices .  We can -  
no t  a s s u m e  t h a t  a call  g r a p h  is p lanar ,  and  even if i t  
is, t h a t  we can  p r i n t  a p l a n a r  vers ion-of  it .  I n s t ead ,  
we choose  to l i s t  e a c h  rou t ine ,  t o g e t h e r  With infor-  
'ma t i on  a b o u t  t h e  r o u t i n e s  t h a t  a r e  i t s  d i r e c t  
p a r e n t s  and  ch i ld ren .  This l is t ing p r e s e n t s  a win- 
dow into  the  ca l l  g raph .  Based  o n  Our e x p e r i e n c e ,  
b o t h  p a r e n t  i n f o r m a t i o n  and ch i ld  i n i o r m a t i 0 n  is 
i m p o r t a n t ,  and  should  be avai lab le  wi thou t  

s ea r ch ing  t h r o u g h  the  ou tpu t .  
The m a j o r  e n t r i e s  of the  cal l  g r a p h  profi le  a re  

t he  e n t r i e s  f rom the  fiat  profi le ,  a u g m e n t e d  by  the 
t ime  p r o p a g a t e d  to  e a c h  rou t i ne  f rom i ts  d e s c e n -  
dan t s .  This prof i le  is s o r t e d  by  the  s u m  of t h e  t ime  
for t h e  rou t i ne  i tself  p lus  the  t i m e  i n h e r i t e d  f rom 
i ts  d e s c e n d a n t s .  The prof i le  shows which of the  
h ighe r  level  r o u t i n e s  spend  la rge  p o r t i o n s  of the  
t o t a l  execu t ion  t i m e  in the  r o u t i n e s  t h a t  t h e y  call .  
F o r  each  rou t ine ,  we show the  a m o u n t  of t i m e  
p a s s e d  by e a c h  chi ld  to  t h e  rou t ine ,  which i nc ludes  
t i m e  for the  chi ld  i t se l f  and  for  t he  d e s c e n d a n t s  of 
t h e  chi ld  (and t hus  t he  d e s c e n d a n t s  of t h e  rou t ine ) .  
We also show t h e  p e r c e n t a g e  t h e s e  t i m e s  r e p r e s e n t  
of t he  t o t a l  t ime  a c c o u n t e d  to t he  chi ld.  S imi la r ly ,  
t he  p a r e n t s  of e ach  r o u t i n e  a re  l i s ted ,  along with 
t ime ,  and  p e r c e n t a g e  of t o t a l  r o u t i n e  t i m e ,  p ro -  
p a g a t e d  to  e a c h  one.  

Cycles a re  h a n d l e d  as  s ingle en t i t i e s .  The cycle  
as a whole is shown as t h o u g h  i t  were  a s ingle rou-  
t ine ,  e x c e p t  t h a t  m e m b e r s  of the  cyc le  a r e  l i s t ed  in 
p l ace  of t he  ch i ld ren .  Al though the  n u m b e r  of ca l ls  
of e a c h  m e m b e r  f rom within the  c y c l e  a re  shown, 
t h e y  do no t  a f fec t  t i m e  p r o p a g a t i o n .  When a chi ld  is 
a m e m b e r  of a cyc le ,  t he  t ime  shown is the  
a p p r o p r i a t e  f r a c t i o n  of the  t ime  for t he  whole cycle .  
Se l f - r ecurs ive  r o u t i n e s  have  t h e i r  ca l ls  b r o k e n  down 
into  cal ls  f rom the  ou t s ide  and s e l f - r ecu r s ive  cal ls .  
Only the  ou t s ide  ca l l s  a f fec t  t he  p r o p a g a t i o n  of 
t ime .  

The following e x a m p l e  is a t y p i c a l  f r a g m e n t  of a 
cal l  g raph .  

The en ' t ry in the  cal l  g r a p h  prof i le  l i s t ing for  th is  
e x a m p l e  is shown in F igure  4. 

The e n t r y  is for r ou t i ne  EXAMPLE, which has  the  
Cal ler  r o u t i n e s  as  i t s  p a r e n t s ,  and  the  Sub r o u t i n e s  
as i ts  ch i ld ren .  The r e a d e r  should  k e e p  in m i n d  
t h a t  all i n f o r m a t i o n  is g iven  w i t h  r e s p e c t  to EXAM- 
PLE. The index  in t he  f i rs t  co lumn  shows t h a t  EXAM- 
PLE is t he  s econd  e n t r y  in t he  profi le  l is t ing.  The 
EXAMPLE r o u t i n e  is Called t e n  t imes ,  four  t i m e s  by  
CALLER1, and  six t i m e s  b y  CALLER2. Consequen t ly  
4 0 ~  of EXAmPLE's t i m e  is p r o p a g a t e d  to  CALLER1, a n d  
60~ of EXAMPLE'S t ime  is p r d p a g a t e d  %o CALLER2. 
The self 'and d e s c e n d a n t  f ie lds  o'f t he  p a r e n t s  show 
the  a m o u n t  o'f self  and  d e s c e n d a n t  t i m e  EXAMPLE 
p r o p a g a t e s  to  ' t hem '(but no t  t h e  ' t ime u s e d  by the  
p a r e n t s  d i rec t ly ) .  Note t h a t  EXAMPLE cal ls  i~tself 
r ecu i ' s ive ly  four t imes .  The rou t i ne  EXAMPLE cal ls  
r ou t i n e  SUB1 twen ty  t imes ,  SUB2 once,  and  n e v e r  
cal ls  SUB3. S ince  sUB2 ~s ca l led  a ' total  of five t imes ,  
20~ of i ts  self  and  d e s c e n d a n t  ' t ime is p r o p a g a t e d  to  
EXAMPLE's d e s c e n d a n t  t ime  field. Because  SUB1 is a 

124 

Hatchet: Pruning the Overgrowth in Parallel Profiles SC ’19, November 17–22, 2019, Denver, CO, USA

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

FlameGraph

quux
corge

foo
bar

fred
xyzzy
thud

qux

bar

waldo

Figure 7: Visualization outputs supported in Hatchet in-
clude terminal output (left), DOT (right), and �ame graph
(bottom).

Hatchet when using increasingly large datasets. We ran LULESH
to generate Caliper pro�les on 1 to 512 cores. LULESH requires a
cubed number of processes. Hatchet was run on a relatively slow
macOS laptop (1.8 GHz Intel Core i5). In the plot, �le read is the
time to read the input dataset into memory and convert it into the
Hatchet data representation (graph and DataFrame). drop index
represents the drop_index_levels operation, which we use to
aggregate the per process information. If we apply a �lter after
dropping the second index (MPI rank), the �lter operation takes
a constant amount of time (⇠ 0.2 seconds). Hence, in the plot, the
time shown for �lter is measured for the case when �lter is done
without aggregating the per-process information. We see that the
time increases linearly with the increase in the size of the dataset
(both axes have a logarithmic scale).

Hatchet only adds a modest amount of code on top of the pandas
library. Currently, the Hatchet code is nearly 2,400 lines of Python
(obtained using sloccount [26]). We expect it to grow modestly as
we add more readers and operations to it.

6 CASE STUDIES
In this section, we present several case studies demonstrating how
common performance analyses can be executed in an automated
manner using the Hatchet API and a few lines of Python code. The
�rst set of case studies analyze single execution pro�les for two
scienti�c proxy applications, while the second set of case studies
compare pro�les from multiple executions.

6.1 Experimental Setup
We performed our single- and multi-node experiments on the
Quartz supercomputer at Lawrence Livermore National Laboratory
(LLNL). Each node of Quartz contains two Intel Broadwell proces-
sors with 36 cores per node. Our case studies used two scienti�c

Figure 8: Performance overheads for di�erent operations in
Hatchet shown on a logarithmic scale.�le read is the time to
convert the data into the Hatchet representation, drop index
and �lter are the time to complete the drop_index_levels

and filter operations, respectively.

proxy applications. LULESH [1] is a Lagrangian shock hydrodynam-
ics mini-application that solves a Sedov blast problem. For these
case studies, we instrumented the LULESH code with Caliper anno-
tations to collect performancemetrics in Caliper’s split JSON format.
The second proxy application we used was Kripke [2, 13], which
simulates neutron transport. We used HPCToolkit to generate the
execution pro�les of Kripke.

6.2 Analyzing a Single Execution Pro�le
Analyzing the pro�ling output from a single application execution
is a fairly common performance analysis task. Typically, end users
or performance researchers pro�le their code on a platform using
a number of processes where they expect or have witnessed a
performance degradation, and then analyze the output of such
pro�ling. One of the most common tasks is to pin-point the regions
of code or functions where the code spends most of its time. This
is traditionally called a �at pro�le because the calling context is
lost and we just get a �at view of functions or statements or code
regions.

Flat pro�les: Flat pro�les can be easily generated in Hatchet using
the groupby functionality in pandas. The �at pro�le can be based
on any categorical column (e.g., function name, load module, �le
name). Similar to the sort feature in perf, the �at pro�le groups
the nodes by the speci�ed categorical column. Figure 9 shows the
code to generate a �at pro�le by applying a groupby operation on
the DataFrame object. The data read into Hatchet was generated
by pro�ling 20 time steps of Kripke using HPCToolkit. We can
transform the CCT generated by HPCToolkit into a �at pro�le by
specifying the column on which to apply the groupby operation
and the function to use for aggregation. In this case, we use sum to
get the total time spent in each function.

Load imbalance: When program developers run their code on a
large number of MPI processes, load imbalance across processes
is often a scaling bottleneck. Hatchet makes it extremely easy to

Call graph

Calling context tree



Abhinav Bhatele (CMSC416 / CMSC616)

Hatchet: performance analysis tool

• Hatchet enables programmatic analysis of parallel profiles

• Leverages pandas which supports multi-dimensional tabular datasets

• Create a structured index to enable indexing pandas dataframes by nodes in a graph

• A set of operators to filter, prune and/or aggregate structured data

26

https://hatchet.readthedocs.io/en/latest/



Abhinav Bhatele (CMSC416 / CMSC616)

Pandas and dataframes

27



Abhinav Bhatele (CMSC416 / CMSC616)

Pandas and dataframes

• Pandas is an open-source Python library 
for data analysis

27



Abhinav Bhatele (CMSC416 / CMSC616)

Pandas and dataframes

• Pandas is an open-source Python library 
for data analysis

• Dataframe: two-dimensional tabular data 
structure

• Supports many operations borrowed from SQL 
databases

27

Columns

Rows



Abhinav Bhatele (CMSC416 / CMSC616)

Pandas and dataframes

• Pandas is an open-source Python library 
for data analysis

• Dataframe: two-dimensional tabular data 
structure

• Supports many operations borrowed from SQL 
databases

27

Columns

Rows

Index



Abhinav Bhatele (CMSC416 / CMSC616)

Pandas and dataframes

• Pandas is an open-source Python library 
for data analysis

• Dataframe: two-dimensional tabular data 
structure

• Supports many operations borrowed from SQL 
databases

• MultiIndex enables working with high-
dimensional data in a 2D data structure

27

Columns

Rows

Index



Abhinav Bhatele (CMSC416 / CMSC616)

Main data structure in hatchet: a GraphFrame

• Consists of a structured index 
graph object and a pandas 
dataframe

• Graph stores caller-callee 
relationships

• Dataframe stores all numerical 
and categorical data for each 
node in the graph

• In case of multiple processes/
thread, there is a row per node 
per process per thread

28



Abhinav Bhatele (CMSC416 / CMSC616)

Main data structure in hatchet: a GraphFrame

• Consists of a structured index 
graph object and a pandas 
dataframe

• Graph stores caller-callee 
relationships

• Dataframe stores all numerical 
and categorical data for each 
node in the graph

• In case of multiple processes/
thread, there is a row per node 
per process per thread

28

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SC ’19, November 17–22, 2019, Denver, CO Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

useful orderings (like pre-order, post-order, etc.), if we want to pay
the cost of a graph traversal (or sort) to generate more structured
keys. We default to only guaranteeing uniqueness and not order in
our keys.

3.2 Graphframe
The central data structure in the Hatchet library is a Graphframe,
which combines the structured index Graphwith a pandas DataFrame.
Figure ?? shows the two objects in a graphframe – a graph object
(the index), and a dataframe object storing the metrics associated
with each node.

main

physics solvers

mpi

psm2

hypre mpi

psm2

Figure 3: In Hatchet, the graphframe consists of a graph and
a dataframe object.

Because of the way we have architected the Hatchet structured
index Graph, we can insert Node objects directly into the pandas
data frame. The nodes are indexed and sorted using their basic
comparison operators, which operate on their key attribute. Thus,
the �rst column in the dataframe (the node) is the index column.
As a convenience, we may also add columns (like name) based on
attributes from each node’s FrameID. For example, in the �gure, we
have added the name and nid columns from the FrameID subclass
for HPCToolkit. This allows us to use regular pandas operations
(selection, �ltering) on these values directly. As we will see later, the
node column itself also allows various graph-semantic functions to
be used, as well.

Finally, in addition to the identifying information for each node,
we also add columns for each associated performance metric (inclu-
sive and exclusive time in the �gure).

Graphs vs. Trees: Hatchet stores the structure (typically a pre�x
tree generated from call paths) in the input data as a directed graph
(instead of a tree) for two reasons. First, subsequent operations on
a tree can create edges, turning the tree into a graph. Additionally,
output from tools such as callgrind is already in the form of a DAG.
Hatchet’s directed graph could be connected or have multiple dis-
connected components. Each entity in the graph, such as a callsite,
procedure frame, or function, is stored as a node and the caller-
callee relationships are stored as directed edges. Each node in the
graph can have one or multiple parents and children.

Bene�ts of Dataframes: We use a pandas dataframe to store all
the numerical and categorical data associated with each node. Pro-
�le data can be inherently high-dimensional when metrics are
gathered per-MPI process and/or thread. In such cases, each node

in the call tree or graph has metrics per-MPI process and/or thread
and this data needs to be stored and indexed hierarchically. To index
the rows of the data frame in such cases, a MultiIndex consisting
of the structured index for the node and MPI rank or thread ID is
used. In the most general case, a row in the data frame is indexed
by a process and/or thread ID (and any other needed identi�ers in
even higher dimensional cases).

3.3 Immutable Graph Semantics
Astute readers may have noted that we are adding direct references
to graph nodes into the Dataframe. The risk this poses in our API
is that client code can extract a subset of a Dataframe and hand
it o� to other client code, which then modi�es the graph index
nodes directly and corrupts all dataframes that use the same nodes.
One key aspect of Hatchet is that its graph nodes use immutable
semantics. The Graphframe API is responsible for ensuring that
operations between any two Graphframes use immutable graph
node references, and that any operations that would modify a graph
node in place instead create an entirely new graph index for the
new frame to work with. So, we implement immutable semantics
using copy-on-write to simplify the management of the graph and
dataframe together.

One further consequence of our index model is that to use two
dataframes together, we require that their graphs be uni�ed. That is,
that they share the same index. This should be obvious when con-
sidering that the nodes are compared by their key values, and two
nodes can only be considered identical within an index if they have
identical keys, which means that they must be in the same graph
for comparison to make sense. We accomplish this by traversing
the graphs and computing their union according to their connec-
tivity and FrameID values (described further in the API section).
Incidentally, this type of restriction is not unusual in pandas, where
comparing two data frames frequently requires reconciling their
indexes, as well. We abstract the details of these graph operations
in Hatchet through the GraphFrame API, which determines when
and how Graphframes should be uni�ed.

3.4 Reading a CCT Dataset
With all of these components, that GraphFrame models the edge
relationships between nodes in the structured data, and a dataframe
storing the numerical (performance metrics such as time, PAPI
counters data, etc.) and categorical data (e.g., load module, �le, line
number) associated with each node. The generality of what can
be stored in a pandas dataframe enables Hatchet to store almost
any kind of contextual information recorded during sampling by
diverse pro�ling tools.

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,

4

Graph object



Abhinav Bhatele (CMSC416 / CMSC616)

Main data structure in hatchet: a GraphFrame

• Consists of a structured index 
graph object and a pandas 
dataframe

• Graph stores caller-callee 
relationships

• Dataframe stores all numerical 
and categorical data for each 
node in the graph

• In case of multiple processes/
thread, there is a row per node 
per process per thread

28

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SC ’19, November 17–22, 2019, Denver, CO Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

useful orderings (like pre-order, post-order, etc.), if we want to pay
the cost of a graph traversal (or sort) to generate more structured
keys. We default to only guaranteeing uniqueness and not order in
our keys.

3.2 Graphframe
The central data structure in the Hatchet library is a Graphframe,
which combines the structured index Graphwith a pandas DataFrame.
Figure ?? shows the two objects in a graphframe – a graph object
(the index), and a dataframe object storing the metrics associated
with each node.

main

physics solvers

mpi

psm2

hypre mpi

psm2

Figure 3: In Hatchet, the graphframe consists of a graph and
a dataframe object.

Because of the way we have architected the Hatchet structured
index Graph, we can insert Node objects directly into the pandas
data frame. The nodes are indexed and sorted using their basic
comparison operators, which operate on their key attribute. Thus,
the �rst column in the dataframe (the node) is the index column.
As a convenience, we may also add columns (like name) based on
attributes from each node’s FrameID. For example, in the �gure, we
have added the name and nid columns from the FrameID subclass
for HPCToolkit. This allows us to use regular pandas operations
(selection, �ltering) on these values directly. As we will see later, the
node column itself also allows various graph-semantic functions to
be used, as well.

Finally, in addition to the identifying information for each node,
we also add columns for each associated performance metric (inclu-
sive and exclusive time in the �gure).

Graphs vs. Trees: Hatchet stores the structure (typically a pre�x
tree generated from call paths) in the input data as a directed graph
(instead of a tree) for two reasons. First, subsequent operations on
a tree can create edges, turning the tree into a graph. Additionally,
output from tools such as callgrind is already in the form of a DAG.
Hatchet’s directed graph could be connected or have multiple dis-
connected components. Each entity in the graph, such as a callsite,
procedure frame, or function, is stored as a node and the caller-
callee relationships are stored as directed edges. Each node in the
graph can have one or multiple parents and children.

Bene�ts of Dataframes: We use a pandas dataframe to store all
the numerical and categorical data associated with each node. Pro-
�le data can be inherently high-dimensional when metrics are
gathered per-MPI process and/or thread. In such cases, each node

in the call tree or graph has metrics per-MPI process and/or thread
and this data needs to be stored and indexed hierarchically. To index
the rows of the data frame in such cases, a MultiIndex consisting
of the structured index for the node and MPI rank or thread ID is
used. In the most general case, a row in the data frame is indexed
by a process and/or thread ID (and any other needed identi�ers in
even higher dimensional cases).

3.3 Immutable Graph Semantics
Astute readers may have noted that we are adding direct references
to graph nodes into the Dataframe. The risk this poses in our API
is that client code can extract a subset of a Dataframe and hand
it o� to other client code, which then modi�es the graph index
nodes directly and corrupts all dataframes that use the same nodes.
One key aspect of Hatchet is that its graph nodes use immutable
semantics. The Graphframe API is responsible for ensuring that
operations between any two Graphframes use immutable graph
node references, and that any operations that would modify a graph
node in place instead create an entirely new graph index for the
new frame to work with. So, we implement immutable semantics
using copy-on-write to simplify the management of the graph and
dataframe together.

One further consequence of our index model is that to use two
dataframes together, we require that their graphs be uni�ed. That is,
that they share the same index. This should be obvious when con-
sidering that the nodes are compared by their key values, and two
nodes can only be considered identical within an index if they have
identical keys, which means that they must be in the same graph
for comparison to make sense. We accomplish this by traversing
the graphs and computing their union according to their connec-
tivity and FrameID values (described further in the API section).
Incidentally, this type of restriction is not unusual in pandas, where
comparing two data frames frequently requires reconciling their
indexes, as well. We abstract the details of these graph operations
in Hatchet through the GraphFrame API, which determines when
and how Graphframes should be uni�ed.

3.4 Reading a CCT Dataset
With all of these components, that GraphFrame models the edge
relationships between nodes in the structured data, and a dataframe
storing the numerical (performance metrics such as time, PAPI
counters data, etc.) and categorical data (e.g., load module, �le, line
number) associated with each node. The generality of what can
be stored in a pandas dataframe enables Hatchet to store almost
any kind of contextual information recorded during sampling by
diverse pro�ling tools.

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,

4

Graph object Dataframe



Abhinav Bhatele (CMSC416 / CMSC616)

Dataframe operation: filter

29



Abhinav Bhatele (CMSC416 / CMSC616)

Dataframe operation: filter

29



Abhinav Bhatele (CMSC416 / CMSC616)

Dataframe operation: filter

29



Abhinav Bhatele (CMSC416 / CMSC616)

Graph operation: squash

30

SC ’19, November 17–22, 2019, Denver, CO

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.

SC ’19, November 17–22, 2019, Denver, CO

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

main

physics solvers

mpi

psm2

hypre mpi

psm2

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.



Abhinav Bhatele (CMSC416 / CMSC616)

Graph operation: squash

30

SC ’19, November 17–22, 2019, Denver, CO

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.

SC ’19, November 17–22, 2019, Denver, CO

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

main

physics solvers

mpi

psm2

hypre mpi

psm2

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.

SC ’19, November 17–22, 2019, Denver, CO

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.

filter
main

physics solvers

mpi

psm2

hypre mpi

psm2



Abhinav Bhatele (CMSC416 / CMSC616)

Graph operation: squash

30

SC ’19, November 17–22, 2019, Denver, CO

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.

SC ’19, November 17–22, 2019, Denver, CO

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

main

physics solvers

mpi

psm2

hypre mpi

psm2

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.

SC ’19, November 17–22, 2019, Denver, CO

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.

filter
main

physics solvers

mpi

psm2

hypre mpi

psm2



Abhinav Bhatele (CMSC416 / CMSC616)

Graph operation: squash

30

SC ’19, November 17–22, 2019, Denver, CO

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.

SC ’19, November 17–22, 2019, Denver, CO

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

main

physics solvers

mpi

psm2

hypre mpi

psm2

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.

SC ’19, November 17–22, 2019, Denver, CO

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.

SC ’19, November 17–22, 2019, Denver, CO

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

main

physics hypre psm2

psm2

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.

SC ’19, November 17–22, 2019, Denver, CO

Hatchet provides readers for several input formats to support
data collected by popular pro�ling tools in the HPC community.
Hatchet can read in the database directory generated byHPCToolkit
(hpcprof-mpi), and also split JSON �les generated by Caliper. In
addition, one can provide structured data in Graphviz’ DOT format
or a simple string literal.

Most pro�ling tools that generate CCTs have two kinds of in-
formation in their output, often separated into di�erent parts of
a �le or di�erent �les. The �rst information is the structure of
the CCT – present in experiment.xml in HPCToolkit databases,
and the nodes section of a Caliper JSON �le. The second piece
of information is the performance metrics attached to each node
– available in metric-db �les in HPCToolkit data and in the data
section of a Caliper JSON �les. The readers in Hatchet read in both
pieces of information. The CCT structure is used to construct the
graph object of the graphframe and the performance metrics are
used to construct the graphframe object. As the readers construct
these two objects, they also make connects between the graph and
dataframe objects using the structured index.

4 THE HATCHET API
We now describe some of the important operators provided by
the Hatchet API allowing structured data to be manipulated in
di�erent ways: �ltered, aggregated, pruned, etc. Even though all
of the operations below are performed on the graphframe, some
only modify the dataframe, some only modify the graph, and others
modify both. They are categorized accordingly in the following
sections. Note that we consider a graph to be immutable, so any
operations that lead to changes in the graph structure return a new
graphframe.

4.1 Dataframe Operations

�lter: Filter takes a user-supplied function and applies that to all
rows in the dataframe. The resulting series or dataframe is used to
�lter the dataframe to only return rows that are true. The returned
graphframe preserves the original graph provided as input to the
�lter operation. Figure 4 shows a dataframe before and after a �lter
operation. In this case, the applied function returns all rows where
time is greater than 10.0.

1 gf = GraphFrame( ... )

2 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

Figure 4: The dataframe before (left) and after (right) a �lter
operation on the time column.

Filter is one of the operations that leads to the graph object and
dataframe object becoming inconsistent. After a �lter operation,
there are nodes in the graph that do not return any rows when
used to index into the dataframe. Typically, the user will perform a
squash on the graphframe after a �lter operation to make the graph
and dataframe objects consistent again.

drop_index_levels: When there is per-MPI process or per-thread
data in the dataframe, a user might be interested in aggregating
the data in some fashion to analyze the graph at a coarser granu-
larity. This function allows the user to drop the additional index
columns in the hierarchical index by specifying an aggregation
function. Essentially, this performs a groupby and aggregate op-
eration on the dataframe. The user-supplied function is used to
perform the aggregation over all MPI processes or threads at the
per-node granularity.

update_inclusive_columns: When a graph is rewired (i.e., the
parent-child connections are modi�ed), all the columns in the
dataframe that store inclusive values of some metric become inaccu-
rate. This function performs a post-order traversal of the graph to
update all inclusive metrics stored in the dataframe for each node.

4.2 Graph Operations

squash: The squash operation is typically performed by the user
after a �lter operation on the dataframe. As shown in Figure 5,
squash removes nodes from the graph that were previously removed
from the dataframe due to a �lter operation. When one or more
nodes on a path are removed from the graph, the nearest alive
ancestor is connected by an edge to the nearest alive child on the
path. All call paths in the graph are re-wired in this manner. After
a squash operation, the graph and dataframe become consistent
again. Additionally, a squash operation will make the values in all
columns containing inclusive metrics inaccurate, since the parent-
child relationships have changed. Hence, the squash operation also
calls update_inclusive_columns to make all inclusive columns
in the dataframe accurate again.

1 filtered_gf = gf.filter(lambda x: x[�time�] > 10.0)

2 squashed_gf = filtered_gf.squash ()

Figure 5: The graph before (left) and after (right) a squash
operation on the graphframe.

filter squash
main

physics solvers

mpi

psm2

hypre mpi

psm2



Abhinav Bhatele (CMSC416 / CMSC616)

Graphframe operation: subtract

31



Abhinav Bhatele (CMSC416 / CMSC616)

Graphframe operation: subtract

31

—

SC ’19, November 17–22, 2019, Denver, CO, USA Bhatele et al.

In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the

main

physics solvers

mpi

psm2

hypre mpi

psm2

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on twoGraphFrames (result-
ing graph at the bottom).

subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in

SC ’19, November 17–22, 2019, Denver, CO, USA Bhatele et al.

In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the

main

physics solvers

mpi

psm2

hypre mpi

psm2

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on twoGraphFrames (result-
ing graph at the bottom).

subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in



Abhinav Bhatele (CMSC416 / CMSC616)

Graphframe operation: subtract

31

— =

SC ’19, November 17–22, 2019, Denver, CO, USA Bhatele et al.

In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the

main

physics solvers

mpi

psm2

hypre mpi

psm2

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on twoGraphFrames (result-
ing graph at the bottom).

subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in

SC ’19, November 17–22, 2019, Denver, CO, USA Bhatele et al.

In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the

main

physics solvers

mpi

psm2

hypre mpi

psm2

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on twoGraphFrames (result-
ing graph at the bottom).

subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in

SC ’19, November 17–22, 2019, Denver, CO, USA Bhatele et al.

In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the

main

physics solvers

mpi

psm2

hypre mpi

psm2

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on twoGraphFrames (result-
ing graph at the bottom).

subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in



Abhinav Bhatele (CMSC416 / CMSC616)

Graphframe operation: subtract

31

— =

SC ’19, November 17–22, 2019, Denver, CO, USA Bhatele et al.

In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the

main

physics solvers

mpi

psm2

hypre mpi

psm2

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on twoGraphFrames (result-
ing graph at the bottom).

subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in

SC ’19, November 17–22, 2019, Denver, CO, USA Bhatele et al.

In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the

main

physics solvers

mpi

psm2

hypre mpi

psm2

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on twoGraphFrames (result-
ing graph at the bottom).

subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in

SC ’19, November 17–22, 2019, Denver, CO, USA Bhatele et al.

In some cases, a squash may need to merge nodes. The �lter
and squash calls on lines 4-6 remove the physics and hypre nodes
from the graph, but main must now connect to both psm2 nodes.
In a calling context tree, a node cannot have two children with
identical frames, so we merge the psm2 nodes together. The graph
now represents only the time spent in psm2 when called directly
or transitively from main. As mentioned earlier, node merging can
convert a tree into a graph. Squash and other Hatchet API calls are
general and handle both trees and graphs.

A squash operation creates a new DataFrame in addition to the
new graph. The new DataFrame contains all rows from the original
DataFrame, but its index points to nodes in the new graph. Addi-
tionally, a squash operation will make the values in all columns
containing inclusive metrics inaccurate, since the parent-child re-
lationships have changed. Hence, the squash operation also calls
update_inclusive_columns to make all inclusive columns in the
DataFrame accurate again.

equal: This checks whether two graphs have the same nodes and
edge connectivity when traversing from their roots. If they are
equivalent, it returns true, otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving all edges structure of the original graphs, and
merging nodes with identical context. When Hatchet performs bi-
nary operations on two GraphFrames with unequal graphs, a union
is performed beforehand to ensure that the graphs are structurally
equivalent. This ensures that operands to element-wise operations
like add and subtract, can be aligned by their respective nodes.

4.3 GraphFrame Operations

copy: The copy operation returns a shallow copy of a GraphFrame.
It creates a new GraphFrame with a copy of the original Graph-
Frame’s DataFrame, but the same graph. As mentioned earlier,
graphs in Hatchet use immutable semantics, and they are copied
only when they need to be restructured. This property allows us to
reuse graphs from GraphFrame to GraphFrame if the operations
performed on the GraphFrame do not mutate the graph.

unify: Similar to union on graphs, unify operates on GraphFrames.
It calls union on the two graphs, and then reindexes the DataFrames
in both GraphFrames to be indexed by the nodes in the uni�ed
graph. Binary operations on GraphFrames call unify which in turn
calls union on the respective graphs.

add: Assuming the graphs in two GraphFrames are equal, the add
(+) operation computes the element-wise sum of two DataFrames.
In the case where the two graphs are not identical, unify (described
above) is applied �rst to create a uni�ed graph before performing
the sum. The DataFrames are copied and reindexed by the combined
graph, and the add operation returns new GraphFrame with the
result of adding these DataFrames. Hatchet also provides an in-place
version of the add operator: + =.

subtract: The subtract operation is similar to the add operation in
that it requires the two graphs to be identical. It applies union and
reindexes DataFrames if necessary. Once the graphs are uni�ed, the

main

physics solvers

mpi

psm2

hypre mpi

psm2

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on twoGraphFrames (result-
ing graph at the bottom).

subtract operation computes the element-wise di�erence between
the two DataFrames. The subtract operation returns a new Graph-
Frame, or it modi�es one of the GraphFrames in place in the case
of the in-place subtraction (� =). Figure 6 shows the subtraction
of one GraphFrame from another and the graph for the resulting
GraphFrame.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the DataFrame.

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 8, we provide execution times for some operations in

    https://hatchet.readthedocs.io

https://hatchet.readthedocs.io


Abhinav Bhatele (CMSC416 / CMSC616)

Visualizing small graphs

32

SC ’19, November 17–22, 2019, Denver, CO Bhatele et al.

check_equivalence: This checks whether two graphs are exactly
equivalent or not in their structures by comparing the call paths
of the respective children. If they are equivalent, it returns true,
otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving as much structure of the original graphs as pos-
sible. Typically, a union is called if the structures of two graphs
are di�erent. This operation is useful when we wish to perform an
add or subtract operation on two graphframes and the graphs are
not structurally equivalent. In this case, a union is performed �rst
before the add or subtract operation.

4.3 Graphframe Operations

copy: The copy operation returns a copy of a graphframe by creat-
ing a copy of the dataframe object and the graph object, which in
turn involves cloning all the nodes in the graph. Creating a copy
enables the user to modify a copy of the graphframe object, while
keeping the original object unchanged. This is useful for example,
in the case of add and subtract, when there are two operands and
the result needs to return a new graphframe.

add: Assuming the graphs in two graphframes are identical (i.e.,
check_equivalence returns true), the add operation computes
the sum of two dataframes column-wise. In the case where the
two graphs are not identical, union (described above) is applied
�rst to create a uni�ed graph before performing the sum. The
add operation returns a new resulting graphframe or modi�es one
of the graphframes in place in the case of the following addition
assignment: (a+ = b).

subtract: The subtract operation is similar to the add operation
in that it requires the two graphs to be identical. Once the graphs
are structurally equivalent, the subtract operation computes the
di�erence between the two dataframes column-wise. The subtract
operation returns a new resulting graphframe or modi�es one of
the graphframes in place in the case of the subtraction assignment
(a� = b). Figure 6 shows the subtraction of one graphframe from
another and the graph for the resulting graphframe.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the dataframe.

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on two graphframes (result-
ing graph at the bottom).

FlameGraph

quux
corge

foo
bar

fred
xyzzy
thud

qux

bar

waldo

Figure 7: Visualization outputs supported in Hatchet in-
clude terminal output (left), DOT (right), and �ame graph
(bottom).

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 9, we provide execution times for some operations in
Hatchet when using increasingly large datasets. We ran LULESH



Abhinav Bhatele (CMSC416 / CMSC616)

Visualizing small graphs

32

SC ’19, November 17–22, 2019, Denver, CO Bhatele et al.

check_equivalence: This checks whether two graphs are exactly
equivalent or not in their structures by comparing the call paths
of the respective children. If they are equivalent, it returns true,
otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving as much structure of the original graphs as pos-
sible. Typically, a union is called if the structures of two graphs
are di�erent. This operation is useful when we wish to perform an
add or subtract operation on two graphframes and the graphs are
not structurally equivalent. In this case, a union is performed �rst
before the add or subtract operation.

4.3 Graphframe Operations

copy: The copy operation returns a copy of a graphframe by creat-
ing a copy of the dataframe object and the graph object, which in
turn involves cloning all the nodes in the graph. Creating a copy
enables the user to modify a copy of the graphframe object, while
keeping the original object unchanged. This is useful for example,
in the case of add and subtract, when there are two operands and
the result needs to return a new graphframe.

add: Assuming the graphs in two graphframes are identical (i.e.,
check_equivalence returns true), the add operation computes
the sum of two dataframes column-wise. In the case where the
two graphs are not identical, union (described above) is applied
�rst to create a uni�ed graph before performing the sum. The
add operation returns a new resulting graphframe or modi�es one
of the graphframes in place in the case of the following addition
assignment: (a+ = b).

subtract: The subtract operation is similar to the add operation
in that it requires the two graphs to be identical. Once the graphs
are structurally equivalent, the subtract operation computes the
di�erence between the two dataframes column-wise. The subtract
operation returns a new resulting graphframe or modi�es one of
the graphframes in place in the case of the subtraction assignment
(a� = b). Figure 6 shows the subtraction of one graphframe from
another and the graph for the resulting graphframe.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the dataframe.

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on two graphframes (result-
ing graph at the bottom).

FlameGraph

quux
corge

foo
bar

fred
xyzzy
thud

qux

bar

waldo

Figure 7: Visualization outputs supported in Hatchet in-
clude terminal output (left), DOT (right), and �ame graph
(bottom).

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 9, we provide execution times for some operations in
Hatchet when using increasingly large datasets. We ran LULESH

SC ’19, November 17–22, 2019, Denver, CO Bhatele et al.

check_equivalence: This checks whether two graphs are exactly
equivalent or not in their structures by comparing the call paths
of the respective children. If they are equivalent, it returns true,
otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving as much structure of the original graphs as pos-
sible. Typically, a union is called if the structures of two graphs
are di�erent. This operation is useful when we wish to perform an
add or subtract operation on two graphframes and the graphs are
not structurally equivalent. In this case, a union is performed �rst
before the add or subtract operation.

4.3 Graphframe Operations

copy: The copy operation returns a copy of a graphframe by creat-
ing a copy of the dataframe object and the graph object, which in
turn involves cloning all the nodes in the graph. Creating a copy
enables the user to modify a copy of the graphframe object, while
keeping the original object unchanged. This is useful for example,
in the case of add and subtract, when there are two operands and
the result needs to return a new graphframe.

add: Assuming the graphs in two graphframes are identical (i.e.,
check_equivalence returns true), the add operation computes
the sum of two dataframes column-wise. In the case where the
two graphs are not identical, union (described above) is applied
�rst to create a uni�ed graph before performing the sum. The
add operation returns a new resulting graphframe or modi�es one
of the graphframes in place in the case of the following addition
assignment: (a+ = b).

subtract: The subtract operation is similar to the add operation
in that it requires the two graphs to be identical. Once the graphs
are structurally equivalent, the subtract operation computes the
di�erence between the two dataframes column-wise. The subtract
operation returns a new resulting graphframe or modi�es one of
the graphframes in place in the case of the subtraction assignment
(a� = b). Figure 6 shows the subtraction of one graphframe from
another and the graph for the resulting graphframe.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the dataframe.

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on two graphframes (result-
ing graph at the bottom).

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

FlameGraph

quux
corge

foo
bar

fred
xyzzy
thud

qux

bar

waldo

Figure 7: Visualization outputs supported in Hatchet in-
clude terminal output (left), DOT (right), and �ame graph
(bottom).

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 9, we provide execution times for some operations in
Hatchet when using increasingly large datasets. We ran LULESH



Abhinav Bhatele (CMSC416 / CMSC616)

Visualizing small graphs

32

SC ’19, November 17–22, 2019, Denver, CO Bhatele et al.

check_equivalence: This checks whether two graphs are exactly
equivalent or not in their structures by comparing the call paths
of the respective children. If they are equivalent, it returns true,
otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving as much structure of the original graphs as pos-
sible. Typically, a union is called if the structures of two graphs
are di�erent. This operation is useful when we wish to perform an
add or subtract operation on two graphframes and the graphs are
not structurally equivalent. In this case, a union is performed �rst
before the add or subtract operation.

4.3 Graphframe Operations

copy: The copy operation returns a copy of a graphframe by creat-
ing a copy of the dataframe object and the graph object, which in
turn involves cloning all the nodes in the graph. Creating a copy
enables the user to modify a copy of the graphframe object, while
keeping the original object unchanged. This is useful for example,
in the case of add and subtract, when there are two operands and
the result needs to return a new graphframe.

add: Assuming the graphs in two graphframes are identical (i.e.,
check_equivalence returns true), the add operation computes
the sum of two dataframes column-wise. In the case where the
two graphs are not identical, union (described above) is applied
�rst to create a uni�ed graph before performing the sum. The
add operation returns a new resulting graphframe or modi�es one
of the graphframes in place in the case of the following addition
assignment: (a+ = b).

subtract: The subtract operation is similar to the add operation
in that it requires the two graphs to be identical. Once the graphs
are structurally equivalent, the subtract operation computes the
di�erence between the two dataframes column-wise. The subtract
operation returns a new resulting graphframe or modi�es one of
the graphframes in place in the case of the subtraction assignment
(a� = b). Figure 6 shows the subtraction of one graphframe from
another and the graph for the resulting graphframe.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the dataframe.

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on two graphframes (result-
ing graph at the bottom).

FlameGraph

quux
corge

foo
bar

fred
xyzzy
thud

qux

bar

waldo

Figure 7: Visualization outputs supported in Hatchet in-
clude terminal output (left), DOT (right), and �ame graph
(bottom).

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 9, we provide execution times for some operations in
Hatchet when using increasingly large datasets. We ran LULESH

SC ’19, November 17–22, 2019, Denver, CO Bhatele et al.

check_equivalence: This checks whether two graphs are exactly
equivalent or not in their structures by comparing the call paths
of the respective children. If they are equivalent, it returns true,
otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving as much structure of the original graphs as pos-
sible. Typically, a union is called if the structures of two graphs
are di�erent. This operation is useful when we wish to perform an
add or subtract operation on two graphframes and the graphs are
not structurally equivalent. In this case, a union is performed �rst
before the add or subtract operation.

4.3 Graphframe Operations

copy: The copy operation returns a copy of a graphframe by creat-
ing a copy of the dataframe object and the graph object, which in
turn involves cloning all the nodes in the graph. Creating a copy
enables the user to modify a copy of the graphframe object, while
keeping the original object unchanged. This is useful for example,
in the case of add and subtract, when there are two operands and
the result needs to return a new graphframe.

add: Assuming the graphs in two graphframes are identical (i.e.,
check_equivalence returns true), the add operation computes
the sum of two dataframes column-wise. In the case where the
two graphs are not identical, union (described above) is applied
�rst to create a uni�ed graph before performing the sum. The
add operation returns a new resulting graphframe or modi�es one
of the graphframes in place in the case of the following addition
assignment: (a+ = b).

subtract: The subtract operation is similar to the add operation
in that it requires the two graphs to be identical. Once the graphs
are structurally equivalent, the subtract operation computes the
di�erence between the two dataframes column-wise. The subtract
operation returns a new resulting graphframe or modi�es one of
the graphframes in place in the case of the subtraction assignment
(a� = b). Figure 6 shows the subtraction of one graphframe from
another and the graph for the resulting graphframe.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the dataframe.

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on two graphframes (result-
ing graph at the bottom).

FlameGraph

quux
corge

foo
bar

fred
xyzzy
thud

qux

bar

waldo

Figure 7: Visualization outputs supported in Hatchet in-
clude terminal output (left), DOT (right), and �ame graph
(bottom).

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 9, we provide execution times for some operations in
Hatchet when using increasingly large datasets. We ran LULESH

Flamegraph

SC ’19, November 17–22, 2019, Denver, CO Bhatele et al.

check_equivalence: This checks whether two graphs are exactly
equivalent or not in their structures by comparing the call paths
of the respective children. If they are equivalent, it returns true,
otherwise it returns false.

union: The union function takes two graphs and creates a uni�ed
graph, preserving as much structure of the original graphs as pos-
sible. Typically, a union is called if the structures of two graphs
are di�erent. This operation is useful when we wish to perform an
add or subtract operation on two graphframes and the graphs are
not structurally equivalent. In this case, a union is performed �rst
before the add or subtract operation.

4.3 Graphframe Operations

copy: The copy operation returns a copy of a graphframe by creat-
ing a copy of the dataframe object and the graph object, which in
turn involves cloning all the nodes in the graph. Creating a copy
enables the user to modify a copy of the graphframe object, while
keeping the original object unchanged. This is useful for example,
in the case of add and subtract, when there are two operands and
the result needs to return a new graphframe.

add: Assuming the graphs in two graphframes are identical (i.e.,
check_equivalence returns true), the add operation computes
the sum of two dataframes column-wise. In the case where the
two graphs are not identical, union (described above) is applied
�rst to create a uni�ed graph before performing the sum. The
add operation returns a new resulting graphframe or modi�es one
of the graphframes in place in the case of the following addition
assignment: (a+ = b).

subtract: The subtract operation is similar to the add operation
in that it requires the two graphs to be identical. Once the graphs
are structurally equivalent, the subtract operation computes the
di�erence between the two dataframes column-wise. The subtract
operation returns a new resulting graphframe or modi�es one of
the graphframes in place in the case of the subtraction assignment
(a� = b). Figure 6 shows the subtraction of one graphframe from
another and the graph for the resulting graphframe.

4.4 Visualizing Output
Hatchet provides its own visualization as well as support for two
other visualizations of the structured data stored in the graph object.
The native visualization in Hatchet is a string that can be printed
to the terminal to display the graph. Hatchet can also output the
graph in the DOT format or a folded stack used by �ame graph [8].

The dot utility in Graphviz produces a hierarchical drawing of
directed graphs, particularly useful for showing the direction of
the edges. Flame graphs are useful for quickly identifying the per-
formance bottleneck, that is the box with the largest width. The
y-axis of the �ame graph represents the call stack depth. Figure 7
shows the same Hatchet graph presented in the three supported vi-
sualizations: terminal, DOT, and �ame graph. For particularly large
graphs, these visual representations can be useful for quickly identi-
fying caller-callee relationships. However, identifying performance
bottlenecks or load imbalance might be easier in the dataframe.

1 gf1 = GraphFrame( ... )

2 gf2 = GraphFrame( ... )

3

4 gf2 -= gf1

Figure 6: Subtraction operation on two graphframes (result-
ing graph at the bottom).

foo

bar qux waldo

baz grault quux

corge

bar grault garply

baz grault

fred garply

plugh xyzzy

thud

baz garply

FlameGraph

quux
corge

foo
bar

fred
xyzzy
thud

qux

bar

waldo

Figure 7: Visualization outputs supported in Hatchet in-
clude terminal output (left), DOT (right), and �ame graph
(bottom).

5 PERFORMANCE
It is vital that performance analysis tools have low overheads and
that they enable quick analysis of performance datasets without the
user having to wait for a long time for each operation to complete.
In Figure 9, we provide execution times for some operations in
Hatchet when using increasingly large datasets. We ran LULESH



Abhinav Bhatele (CMSC416 / CMSC616)

Starter code for reading data

33

import hatchet as ht
import sys

if __name__ == ‘__main__':
    file_name = sys.argv[1]
    gf = ht.GraphFrame.from_caliper(file_name)

    print(gf.tree())
    print(gf.dataframe) 

Replace this with another reader 
depending on data source



Abhinav Bhatele (CMSC416 / CMSC616)

Example 1: Generating a flat profile

34



Abhinav Bhatele (CMSC416 / CMSC616)

Example 1: Generating a flat profile

34



Abhinav Bhatele (CMSC416 / CMSC616)

Example 1: Generating a flat profile

34



Abhinav Bhatele (CMSC416 / CMSC616)

Example 2: Comparing two executions

35



Abhinav Bhatele (CMSC416 / CMSC616)

Example 2: Comparing two executions

35



Abhinav Bhatele (CMSC416 / CMSC616)

Example 2: Comparing two executions

35



Abhinav Bhatele (CMSC416 / CMSC616)

Example 3: Speedup and efficiency

36

Simplifying the Analysis of Parallel Profiles Using Chopper
Paper Type: Regular HPDC ’24, June, 2024, Pisa, Italy

1 query = [�*�, {�name�: �MPI_File_write_all�}]

2 filtered_test = graphframe.filter(query)

3 print(filtered_test.tree())

1 query = [�*�, {�name�: �MPI_File_iwrite�}]

2 filtered_test = graphframe.filter(query)

3 print(filtered_test.tree())

Figure 12: Call paths of the problematic portions of the program before (left) and after (right) the optimization. The time spent
in writeSingleField reduced from 7.033 to 2.088. The 1024 process count execution is used.

1 datasets = glob.glob(�list_of_tortuga_profiles�)

2 gfs = hatchet.GraphFrame.construct_from(datasets)

3

4 df = hatchet.Chopper.speedup_efficiency(gfs , strong=True ,

efficiency=True)

5 df = df.loc[df[�1024�] < 0.7]

6 df.T.loc[:, :]. plot.bar()

Figure 13: Demonstration of scalability analysis by using
multiple executions. We plot e�ciency of the four least e�-
cient nodes discovered in Tortuga strong scaling executions
(64, 128, 256, 512, 1024 processes). 64 process count execution
is used as the baseline. The vertical labels on each bar corre-
sponds the absolute time spent in the functions.

After getting these e�ciency results, we decided to focus on the
writeSingleField function because it is one of the functions that
has signi�cantly decreasing e�ciency. We further annotated this
function to identify the code block that causes this scalability issue.
We identi�ed the MPI_File_write_all function as a cause of this
problem. It is a collective and blocking function that uses all the
processes in the program to write to a �le. We decide to optimize
the code by replacing the MPI_File_write_all call with the non-

blocking MPI_File_iwrite call and leveraged asynchrony to opti-
mize writeSingleField. Figure 12 demonstrates the unoptimized
(left) and the optimized (right) version of the corresponding call
path. The time spent on writeSingleField reduced from 7.033 to
2.088 on 1024 processes.

This study shows that Chopper signi�cantly simpli�es this scal-
ability analysis at per-node granularity by providing functions that
can automatically unify the pro�le outputs and calculate e�ciency.
It also enables easy plotting of the results via Python libraries.

8 CONCLUSION
In this study, we proposed Chopper, a Python-based API for perfor-
mance analysis, which provides programmatic analysis capabilities
that simplify the performance analysis of single and multiple ex-
ecutions of parallel applications. We decided to build it on top of
Hatchet to leverage Hatchet’s programmatic interface and visual-
ization capabilities. We designed Chopper as an easy-to-use and
high-level API to avoid having a steep learning curve for new users.

In this paper, we used several case studies to demonstrate how
Chopper enables performing common but laborious analysis tasks
by writing only a few lines of Python code. Speci�cally, we pre-
sented how Chopper simpli�es analysis tasks for single and multi-
ple executions such as detecting load imbalance, �nding hot paths,
identifying scaling bottlenecks, �nding correlation between met-
rics and CCT nodes, and causes of performance variation. We also
demonstrated some useful functionalities such as reading multi-
ple pro�le data sets at once and unifying multiple GraphFrames.
We identi�ed potential performance problems in the Tortuga and
Quicksilver applications. Additionally, we identi�ed the causes of
performance variability in AMG and Laghos runs. The e�ective ca-
pabilities that Chopper provides make performance analysis tasks
easier to perform with less programming e�ort.

In the future, we plan to improve correlation analysis by adding
predictive modeling capabilities to facilitate performance analysis.
To further simplify the analyses and reduce the e�ort required, we
plan to support customizable plotting capabilities. We also plan to
develop performance analysis techniques for GPU programs.

Simplifying the Analysis of Parallel Profiles Using Chopper
Paper Type: Regular HPDC ’24, June, 2024, Pisa, Italy

1 query = [�*�, {�name�: �MPI_File_write_all�}]

2 filtered_test = graphframe.filter(query)

3 print(filtered_test.tree())

1 query = [�*�, {�name�: �MPI_File_iwrite�}]

2 filtered_test = graphframe.filter(query)

3 print(filtered_test.tree())

Figure 12: Call paths of the problematic portions of the program before (left) and after (right) the optimization. The time spent
in writeSingleField reduced from 7.033 to 2.088. The 1024 process count execution is used.

1 datasets = glob.glob(�list_of_tortuga_profiles�)

2 gfs = hatchet.GraphFrame.construct_from(datasets)

3

4 df = hatchet.Chopper.speedup_efficiency(gfs , strong=True ,

efficiency=True)

5 df = df.loc[df[�1024�] < 0.7]

6 df.T.loc[:, :]. plot.bar()

Figure 13: Demonstration of scalability analysis by using
multiple executions. We plot e�ciency of the four least e�-
cient nodes discovered in Tortuga strong scaling executions
(64, 128, 256, 512, 1024 processes). 64 process count execution
is used as the baseline. The vertical labels on each bar corre-
sponds the absolute time spent in the functions.

After getting these e�ciency results, we decided to focus on the
writeSingleField function because it is one of the functions that
has signi�cantly decreasing e�ciency. We further annotated this
function to identify the code block that causes this scalability issue.
We identi�ed the MPI_File_write_all function as a cause of this
problem. It is a collective and blocking function that uses all the
processes in the program to write to a �le. We decide to optimize
the code by replacing the MPI_File_write_all call with the non-

blocking MPI_File_iwrite call and leveraged asynchrony to opti-
mize writeSingleField. Figure 12 demonstrates the unoptimized
(left) and the optimized (right) version of the corresponding call
path. The time spent on writeSingleField reduced from 7.033 to
2.088 on 1024 processes.

This study shows that Chopper signi�cantly simpli�es this scal-
ability analysis at per-node granularity by providing functions that
can automatically unify the pro�le outputs and calculate e�ciency.
It also enables easy plotting of the results via Python libraries.

8 CONCLUSION
In this study, we proposed Chopper, a Python-based API for perfor-
mance analysis, which provides programmatic analysis capabilities
that simplify the performance analysis of single and multiple ex-
ecutions of parallel applications. We decided to build it on top of
Hatchet to leverage Hatchet’s programmatic interface and visual-
ization capabilities. We designed Chopper as an easy-to-use and
high-level API to avoid having a steep learning curve for new users.

In this paper, we used several case studies to demonstrate how
Chopper enables performing common but laborious analysis tasks
by writing only a few lines of Python code. Speci�cally, we pre-
sented how Chopper simpli�es analysis tasks for single and multi-
ple executions such as detecting load imbalance, �nding hot paths,
identifying scaling bottlenecks, �nding correlation between met-
rics and CCT nodes, and causes of performance variation. We also
demonstrated some useful functionalities such as reading multi-
ple pro�le data sets at once and unifying multiple GraphFrames.
We identi�ed potential performance problems in the Tortuga and
Quicksilver applications. Additionally, we identi�ed the causes of
performance variability in AMG and Laghos runs. The e�ective ca-
pabilities that Chopper provides make performance analysis tasks
easier to perform with less programming e�ort.

In the future, we plan to improve correlation analysis by adding
predictive modeling capabilities to facilitate performance analysis.
To further simplify the analyses and reduce the e�ort required, we
plan to support customizable plotting capabilities. We also plan to
develop performance analysis techniques for GPU programs.



Abhinav Bhatele (CMSC416 / CMSC616)

Example 3: Speedup and efficiency

36

Simplifying the Analysis of Parallel Profiles Using Chopper
Paper Type: Regular HPDC ’24, June, 2024, Pisa, Italy

1 query = [�*�, {�name�: �MPI_File_write_all�}]

2 filtered_test = graphframe.filter(query)

3 print(filtered_test.tree())

1 query = [�*�, {�name�: �MPI_File_iwrite�}]

2 filtered_test = graphframe.filter(query)

3 print(filtered_test.tree())

Figure 12: Call paths of the problematic portions of the program before (left) and after (right) the optimization. The time spent
in writeSingleField reduced from 7.033 to 2.088. The 1024 process count execution is used.

1 datasets = glob.glob(�list_of_tortuga_profiles�)

2 gfs = hatchet.GraphFrame.construct_from(datasets)

3

4 df = hatchet.Chopper.speedup_efficiency(gfs , strong=True ,

efficiency=True)

5 df = df.loc[df[�1024�] < 0.7]

6 df.T.loc[:, :]. plot.bar()

Figure 13: Demonstration of scalability analysis by using
multiple executions. We plot e�ciency of the four least e�-
cient nodes discovered in Tortuga strong scaling executions
(64, 128, 256, 512, 1024 processes). 64 process count execution
is used as the baseline. The vertical labels on each bar corre-
sponds the absolute time spent in the functions.

After getting these e�ciency results, we decided to focus on the
writeSingleField function because it is one of the functions that
has signi�cantly decreasing e�ciency. We further annotated this
function to identify the code block that causes this scalability issue.
We identi�ed the MPI_File_write_all function as a cause of this
problem. It is a collective and blocking function that uses all the
processes in the program to write to a �le. We decide to optimize
the code by replacing the MPI_File_write_all call with the non-

blocking MPI_File_iwrite call and leveraged asynchrony to opti-
mize writeSingleField. Figure 12 demonstrates the unoptimized
(left) and the optimized (right) version of the corresponding call
path. The time spent on writeSingleField reduced from 7.033 to
2.088 on 1024 processes.

This study shows that Chopper signi�cantly simpli�es this scal-
ability analysis at per-node granularity by providing functions that
can automatically unify the pro�le outputs and calculate e�ciency.
It also enables easy plotting of the results via Python libraries.

8 CONCLUSION
In this study, we proposed Chopper, a Python-based API for perfor-
mance analysis, which provides programmatic analysis capabilities
that simplify the performance analysis of single and multiple ex-
ecutions of parallel applications. We decided to build it on top of
Hatchet to leverage Hatchet’s programmatic interface and visual-
ization capabilities. We designed Chopper as an easy-to-use and
high-level API to avoid having a steep learning curve for new users.

In this paper, we used several case studies to demonstrate how
Chopper enables performing common but laborious analysis tasks
by writing only a few lines of Python code. Speci�cally, we pre-
sented how Chopper simpli�es analysis tasks for single and multi-
ple executions such as detecting load imbalance, �nding hot paths,
identifying scaling bottlenecks, �nding correlation between met-
rics and CCT nodes, and causes of performance variation. We also
demonstrated some useful functionalities such as reading multi-
ple pro�le data sets at once and unifying multiple GraphFrames.
We identi�ed potential performance problems in the Tortuga and
Quicksilver applications. Additionally, we identi�ed the causes of
performance variability in AMG and Laghos runs. The e�ective ca-
pabilities that Chopper provides make performance analysis tasks
easier to perform with less programming e�ort.

In the future, we plan to improve correlation analysis by adding
predictive modeling capabilities to facilitate performance analysis.
To further simplify the analyses and reduce the e�ort required, we
plan to support customizable plotting capabilities. We also plan to
develop performance analysis techniques for GPU programs.

Simplifying the Analysis of Parallel Profiles Using Chopper
Paper Type: Regular HPDC ’24, June, 2024, Pisa, Italy

1 query = [�*�, {�name�: �MPI_File_write_all�}]

2 filtered_test = graphframe.filter(query)

3 print(filtered_test.tree())

1 query = [�*�, {�name�: �MPI_File_iwrite�}]

2 filtered_test = graphframe.filter(query)

3 print(filtered_test.tree())

Figure 12: Call paths of the problematic portions of the program before (left) and after (right) the optimization. The time spent
in writeSingleField reduced from 7.033 to 2.088. The 1024 process count execution is used.

1 datasets = glob.glob(�list_of_tortuga_profiles�)

2 gfs = hatchet.GraphFrame.construct_from(datasets)

3

4 df = hatchet.Chopper.speedup_efficiency(gfs , strong=True ,

efficiency=True)

5 df = df.loc[df[�1024�] < 0.7]

6 df.T.loc[:, :]. plot.bar()

Figure 13: Demonstration of scalability analysis by using
multiple executions. We plot e�ciency of the four least e�-
cient nodes discovered in Tortuga strong scaling executions
(64, 128, 256, 512, 1024 processes). 64 process count execution
is used as the baseline. The vertical labels on each bar corre-
sponds the absolute time spent in the functions.

After getting these e�ciency results, we decided to focus on the
writeSingleField function because it is one of the functions that
has signi�cantly decreasing e�ciency. We further annotated this
function to identify the code block that causes this scalability issue.
We identi�ed the MPI_File_write_all function as a cause of this
problem. It is a collective and blocking function that uses all the
processes in the program to write to a �le. We decide to optimize
the code by replacing the MPI_File_write_all call with the non-

blocking MPI_File_iwrite call and leveraged asynchrony to opti-
mize writeSingleField. Figure 12 demonstrates the unoptimized
(left) and the optimized (right) version of the corresponding call
path. The time spent on writeSingleField reduced from 7.033 to
2.088 on 1024 processes.

This study shows that Chopper signi�cantly simpli�es this scal-
ability analysis at per-node granularity by providing functions that
can automatically unify the pro�le outputs and calculate e�ciency.
It also enables easy plotting of the results via Python libraries.

8 CONCLUSION
In this study, we proposed Chopper, a Python-based API for perfor-
mance analysis, which provides programmatic analysis capabilities
that simplify the performance analysis of single and multiple ex-
ecutions of parallel applications. We decided to build it on top of
Hatchet to leverage Hatchet’s programmatic interface and visual-
ization capabilities. We designed Chopper as an easy-to-use and
high-level API to avoid having a steep learning curve for new users.

In this paper, we used several case studies to demonstrate how
Chopper enables performing common but laborious analysis tasks
by writing only a few lines of Python code. Speci�cally, we pre-
sented how Chopper simpli�es analysis tasks for single and multi-
ple executions such as detecting load imbalance, �nding hot paths,
identifying scaling bottlenecks, �nding correlation between met-
rics and CCT nodes, and causes of performance variation. We also
demonstrated some useful functionalities such as reading multi-
ple pro�le data sets at once and unifying multiple GraphFrames.
We identi�ed potential performance problems in the Tortuga and
Quicksilver applications. Additionally, we identi�ed the causes of
performance variability in AMG and Laghos runs. The e�ective ca-
pabilities that Chopper provides make performance analysis tasks
easier to perform with less programming e�ort.

In the future, we plan to improve correlation analysis by adding
predictive modeling capabilities to facilitate performance analysis.
To further simplify the analyses and reduce the e�ort required, we
plan to support customizable plotting capabilities. We also plan to
develop performance analysis techniques for GPU programs.



Abhinav Bhatele (CMSC416 / CMSC616)

Example 4: Load imbalance

37

Simplifying the Analysis of Parallel Profiles Using Chopper
Paper Type: Regular HPDC ’24, June, 2024, Pisa, Italy

(a) Quicksilver Load Imbalance DataFrame Output (b) Load Imbalance Histogram of MacroscopicCrossSec-
tion.cc:22

1 graphframe = hatchet.GraphFrame.from_hpctoolkit(�qs_profile_128�)

2

3 graphframe_imbalance = graphframe.load_imbalance(verbose=True)

4 # sort the top 50 nodes that have the highest mean value by imbalance

5 df_imb = graphframe_imbalance.dataframe.head (50).sort_values(�time.imbalance�, ascending=False)

6 print(df_imb.head (4)) # Dataframe Output (a)

Figure 9: Demonstration of load imbalance analysis and the results of the case study. The most imbalance is caused by
MacroscopicCrossSection:22. Chopper’s load_imbalance function provides detailed statistics about the imbalance (a) that can
be easily plotted by using Python libraries (b). We use Quicksilver execution on 128 processes.

case study demonstrates that users can easily examine the correla-
tion between di�erent performance metrics and investigate outliers
or potential issues by performing analyses at CCT node level. Chop-
per also enables users to easily plot the results via Python libraries.

7.2 Comparing Multiple Executions
More advanced analysis tasks, such as studying scalability and vari-
ability, require analyzing multiple executions of the same program
with di�erent parameters. In this case, the user needs to analyze
more than two datasets. We show that Chopper can signi�cantly
simplify these analysis tasks.

Identifying performance variability: We analyze data collected
in [citation removed for double-blind review] that focuses on two
applications, AMG and Laghos. The data was collected over a pe-
riod of six months, during which the applications were executed
repeatedly on a �xed number of nodes using �xed input parameters
to study performance variability. In this case study, we demonstrate
how we use Chopper to quickly identify the sources of variability.
For both applications, we identify the runs that have fastest, slowest,
and average execution time and analyze pro�les of these runs.

Figure 11 illustrates our analysis methodology and the resulting
plots. First, we create GraphFrames for each pro�le (line 2) and
pass them to the multirun_analysis function (line 4). We apply a
threshold on the time metric for each of the three executions to
remove the insigni�cant CCT nodes. We create the plots as shown
in line 5 using the output of multirun_analysis.

The resulting plots show the di�erence between the runs (or-
dered left to right from slowest to fastest) in the execution time
of the nodes causing variability in AMG (a) and Laghos (b). These
plots reveal that increase in time on the slowest runs is caused by

the communication libraries (such as libpsm2.s and libmpi.so),
which is expected due to network congestion mentioned in the
previous paper [citation removed for double-blind review]

The Chopper API enables the analysis of multiple executions us-
ing a single function call and presents the results in an easy-to-plot
format. This is a tedious and fraught task without programmatic
analysis capabilities as it requires comparing performance nodes
from multiple runs simultaneously. Furthermore, to the best of our
knowledge, this is the �rst study that uses CCT data to identify
performance variability.

Identifying scalability bottlenecks: In this case study, we ana-
lyze data from a strong scaling experiment using Tortuga executions
on 64, 128, 256, 512, and 1024 processes. The e�ciency at 128, 256,
512, and 1024 process counts is calculated relative to the baseline,
which is the execution with 64 processes. We used the code that
we manually annotated using Score-P.

Figure 13 demonstrates how users can perform a per-CCT-node
scalability analysis with the Chopper API. We �rst create a Graph-
Frame for each execution (line 2), and then call the speedup_e�ciency
function by passing all of the GraphFrames, the metric that we want
to calculate e�ciency on (time by default), the type of experiment
(strong=True), and analysis type (e�ciency=True) in line 3. This
function automatically uni�es all the given GraphFrames with the
unify_multiple_graphframes function and calculates e�ciency rel-
ative to the baseline execution. We �lter out the CCT nodes whose
e�ciency values are greater than 0.7 (line 5) and plot the results
by using the resulting DataFrame (line 6). In addition to e�ciency
values and node names, the user can access the corresponding �le
and line number from the DataFrame.

The e�ciency plot (Figure 13) shows the nodes that use more
than 10% of the total execution time and have e�ciency values lower

Simplifying the Analysis of Parallel Profiles Using Chopper
Paper Type: Regular HPDC ’24, June, 2024, Pisa, Italy

(a) Quicksilver Load Imbalance DataFrame Output (b) Load Imbalance Histogram of MacroscopicCrossSec-
tion.cc:22

1 graphframe = hatchet.GraphFrame.from_hpctoolkit(�qs_profile_128�)

2

3 graphframe_imbalance = graphframe.load_imbalance(verbose=True)

4 # sort the top 50 nodes that have the highest mean value by imbalance

5 df_imb = graphframe_imbalance.dataframe.head (50).sort_values(�time.imbalance�, ascending=False)

6 print(df_imb.head (4)) # Dataframe Output (a)

Figure 9: Demonstration of load imbalance analysis and the results of the case study. The most imbalance is caused by
MacroscopicCrossSection:22. Chopper’s load_imbalance function provides detailed statistics about the imbalance (a) that can
be easily plotted by using Python libraries (b). We use Quicksilver execution on 128 processes.

case study demonstrates that users can easily examine the correla-
tion between di�erent performance metrics and investigate outliers
or potential issues by performing analyses at CCT node level. Chop-
per also enables users to easily plot the results via Python libraries.

7.2 Comparing Multiple Executions
More advanced analysis tasks, such as studying scalability and vari-
ability, require analyzing multiple executions of the same program
with di�erent parameters. In this case, the user needs to analyze
more than two datasets. We show that Chopper can signi�cantly
simplify these analysis tasks.

Identifying performance variability: We analyze data collected
in [citation removed for double-blind review] that focuses on two
applications, AMG and Laghos. The data was collected over a pe-
riod of six months, during which the applications were executed
repeatedly on a �xed number of nodes using �xed input parameters
to study performance variability. In this case study, we demonstrate
how we use Chopper to quickly identify the sources of variability.
For both applications, we identify the runs that have fastest, slowest,
and average execution time and analyze pro�les of these runs.

Figure 11 illustrates our analysis methodology and the resulting
plots. First, we create GraphFrames for each pro�le (line 2) and
pass them to the multirun_analysis function (line 4). We apply a
threshold on the time metric for each of the three executions to
remove the insigni�cant CCT nodes. We create the plots as shown
in line 5 using the output of multirun_analysis.

The resulting plots show the di�erence between the runs (or-
dered left to right from slowest to fastest) in the execution time
of the nodes causing variability in AMG (a) and Laghos (b). These
plots reveal that increase in time on the slowest runs is caused by

the communication libraries (such as libpsm2.s and libmpi.so),
which is expected due to network congestion mentioned in the
previous paper [citation removed for double-blind review]

The Chopper API enables the analysis of multiple executions us-
ing a single function call and presents the results in an easy-to-plot
format. This is a tedious and fraught task without programmatic
analysis capabilities as it requires comparing performance nodes
from multiple runs simultaneously. Furthermore, to the best of our
knowledge, this is the �rst study that uses CCT data to identify
performance variability.

Identifying scalability bottlenecks: In this case study, we ana-
lyze data from a strong scaling experiment using Tortuga executions
on 64, 128, 256, 512, and 1024 processes. The e�ciency at 128, 256,
512, and 1024 process counts is calculated relative to the baseline,
which is the execution with 64 processes. We used the code that
we manually annotated using Score-P.

Figure 13 demonstrates how users can perform a per-CCT-node
scalability analysis with the Chopper API. We �rst create a Graph-
Frame for each execution (line 2), and then call the speedup_e�ciency
function by passing all of the GraphFrames, the metric that we want
to calculate e�ciency on (time by default), the type of experiment
(strong=True), and analysis type (e�ciency=True) in line 3. This
function automatically uni�es all the given GraphFrames with the
unify_multiple_graphframes function and calculates e�ciency rel-
ative to the baseline execution. We �lter out the CCT nodes whose
e�ciency values are greater than 0.7 (line 5) and plot the results
by using the resulting DataFrame (line 6). In addition to e�ciency
values and node names, the user can access the corresponding �le
and line number from the DataFrame.

The e�ciency plot (Figure 13) shows the nodes that use more
than 10% of the total execution time and have e�ciency values lower



Abhinav Bhatele (CMSC416 / CMSC616)

Example 4: Load imbalance

37

Simplifying the Analysis of Parallel Profiles Using Chopper
Paper Type: Regular HPDC ’24, June, 2024, Pisa, Italy

(a) Quicksilver Load Imbalance DataFrame Output (b) Load Imbalance Histogram of MacroscopicCrossSec-
tion.cc:22

1 graphframe = hatchet.GraphFrame.from_hpctoolkit(�qs_profile_128�)

2

3 graphframe_imbalance = graphframe.load_imbalance(verbose=True)

4 # sort the top 50 nodes that have the highest mean value by imbalance

5 df_imb = graphframe_imbalance.dataframe.head (50).sort_values(�time.imbalance�, ascending=False)

6 print(df_imb.head (4)) # Dataframe Output (a)

Figure 9: Demonstration of load imbalance analysis and the results of the case study. The most imbalance is caused by
MacroscopicCrossSection:22. Chopper’s load_imbalance function provides detailed statistics about the imbalance (a) that can
be easily plotted by using Python libraries (b). We use Quicksilver execution on 128 processes.

case study demonstrates that users can easily examine the correla-
tion between di�erent performance metrics and investigate outliers
or potential issues by performing analyses at CCT node level. Chop-
per also enables users to easily plot the results via Python libraries.

7.2 Comparing Multiple Executions
More advanced analysis tasks, such as studying scalability and vari-
ability, require analyzing multiple executions of the same program
with di�erent parameters. In this case, the user needs to analyze
more than two datasets. We show that Chopper can signi�cantly
simplify these analysis tasks.

Identifying performance variability: We analyze data collected
in [citation removed for double-blind review] that focuses on two
applications, AMG and Laghos. The data was collected over a pe-
riod of six months, during which the applications were executed
repeatedly on a �xed number of nodes using �xed input parameters
to study performance variability. In this case study, we demonstrate
how we use Chopper to quickly identify the sources of variability.
For both applications, we identify the runs that have fastest, slowest,
and average execution time and analyze pro�les of these runs.

Figure 11 illustrates our analysis methodology and the resulting
plots. First, we create GraphFrames for each pro�le (line 2) and
pass them to the multirun_analysis function (line 4). We apply a
threshold on the time metric for each of the three executions to
remove the insigni�cant CCT nodes. We create the plots as shown
in line 5 using the output of multirun_analysis.

The resulting plots show the di�erence between the runs (or-
dered left to right from slowest to fastest) in the execution time
of the nodes causing variability in AMG (a) and Laghos (b). These
plots reveal that increase in time on the slowest runs is caused by

the communication libraries (such as libpsm2.s and libmpi.so),
which is expected due to network congestion mentioned in the
previous paper [citation removed for double-blind review]

The Chopper API enables the analysis of multiple executions us-
ing a single function call and presents the results in an easy-to-plot
format. This is a tedious and fraught task without programmatic
analysis capabilities as it requires comparing performance nodes
from multiple runs simultaneously. Furthermore, to the best of our
knowledge, this is the �rst study that uses CCT data to identify
performance variability.

Identifying scalability bottlenecks: In this case study, we ana-
lyze data from a strong scaling experiment using Tortuga executions
on 64, 128, 256, 512, and 1024 processes. The e�ciency at 128, 256,
512, and 1024 process counts is calculated relative to the baseline,
which is the execution with 64 processes. We used the code that
we manually annotated using Score-P.

Figure 13 demonstrates how users can perform a per-CCT-node
scalability analysis with the Chopper API. We �rst create a Graph-
Frame for each execution (line 2), and then call the speedup_e�ciency
function by passing all of the GraphFrames, the metric that we want
to calculate e�ciency on (time by default), the type of experiment
(strong=True), and analysis type (e�ciency=True) in line 3. This
function automatically uni�es all the given GraphFrames with the
unify_multiple_graphframes function and calculates e�ciency rel-
ative to the baseline execution. We �lter out the CCT nodes whose
e�ciency values are greater than 0.7 (line 5) and plot the results
by using the resulting DataFrame (line 6). In addition to e�ciency
values and node names, the user can access the corresponding �le
and line number from the DataFrame.

The e�ciency plot (Figure 13) shows the nodes that use more
than 10% of the total execution time and have e�ciency values lower

Simplifying the Analysis of Parallel Profiles Using Chopper
Paper Type: Regular HPDC ’24, June, 2024, Pisa, Italy

(a) Quicksilver Load Imbalance DataFrame Output (b) Load Imbalance Histogram of MacroscopicCrossSec-
tion.cc:22

1 graphframe = hatchet.GraphFrame.from_hpctoolkit(�qs_profile_128�)

2

3 graphframe_imbalance = graphframe.load_imbalance(verbose=True)

4 # sort the top 50 nodes that have the highest mean value by imbalance

5 df_imb = graphframe_imbalance.dataframe.head (50).sort_values(�time.imbalance�, ascending=False)

6 print(df_imb.head (4)) # Dataframe Output (a)

Figure 9: Demonstration of load imbalance analysis and the results of the case study. The most imbalance is caused by
MacroscopicCrossSection:22. Chopper’s load_imbalance function provides detailed statistics about the imbalance (a) that can
be easily plotted by using Python libraries (b). We use Quicksilver execution on 128 processes.

case study demonstrates that users can easily examine the correla-
tion between di�erent performance metrics and investigate outliers
or potential issues by performing analyses at CCT node level. Chop-
per also enables users to easily plot the results via Python libraries.

7.2 Comparing Multiple Executions
More advanced analysis tasks, such as studying scalability and vari-
ability, require analyzing multiple executions of the same program
with di�erent parameters. In this case, the user needs to analyze
more than two datasets. We show that Chopper can signi�cantly
simplify these analysis tasks.

Identifying performance variability: We analyze data collected
in [citation removed for double-blind review] that focuses on two
applications, AMG and Laghos. The data was collected over a pe-
riod of six months, during which the applications were executed
repeatedly on a �xed number of nodes using �xed input parameters
to study performance variability. In this case study, we demonstrate
how we use Chopper to quickly identify the sources of variability.
For both applications, we identify the runs that have fastest, slowest,
and average execution time and analyze pro�les of these runs.

Figure 11 illustrates our analysis methodology and the resulting
plots. First, we create GraphFrames for each pro�le (line 2) and
pass them to the multirun_analysis function (line 4). We apply a
threshold on the time metric for each of the three executions to
remove the insigni�cant CCT nodes. We create the plots as shown
in line 5 using the output of multirun_analysis.

The resulting plots show the di�erence between the runs (or-
dered left to right from slowest to fastest) in the execution time
of the nodes causing variability in AMG (a) and Laghos (b). These
plots reveal that increase in time on the slowest runs is caused by

the communication libraries (such as libpsm2.s and libmpi.so),
which is expected due to network congestion mentioned in the
previous paper [citation removed for double-blind review]

The Chopper API enables the analysis of multiple executions us-
ing a single function call and presents the results in an easy-to-plot
format. This is a tedious and fraught task without programmatic
analysis capabilities as it requires comparing performance nodes
from multiple runs simultaneously. Furthermore, to the best of our
knowledge, this is the �rst study that uses CCT data to identify
performance variability.

Identifying scalability bottlenecks: In this case study, we ana-
lyze data from a strong scaling experiment using Tortuga executions
on 64, 128, 256, 512, and 1024 processes. The e�ciency at 128, 256,
512, and 1024 process counts is calculated relative to the baseline,
which is the execution with 64 processes. We used the code that
we manually annotated using Score-P.

Figure 13 demonstrates how users can perform a per-CCT-node
scalability analysis with the Chopper API. We �rst create a Graph-
Frame for each execution (line 2), and then call the speedup_e�ciency
function by passing all of the GraphFrames, the metric that we want
to calculate e�ciency on (time by default), the type of experiment
(strong=True), and analysis type (e�ciency=True) in line 3. This
function automatically uni�es all the given GraphFrames with the
unify_multiple_graphframes function and calculates e�ciency rel-
ative to the baseline execution. We �lter out the CCT nodes whose
e�ciency values are greater than 0.7 (line 5) and plot the results
by using the resulting DataFrame (line 6). In addition to e�ciency
values and node names, the user can access the corresponding �le
and line number from the DataFrame.

The e�ciency plot (Figure 13) shows the nodes that use more
than 10% of the total execution time and have e�ciency values lower



Abhinav Bhatele 

5218 Brendan Iribe Center (IRB) / College Park, MD 20742 

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu


