
Performance Issues
Abhinav Bhatele, Department of Computer Science

Parallel Computing (CMSC416 / CMSC616)

Abhinav Bhatele (CMSC416 / CMSC616)

Announcements

• Quiz 2 is posted, due on Oct 24 at noon

2

Abhinav Bhatele (CMSC416 / CMSC616)

Performance metrics

• Time to solution

• Time per step (iteration)

• Science progress (figure of merit per unit time)

• Floating point operations per second (flop/s)

• When comparing multiple data points:

• Speedup, efficiency

3

Abhinav Bhatele (CMSC416 / CMSC616)

What is the best performance we can get?

• Peak flop/s

• Peak memory bandwidth

• Peak network bandwidth

• Why do we not achieve peak performance?

4

Abhinav Bhatele (CMSC416 / CMSC616)

What is happening in a program

• Integer operations

• Floating point operations

• Conditional instructions (branches)

• Loads/stores

• Data movement across the network (messages + I/O)

5

Abhinav Bhatele (CMSC416 / CMSC616)

Performance issues
• Serial code performance issues*

• Inefficient memory access: data movement in the memory hierarchy

• Inefficient floating point operations

• Load imbalance

• Some processes doing more work than most

• Communication issues / parallel overhead*

• Spending increasing proportion of time on communication

• Algorithmic overhead / replicated work

• More computation when running in parallel (e.g. prefix sum)

6

Abhinav Bhatele (CMSC416 / CMSC616)

Performance issues

• Speculative loss

• Perform extra computation speculatively but not use all of it for the result

• Critical paths*

• Dependencies between computations spread across processes / threads

• Insufficient parallelism

• Bottlenecks*

• Serial bottlenecks: one process doing some computation and holding everyone up

7

Abhinav Bhatele (CMSC416 / CMSC616)

Serial code performance issues

• Identify issues using performance tools

• Solutions:

• Minimize data movement

• Maximize data reuse

• Optimize floating point calculations

8

Abhinav Bhatele (CMSC416 / CMSC616)

Communication performance issues

• Overhead and grainsize (Lots of tiny messages or a fewer, larger messages)

• No overlap between communication and computation

• Increasing amounts of communication as we run with more processes/threads

• Frequent global synchronization

9

Abhinav Bhatele (CMSC416 / CMSC616)

Critical paths

10

• A long chain of operations with consecutive dependencies across processes

• We want to identify and avoid having long critical paths

• Eliminate completely if possible, or shorten it

• Reduce time spent in a path by removing work on the critical path

Abhinav Bhatele (CMSC416 / CMSC616)

Serial bottlenecks

• Detect serial bottlenecks: things getting “serialized”

• One process busy while all others wait

• Examples of serial bottlenecks:

• Reduce to one process and then broadcast

• One process responsible for input/output

• One process responsible for assigning work to others

• Solutions:

• Parallelize as much as possible, use hierarchical schemes

11

Abhinav Bhatele (CMSC416 / CMSC616)

Performance variability is a real concern

12

1

1.5

2

2.5

3

Nov 29 Dec 13 Dec 27 Jan 10 Jan 24 Feb 07 Feb 21 Mar 07 Mar 21 Apr 04

R
el
at
iv
e
pe
rf
or
m
an
ce

MILC
AMG

UMT
miniVite

Performance of control jobs running the same executable and input varies as they are run from day-to-day
on 128 nodes of Cori in 2018-2019

Bhatele et al. The case of performance variability on dragonfly-based systems, IPDPS 2020

Abhinav Bhatele (CMSC416 / CMSC616)

Leads to several problems …

• Individual jobs run slower:

• More time to complete science simulations

• Increased wait time in job queues

• Inefficient use of machine time allocation

• Overall lower system throughput

• Increased energy usage/costs

13

Abhinav Bhatele (CMSC416 / CMSC616)

Affects software development cycle

• Debugging performance issues

• Quantifying the effect of various software changes on performance

• Code changes

• System software changes

• Estimating time for a batch job or simulation

14

Abhinav Bhatele (CMSC416 / CMSC616)

Sources of performance variability

• Operating system (OS) noise/jitter

• Contention for shared resources

• Network

• Filesystem

15

Abhinav Bhatele (CMSC416 / CMSC616)

Operating System

• Node on an HPC cluster may have:

• A “full” linux kernel, or

• A light-weight kernel

• This determines what services/daemons run

• Impacts performance predictability

16

Abhinav Bhatele (CMSC416 / CMSC616)

Operating System (OS) Noise

• Also called “jitter”

• Impacts computation due to interrupts by OS

17

sampling time

d2 d3

t 1 t 2 t 3t min

Figure 2: A sample of detours.

Figure 2 shows how the benchmark (Figure 1) regularly samples the clock until interrupted by a de-
tour. The vertical arrows pointing downwards represent sampling points; empty rectangles are the detours.
Three cases are shown:

1. No detour occurs, so t1 equals tmin (which is the final value of min_ticks from Figure 1).
2. A short detour of length d2 takes place. The inter-sample period t2 is approximately equal to tmin + d2

(it may be slightly larger because executing the detour code may flush the acquisition loop out of the
CPU cache). t2 is below the threshold, so the detour will not be recorded.

3. A longer detour of length d3 takes place. This time t3 ≃ tmin + d3 is above the threshold, so the detour
will be recorded.

The minimum iteration time tmin is very important, because it determines the maximum resolution of
the benchmark. A sample of the results captured on several platforms can be found in Table 3. The results
clearly indicate that all sampled architectures are capable of instrumenting 1 µs events. The exact tmin values
depend on the CPU frequency, but also on other factors, such as the quality of the branch prediction and
compiler optimization. Furthermore, the OS can set memory page attributes, such as cache inhibit or page
guard on pages where the loop resides. If so, the minimum iteration time will be different between two
platforms even if the underlying hardware is the same—this effect can be observed on BG/L. The vastly
superior timer resolution of the XT3 can be attributed to its 64-bit CPU: most operations in the loop are
performed on 64-bit integers, and the other platforms, featuring 32-bit CPUs, must implement those in
software.

Table 3: Minimum acquisition loop iteration times. Most experiments conducted in May 2005, XT3 in Aug.
2005.

Platform CPU OS tmin [ns]
BG/L CN PPC 440 (700 MHz) BLRTS 185
BG/L ION PPC 440 (700 MHz) Linux 2.4 137
Jazz Node Xeon (2.4 GHz) Linux 2.4 62
Laptop Pentium-M (1.7 GHz) Linux 2.6 39
XT3 Opteron (2.4 GHz) Catamount 7

This noise measurement technique is not without limitations. It is meant to be used for identifying in-
herent noise only: the system is expected to be idle, and the benchmark itself is small and simple enough to
generate no user-triggered detours when running. It will not measure any memory management overhead
or detours stemming from processing MPI messages in the background as they arrive from a communica-
tion link.

3.3 Noise measurement results
We have applied our noise measurement technique described above to several different platforms. The
results from five of them are presented in this paper.

Abhinav Bhatele (CMSC416 / CMSC616)

Measuring OS Noise

• Fixed Work Quanta (FTW) and Fixed Time Quanta (FTQ)

18

Benchmarks: https://asc.llnl.gov/sites/asc/files/2020-06/FTQFTW_Summary_v1.1.pdf

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000

E
xe

cu
tio

n
 t

im
e
 (

u
s)

Core Number

BG/P - Noise in sequential computation across 8192 cores

Max
Min

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000

E
xe

cu
tio

n
 t
im

e
 (

u
s)

Core Number

Ranger - Noise in sequential computation across 8192 cores

Max
Min

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000

E
xe

cu
tio

n
 t
im

e
 (

u
s)

Core Number

XT4 - Noise in sequential computation across 8192 cores

Max
Min

Figure 4: Plot showing system noise plotted against all ranks in a 8192-core run

https://asc.llnl.gov/sites/asc/files/2020-06/FTQFTW_Summary_v1.1.pdf

Abhinav Bhatele (CMSC416 / CMSC616)

Measuring OS Noise

• Fixed Work Quanta (FTW) and Fixed Time Quanta (FTQ)

18

Benchmarks: https://asc.llnl.gov/sites/asc/files/2020-06/FTQFTW_Summary_v1.1.pdf

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000

E
xe

cu
tio

n
 t
im

e
 (

u
s)

Core Number

BG/P - Noise in sequential computation across 8192 cores

Max
Min

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000

E
xe

cu
tio

n
 t
im

e
 (

u
s)

Core Number

Ranger - Noise in sequential computation across 8192 cores

Max
Min

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000

E
xe

cu
tio

n
 t
im

e
 (

u
s)

Core Number

XT4 - Noise in sequential computation across 8192 cores

Max
Min

Figure 4: Plot showing system noise plotted against all ranks in a 8192-core run

https://asc.llnl.gov/sites/asc/files/2020-06/FTQFTW_Summary_v1.1.pdf

Abhinav Bhatele (CMSC416 / CMSC616)

The Case of the Missing Supercomputer
Performance

19

expected 1 ms run time, we summed the unexpected
overhead. The idea to aggregate across processors
within a node led to an important observation: Fig-
ure 11 clearly indicates that there is a regular pattern
to the noise across QB’s 1,024 nodes. Every cluster
of 32 nodes contains some nodes that are consistently
noisier than others.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 128 256 384 512 640 768 896 1024

Sl
ow
do
w
n
(p
er
ce
nt
ag
e)

Nodes

Figure 11: Results of the performance-variability mi-
crobenchmark analyzed on a per-node basis

FINDING #1

Analyzing noise on a per-node basis instead of
a per-processor basis reveals a regular structure
across nodes.

Figure 12 zooms in on the data presented in Fig-
ure 11 in order to show more detail on one of the 32-
node clusters. We can see that all nodes suffer from a
moderate background noise and that node 0 (the clus-
ter manager), node 1 (the quorum node), and node 31
(the RMS cluster monitor) are slower than the others.
This pattern repeats for each cluster of 32 nodes.

In order to understand the nature of this noise we
plot the actual time taken to perform the 1 million
1 ms computations in histogram format. Figure 13
shows one such histogram for each of the four group-
ings of nodes: nodes 0, 1, 2–30, and 31 of a 32-node
cluster. Note that the scale of the x axis varies from
graph to graph. These graphs show that the noise in
each grouping has a well-defined pattern with classes
of events that happen regularly with well-defined fre-
quencies and durations. For example, on any node
of a cluster we can identify two events that happen
regularly every 30 seconds and whose durations are

Compute Nodes

Node 1

Node 0

Node 31

0 5 10 15 20 25 30
Nodes

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Sl
ow
do
w
n
(p
er
ce
nt
ag
e)

Figure 12: Slowdown per node within each 32-node
cluster

15 and 18 ms. This means that a slice of computa-
tion that should take 1 ms occasionally takes 16 ms or
19 ms. The process that experiences this type of inter-
ruption will freeze for the corresponding amount of
time. Intuitively, these events can be traced back to
some regular system activity as dæmons or the kernel
itself. Node 0 displays four different types of activities,
all occurring at regular intervals, with a duration that
can be up to 200 ms. Node 1 experiences a few heavy-
weight interrupts—one every 60 seconds—that freeze
the process for about 335 ms. On node 31 we can iden-
tify another pattern of intrusion, with frequent inter-
rupts (every second) and a duration of 7 ms.

Using a number of techniques on QB we were able
to identify the source of most activities. As a gen-
eral rule, these activities happen at regular intervals.
The two events that take 15 and 18 ms on each node
are generated by Quadrics’s resource management sys-
tem, RMS [18], which regularly spawns a dæmon ev-
ery thirty seconds. A distributed heartbeat that per-
forms cluster management, generated at kernel level,
is the cause of many lightweight interrupts (one ev-
ery 125 ms) whose duration is a few hundred microsec-
onds. Other dæmons that implement the parallel file
system and TruCluster, HP’s cluster management soft-
ware, are the source of the noise on nodes 0 and 1.
Table 2 summarizes the duration and location within
each 32-node cluster of the various types of noise.

Each of these events can be characterized by a tuple
hF, L, E, Pi that describes the frequency of the event F,
the average duration L, the distribution E, and the
placement (the set of nodes where the event is gen-
erated) P. As will be discussed in Section 3.4, this
characterization is accurate enough to closely model
the noise in the system and is also able to provide

8

Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. 2003. The Case of the Missing Supercomputer Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q. In Proceedings of
the 2003 ACM/IEEE conference on Supercomputing (SC '03). Association for Computing Machinery, New York, NY, USA, 55. DOI:https://doi.org/10.1145/1048935.1050204

Abhinav Bhatele (CMSC416 / CMSC616)

The Case of the Missing Supercomputer
Performance

19

expected 1 ms run time, we summed the unexpected
overhead. The idea to aggregate across processors
within a node led to an important observation: Fig-
ure 11 clearly indicates that there is a regular pattern
to the noise across QB’s 1,024 nodes. Every cluster
of 32 nodes contains some nodes that are consistently
noisier than others.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 128 256 384 512 640 768 896 1024

Sl
ow
do
w
n
(p
er
ce
nt
ag
e)

Nodes

Figure 11: Results of the performance-variability mi-
crobenchmark analyzed on a per-node basis

FINDING #1

Analyzing noise on a per-node basis instead of
a per-processor basis reveals a regular structure
across nodes.

Figure 12 zooms in on the data presented in Fig-
ure 11 in order to show more detail on one of the 32-
node clusters. We can see that all nodes suffer from a
moderate background noise and that node 0 (the clus-
ter manager), node 1 (the quorum node), and node 31
(the RMS cluster monitor) are slower than the others.
This pattern repeats for each cluster of 32 nodes.

In order to understand the nature of this noise we
plot the actual time taken to perform the 1 million
1 ms computations in histogram format. Figure 13
shows one such histogram for each of the four group-
ings of nodes: nodes 0, 1, 2–30, and 31 of a 32-node
cluster. Note that the scale of the x axis varies from
graph to graph. These graphs show that the noise in
each grouping has a well-defined pattern with classes
of events that happen regularly with well-defined fre-
quencies and durations. For example, on any node
of a cluster we can identify two events that happen
regularly every 30 seconds and whose durations are

Compute Nodes

Node 1

Node 0

Node 31

0 5 10 15 20 25 30
Nodes

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Sl
ow
do
w
n
(p
er
ce
nt
ag
e)

Figure 12: Slowdown per node within each 32-node
cluster

15 and 18 ms. This means that a slice of computa-
tion that should take 1 ms occasionally takes 16 ms or
19 ms. The process that experiences this type of inter-
ruption will freeze for the corresponding amount of
time. Intuitively, these events can be traced back to
some regular system activity as dæmons or the kernel
itself. Node 0 displays four different types of activities,
all occurring at regular intervals, with a duration that
can be up to 200 ms. Node 1 experiences a few heavy-
weight interrupts—one every 60 seconds—that freeze
the process for about 335 ms. On node 31 we can iden-
tify another pattern of intrusion, with frequent inter-
rupts (every second) and a duration of 7 ms.

Using a number of techniques on QB we were able
to identify the source of most activities. As a gen-
eral rule, these activities happen at regular intervals.
The two events that take 15 and 18 ms on each node
are generated by Quadrics’s resource management sys-
tem, RMS [18], which regularly spawns a dæmon ev-
ery thirty seconds. A distributed heartbeat that per-
forms cluster management, generated at kernel level,
is the cause of many lightweight interrupts (one ev-
ery 125 ms) whose duration is a few hundred microsec-
onds. Other dæmons that implement the parallel file
system and TruCluster, HP’s cluster management soft-
ware, are the source of the noise on nodes 0 and 1.
Table 2 summarizes the duration and location within
each 32-node cluster of the various types of noise.

Each of these events can be characterized by a tuple
hF, L, E, Pi that describes the frequency of the event F,
the average duration L, the distribution E, and the
placement (the set of nodes where the event is gen-
erated) P. As will be discussed in Section 3.4, this
characterization is accurate enough to closely model
the noise in the system and is also able to provide

8

200 msec
every 70 s

100 msec
every 125 s

177 msec
every 125 s10 msec

every 30 s

1

32

1024

32768

0 50 100 150 200 250
Latency (ms)

3.35e+07

1.04e+06

Ite
m
s

(a) Latency distribution on node 0

335 ms every 60 s

1

32

1024

32768

0 50 100 150 200 250 300 350
Latency (ms)

3.35e+07

1.04e+06

Ite
m
s

(b) Latency distribution on node 1

Kernel
RMS

1

32

1024

32768

0 5 10 15 20 25
Latency (ms)

Latency Distribution on a Cluster Node
3.35e+07

1.04e+06

Ite
m
s

(c) Latency distribution on nodes 2–30

local
RMS

data collection
RMS cluster

1

32

1024

32768

0 2 4 6 8 10 12 14 16 18 20
Latency (ms)

3.35e+07

1.04e+06

Ite
m
s

(d) Latency distribution on node 31

Figure 13: Identification of the events that cause the different types of noise

TABLE 2: Summary of noise on each 32-node cluster

Source of noise Duration
(ms)

Location (nodes)

0 1 2–30 31

Kernel 0–3 ✔ ✔ ✔ ✔

RMS dæmons 5–18 ✔ ✔ ✔ ✔

TruCluster dæmons >18 ✔ ✔

9

Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. 2003. The Case of the Missing Supercomputer Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q. In Proceedings of
the 2003 ACM/IEEE conference on Supercomputing (SC '03). Association for Computing Machinery, New York, NY, USA, 55. DOI:https://doi.org/10.1145/1048935.1050204

Abhinav Bhatele (CMSC416 / CMSC616)

Impact on communication

20

noise at the receiver can be absorbed on the sender (rendezvous
protocol) if Tws

≥ Tr + σTr
− N . Thus, nonblocking point-

to-point communication has a higher potential to absorb noise
than blocking communication.

E. Collective Operations

Collective operations often have more complex dataflow
dependencies than point-to-point messages.We can, however,
identify the following dependence classes in MPI:

1) broadcast, scatter: all non-root processes depend on
the root process

2) reduce, gather: the root process depends on all non-root
processes

3) scan, exscan: each process depends on all processes
with a lower rank

4) alltoall, allgather, allreduce, barrier, reduce scatter:
each process depends on all other processes

Those semantic dependencies are lower bounds for syn-
chronization and noise propagation, which means for example
that an eager broadcast (at least) propagates all noise that
happened on the root before the call (σTs

) to all other
processes. This model assumes a linear implementation of
the algorithm and would perform asymptotically worse than a
binomial-tree implementation [runtime of Ω(P) vs. Ω(logP)].
Thus, at large scale, optimized algorithms must be used
to implement collective operations. Such algorithms usually
add recv/send (data) dependencies to the (minimal) semantic
dependencies, which can cause additional noise propagation
from intermediate processes. For example, the binomial tree
shown in Figure 3 has multiple paths from the root node
to the destinations and additional recv/send dependencies are

0
1
2
3

4

5
6

7

8

9

10

11

12

14

13

recv/send dependencies

in this range
Process 7 can absorb noise

Time

Fig. 3. LogGOP diagram for a binomial broadcast tree (P = 15).

introduced along each path. The longest paths in the 15-
process example are (0, 1, 3, 7), (0, 2, 6, 14), (0, 1, 5, 13), and
(0, 1, 3, 11) with four recv/send dependencies along each path.
Each detour σTs

that precedes any send along these paths
might delay all following processes. On the other hand, if all
processes post the broadcast operation at the same global time,
all but the root (process 0 in our example) can absorb some
detour. Some processes (e.g., process 13) could even absorb
three times as much as others. Also, if we take a detailed look
at the longest paths, on all but the root node (e.g., processes 1,
2, or 3), noise that happens before the message is received is
likely to be absorbed, and only detours during the short period
between the receive and the send will delay the operation. Thus
the binomial broadcast is relatively insensitive to noise.

The binomial-tree argument shows that the influence of
noise and its propagation can, even for simple algorithms, not

easily be assessed analytically. Even the globally dependent
algorithms in the fourth category depend on the details of
the underlying point-to-point algorithm. Figure 4 shows the
LogGP diagram of two barrier operations with a compute

0

7

1

6

2

5

3

4

C
O

M
P

U
T

E

delay

Fig. 4. LogGP diagram of two barriers with process 4 delayed (P = 8).

phase between them. We assume that the barrier is imple-
mented with the dissemination algorithm and process 4 is
delayed during the compute phase. All processes leave the
second barrier at different times due to recv/send dependencies
and process 3 is delayed most. This example shows clearly
that current models, which model the collective operation as
a black box (and assume that all processes are delayed in
the same way, e.g., [2]) cannot be used to assess the effects of
noise propagation accurately. An accurate analytical model has
to account for the whole communication and synchronization
of each send/receive pair and all recv/send dependencies to
account for each noise propagation and absorption correctly.
Finding such models for complex communication patterns
seems infeasible. Thus, we propose a full LogGOPS simulator
that enables accurate simulation of large-scale systems.

IV. LOGGOPS SIMULATION FRAMEWORK

The LogGOPS simulation toolchain consists of a trace col-
lector, a schedule generator, an optimized LogGOPS discrete-
event simulator similar to [16], and a visualizer.

The trace collector is a library that uses the MPI profiling
interface [7, §14] in order to record all MPI calls of an
application with minimal overhead.

The schedule generator reads the MPI traces and represents
the control- and dataflow in our happens-before application.
Collective operations are replaced with suitable point-to-point
algorithms. The generator supports state-of-the-art collective
algorithms, such as n-ary (binomial) trees, dissemination,
recursive doubling, and pipelined trees. A mapping from
collective operation to algorithm (e.g., allreduce #→ binary tree
reduce + binary tree broadcast, or barrier #→ dissemination)
can be specified in the schedule generation phase. In this
work, we used the dissemination algorithm for small allreduce,
allgather, alltoall, and barrier calls and the binomial tree
algorithm for small scatter, gather, and broadcast calls.

The simulator reads the schedule, performs the full Log-
GOPS simulation (cf. Section III) and reports the end times
for each process. The simulator was shown to predict collective
operations up to 128 processes with an average error of
less than 1% and full MPI applications with an error below
2%. A complete description of the simulator and a detailed
performance and accuracy study is available in [14] and the

Hoefler et al.: https://htor.inf.ethz.ch/publications/img/hoefler-noise-sim.pdf

https://htor.inf.ethz.ch/publications/img/hoefler-noise-sim.pdf

Abhinav Bhatele (CMSC416 / CMSC616)

Mitigating OS noise

• Running a light-weight OS

• Turn off unnecessary daemons

• Reduce the frequency of daemons

• Dedicated cores for OS daemons

• User programs can avoid using certain cores

21

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

