
Parallel Networks and File Systems
Abhinav Bhatele, Department of Computer Science

Parallel Computing (CMSC416 / CMSC616)

Abhinav Bhatele (CMSC416 / CMSC616)

Announcements

• Extra credit assignments do not have an automatic due date extension policy

2

Abhinav Bhatele (CMSC416 / CMSC616)

High-speed interconnection networks

• Typically supercomputers and HPC clusters are connected by low latency and high
bandwidth networks

• The connections between nodes form different topologies

• Popular topologies:

• Fat-tree: Charles Leiserson in 1985

• Mesh and torus networks

• Dragonfly networks

3

Abhinav Bhatele (CMSC416 / CMSC616)

Network components

• Network interface controller or card

• Router or switch

• Network cables: copper or optical

4

Abhinav Bhatele (CMSC416 / CMSC616)

Definitions

• Network hops/Distance: Number of links a message must travel between the source
and destination switch

• Network diameter: length of the shortest path between the most distant switches on
the network.

• Longest shortest path between any switch-pair

• Gives an idea of the worst case latency on a network

• Radix: number of ports on a router

5

Abhinav Bhatele (CMSC416 / CMSC616)

N-dimensional mesh / torus networks

• Each switch has a small number of nodes connected
to it (often one or two)

• Each switch has direct links to 2n switches where n is
the number of dimensions

• Torus = mesh + wraparound links

• Examples: IBM Blue Gene, Cray X* machines

6

Abhinav Bhatele (CMSC416 / CMSC616)

Network properties of mesh/torus
• Let’s say the number of switches is s, and number of nodes per switch is a small

constant, c

• Diameter of 1-D mesh:

• Diameter of 1-D torus:

• Diameter of d-dimensional mesh:

• Diameter of d-dimensional torus:

• Maximum number of nodes:

s − 1

⌊
s
2

⌋

(d s − 1) × d

⌊
d s
2

⌋ × d

c × s
7

Abhinav Bhatele (CMSC416 / CMSC616)

Fat-tree network

• Router radix = k, Number of nodes on each router = k/2

• A pod is a group of k/2 switches (at each level), Max. number of pods = k

8

Abhinav Bhatele (CMSC416 / CMSC616)

Fat-tree network

• Router radix = k, Number of nodes on each router = k/2

• A pod is a group of k/2 switches (at each level), Max. number of pods = k

8

Compute
Nodes

Abhinav Bhatele (CMSC416 / CMSC616)

Fat-tree network

• Router radix = k, Number of nodes on each router = k/2

• A pod is a group of k/2 switches (at each level), Max. number of pods = k

8

Compute
Nodes

Abhinav Bhatele (CMSC416 / CMSC616)

Fat-tree network

• Router radix = k, Number of nodes on each router = k/2

• A pod is a group of k/2 switches (at each level), Max. number of pods = k

8

Compute
Nodes

Abhinav Bhatele (CMSC416 / CMSC616)

Fat-tree network

• Router radix = k, Number of nodes on each router = k/2

• A pod is a group of k/2 switches (at each level), Max. number of pods = k

8

Level 1

Compute
Nodes

Abhinav Bhatele (CMSC416 / CMSC616)

Fat-tree network

• Router radix = k, Number of nodes on each router = k/2

• A pod is a group of k/2 switches (at each level), Max. number of pods = k

8

Level 1

Level 2

Compute
Nodes

Abhinav Bhatele (CMSC416 / CMSC616)

Fat-tree network

• Router radix = k, Number of nodes on each router = k/2

• A pod is a group of k/2 switches (at each level), Max. number of pods = k

8

Level 1

Level 2

Compute
Nodes

Abhinav Bhatele (CMSC416 / CMSC616)

Fat-tree network

• Router radix = k, Number of nodes on each router = k/2

• A pod is a group of k/2 switches (at each level), Max. number of pods = k

8

Level 1

Level 2

Compute
Nodes

Abhinav Bhatele (CMSC416 / CMSC616)

Fat-tree network

• Router radix = k, Number of nodes on each router = k/2

• A pod is a group of k/2 switches (at each level), Max. number of pods = k

8

Level 1

Level 2

Level 3

Compute
Nodes

Abhinav Bhatele (CMSC416 / CMSC616)

Network properties of fat-tree

• Let’s say the number of switches is s, and router radix is k

• Diameter of 2-level fat-tree: 2

• Diameter of 3-level fat-tree: 4

• Diameter of a l-level fat-tree:

• Maximum number of nodes:

(l − 1) × 2

k ×
k
2

×
k
2

9

Abhinav Bhatele (CMSC416 / CMSC616)

Dragonfly network

• Two-level hierarchical network using high-radix routers

• Low network diameter

10

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

One supernode in the PERCS topology

LL
LR
D

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

Figure 1: The PERCS network – the left figure shows all to all connections within a supernode (connections originating from only two
nodes, 0 and 16, are shown to keep the diagram simple). The right figure shows second-level all to all connections across supernodes
(again D links originating from only two supernodes, colored in red, are shown).

topologies. Using traces collected by our emulation-based tech-
nique, we simulate application runs on hundreds of thousands of
cores. Non-uniform link bandwidths on different classes of links
complicate the issue of identifying the weakest links. Interesting
issues arise because of the imbalance in number of different types
of links available when using a small subset of the entire topology.
Hence, we do simulations for one quarter of the full system size
(assuming 300 supernodes) and the full system as well.

The novel contributions of this paper are:
• To the best of our knowledge, this paper has the first analysis

of congestion on a two-level direct topology due to routing
and mapping choices. We present several solutions for avoid-
ing hot-spots on such networks.

• The paper presents the largest packet-level detailed network
simulations done so far (for 307,200 cores) for several com-
munication patterns. These simulations help us analyze ap-
plication performance in great detail through performance
counter-based per-level link statistics, visualization tools and
predicted application performance.

• We present several intelligent mappings for 2D, 4D and mul-
ticast patterns and compare their performance when coupled
with direct and indirect routing on the PERCS network.

2. THE PERCS TOPOLOGY
The PERCS interconnect topology is a fully connected two-tier

network [2]. Figure 1 (left) shows one supernode of the PERCS
topology as a large circle. Within the large circle, a small circle
represents a quad chip module (QCM) which consists of four 8-
core Power7 chips. We will refer to a QCM as a node in rest of
the paper. Eight nodes in one color in each quadrant constitute a
drawer. Each node has a hub/switch which has three types of links
originating from it - LL, LR and D links. There are seven LL links
(24 GB/s) that connect a node to seven other nodes in the same
drawer. In addition, there are 24 LR links (5 GB/s) that connect
a node to the remaining 24 nodes of the supernode. LL and LR
links constitute the first tier connections that enable communication

between any two nodes in one hop. To maintain simplicity, LL and
LR links originating from only two nodes, numbered 0 and 16 are
shown in Figure 1 (left).

On the right, in Figure 1, the second tier connections between su-
pernodes are shown. Every supernode is connected to every other
supernode by a D link (10 GB/s). These inter-supernode connec-
tions originate and terminate at hub/switches connected to nodes; a
given hub/switch is directly connected to only a fraction ( 16) of
the 512 supernodes (full system size). For simplicity, D links orig-
inating from only two supernodes (in red) have been shown. 32
cores of a node can inject on to the network at a rate of 192 GB/s
through a hub/switch directly connected to them.

Figure 2: The number of D links reduces significantly com-
pared to that of LL and LR links as one uses fewer and fewer
supernodes in the PERCS topology.

An important thing to note about the PERCS topology is the ra-
tio of the number of first level connections to that of second level
connections. For a system with n supernodes, the number of D
links is (n⇥ (n� 1)). There are (32⇥ 31⇥ n) LL and LR links
in total. Hence, there are (992/(n � 1)) first tiers links for every
second tier link as shown in Figure 2. One can observe that as the
number of supernodes used by an application gets smaller, there is

Abhinav Bhatele (CMSC416 / CMSC616)

Network properties of dragonfly

• Diameter of dragonfly with all-to-all connections within supernode: 3

• Diameter of dragonfly with row-column all-to-all connections within supernode: 5

11

Abhinav Bhatele (CMSC416 / CMSC616)

Life-cycle of a message

12

Source

Source

Source

Source

Source

Message origin points :
destination, frequency,
size, etc. determined
by application
1 micro sec - 10s of sec

Abhinav Bhatele (CMSC416 / CMSC616)

Life-cycle of a message

12

Source

Source

Source

Source

Source

NIC

Message origin points :
destination, frequency,
size, etc. determined
by application
1 micro sec - 10s of sec

Packetization
and injection :
delay:100s of ns

Abhinav Bhatele (CMSC416 / CMSC616)

Life-cycle of a message

12

Source

Source

Source

Source

Source

NIC

Message origin points :
destination, frequency,
size, etc. determined
by application
1 micro sec - 10s of sec

Routers/
Switches

Packetization
and injection :
delay:100s of ns

Path finding
delay ~100 ns
Temp storage in buffers

Abhinav Bhatele (CMSC416 / CMSC616)

Life-cycle of a message

12

Source

Source

Source

Source

Source

NIC

Message origin points :
destination, frequency,
size, etc. determined
by application
1 micro sec - 10s of sec

Routers/
Switches

Packetization
and injection :
delay:100s of ns

Path finding
delay ~100 ns
Temp storage in buffers

Links - congestion points
traversal time: 1-50 ns

Abhinav Bhatele (CMSC416 / CMSC616)

Life-cycle of a message

12

Source

Source

Source

Source

Source

NIC

Message origin points :
destination, frequency,
size, etc. determined
by application
1 micro sec - 10s of sec

Routers/
Switches

Routers/
Switches NIC Destination

Packetization
and injection :
delay:100s of ns

Path finding
delay ~100 ns
Temp storage in buffers

Links - congestion points
traversal time: 1-50 ns

Message destination points:
application dependent
1 micro sec - 10s of sec

Abhinav Bhatele (CMSC416 / CMSC616)

Congestion due to network sharing
• Sharing refers to network flows of different programs using the same hardware

resources: links, switches

• When multiple programs communicate on the network, they all suffer from
congestion on shared links

13

Abhinav Bhatele (CMSC416 / CMSC616)

Congestion due to network sharing
• Sharing refers to network flows of different programs using the same hardware

resources: links, switches

• When multiple programs communicate on the network, they all suffer from
congestion on shared links

13

Program A

Program B

Switch/router

Abhinav Bhatele (CMSC416 / CMSC616)

Congestion due to network sharing
• Sharing refers to network flows of different programs using the same hardware

resources: links, switches

• When multiple programs communicate on the network, they all suffer from
congestion on shared links

13

Program A

Program B

Switch/router

Abhinav Bhatele (CMSC416 / CMSC616)

Congestion due to network sharing
• Sharing refers to network flows of different programs using the same hardware

resources: links, switches

• When multiple programs communicate on the network, they all suffer from
congestion on shared links

13

Program A

Program B

Switch/router

Abhinav Bhatele (CMSC416 / CMSC616)

Congestion due to network sharing
• Sharing refers to network flows of different programs using the same hardware

resources: links, switches

• When multiple programs communicate on the network, they all suffer from
congestion on shared links

13

Program A

Program B

Switch/router

Abhinav Bhatele (CMSC416 / CMSC616)

Congestion due to network sharing
• Sharing refers to network flows of different programs using the same hardware

resources: links, switches

• When multiple programs communicate on the network, they all suffer from
congestion on shared links

13

Program A

Program B

Switch/router

Abhinav Bhatele (CMSC416 / CMSC616)

Routing algorithm

• Decides how a packet is routed between a source and destination switch

• Static routing: each router is pre-programmed with a routing table

• Can change it at boot time

• Dynamic routing: routing can change at runtime

• Adaptive routing: adapts to network congestion

14

Abhinav Bhatele (CMSC416 / CMSC616)

Performance variability

15

1

1.5

2

2.5

3

Nov 29 Dec 13 Dec 27 Jan 10 Jan 24 Feb 07 Feb 21 Mar 07 Mar 21 Apr 04

R
el
at
iv
e
pe
rf
or
m
an
ce

MILC
AMG

UMT
miniVite

Performance of control jobs running the same executable and input varies as they are run from day-to-day
on 128 nodes of Cori in 2018-2019

Bhatele et al. The case of performance variability on dragonfly-based systems, IPDPS 2020

Abhinav Bhatele (CMSC416 / CMSC616)

Performance variability due to congestion

• No variability in computation time

• All of the variability can be
attributed to communication
performance

• Factors:

• Placement of jobs

• Contention for network resources

16

 0
 10
 20
 30
 40
 50
 60
 70

T
im

e
(s

)

Time spent in communication and computation in pF3D

Communication

 0
 50

 100
 150
 200
 250

Hopper Intrepid Mira

T
im

e
(s

)

Computation

Figure 3: Average, minimum and maximum time spent in computation and communication during one time
loop of pF3D on various platforms (left). The computation time is shortest on Hopper and the message
passing time is shortest on Mira. Breakdown of communication time by MPI routines (right).

els in the z-direction. The wave equations are solved in the
paraxial approximation, which assumes all light waves are
traveling at small angles relative to the z-direction.

The wave propagation and coupling are solved using fast
Fourier transforms (FFTs) in xy-planes. The 2D FFTs re-
quire message passing across the full extent of an xy-plane.
These messages are sent using an MPI_Alltoall. MPI pro-
cesses in an xy-slab form sub-communicators with other pro-
cesses with the same x coordinate (x-communicators) and
also with those with the same y coordinate (y-communica-
tors). The all-to-all messages are passed on x-communicators
when assembling rows and y-communicators when assem-
bling columns.

The light propagation calculation requires passing planes
of information in the z-direction using MPI_Send and MPI_-
Recv. pF3D uses a 6th order accurate advection scheme
which requires passing three xy-planes between the MPI
process domains that are adjacent in z. This communica-
tion tra�c is referred to as “advection messages”. Messages
are also passed in several other phases, including hydrody-
namic flow and I/O, but the total tra�c is low enough that
it is ignored in this study.

2.3 Experiment Configuration Details
We show the parameters for the pF3D simulations used in

this study in Table 2. Simulations run on Dawn and Intrepid
use 4 MPI processes per node. Simulations on Mira, Hop-
per, and Cielo use 16 MPI processes per node. This choice
maximizes similarity in the message passing characteristics
of these three systems, but means that 8 cores are left idle
on each node of Hopper and only one hardware thread per
core is active on Mira. In our tests on Mira, we found that
the node throughput for pF3D nearly doubles when using
two hardware threads per core but we do not use that setup
in this paper. The runs on Dawn and Cielo were production
simulations between March, 2011 and September, 2012 and
have high node-counts. The data on Hopper, Intrepid and
Mira was collected specifically for this study by doing short
low node-count runs over a period of 45 days from March
13, 2013 to April 26, 2013.

We performed our detailed studies on Hopper, Mira and
Intrepid. For the runs on these machines, we collected infor-
mation for pF3D as well as for other jobs running on the sys-
tem concurrently. For pF3D, we gathered the performance

timing output from both the application itself and the mpiP
performance tool [14]. The pF3D output contains summary
information about the run, including the times in di↵erent
phases of the computation, and the total time per time step.
It also gives the average bandwidth over all message passing
operations, or message rate, as well as the average message
rate for FFT operations and advection messages. pF3D also
records the execution times for a few representative all-to-
alls for all sub-communicators. The light-weight mpiP tool
collects summary information about MPI operations, e.g.,
total time spent in MPI by each rank and the aggregate
time spent in the MPI operations that took the most time.
For each job, before and after the process launch, we also
recorded the output of the XE6 script xtnodestat to dis-
cover the node placement of pF3D as well as other jobs on
the system. We used the script xtdb2proc to get a map of
the system, including x, y, and z coordinates of each node,
and the location of down and service nodes on the system.
We also collected the queue status before and after pF3D
ran with the showq command.

3. PF3D CHARACTERIZATION
The computational and communication behavior of pF3D

on di↵erent platforms varies because of the di↵erences in
processor and network speeds. Figure 3 (left) shows the av-
erage computation and communication time for pF3D sim-
ulation runs on Hopper, Intrepid and Mira. Hopper has the
fastest absolute computational rate of the three systems.
The “e�ciency” of a core can be defined as the ratio of the
zones processed per second per core to the peak performance
per core. If we use peak performance numbers adjusted as
indicated in the caption for Table 1 and normalize so that
the e�ciency for Hopper cores is 1.0, the e�ciency for In-
trepid cores is roughly 0.48 and the e�ciency for Mira cores
is roughly 0.52.
Mira has the highest message passing rate (smallest com-

munication time) per process even with links that have less
than one-fourth the bandwidth of Cray links. Intrepid and
Mira do not show any noticeable job-to-job variations in ei-
ther computation or communication. However, on Hopper,
the communication time time varies from 36% faster to 69%
slower when compared to the average. The computation
time is fairly constant. Changing the system configuration

Bhatele et al. http://www.cs.umd.edu/~bhatele/pubs/pdf/2013/sc2013a.pdf

http://www.cs.umd.edu/~bhatele/pubs/pdf/2013/sc2013a.pdf

Abhinav Bhatele (CMSC416 / CMSC616)

Impact of other jobs

17

April 11 April 16

Abhinav Bhatele (CMSC416 / CMSC616)

Impact of other jobs

17

April 11 April 16
MILC job in green 25% higher messaging rate

Abhinav Bhatele (CMSC416 / CMSC616)

Announcements

• Quiz 3 will be posted this week

18

Abhinav Bhatele (CMSC416 / CMSC616)

Different approaches to mitigating congestion

• Network topology aware node allocation

• Congestion or network flow aware adaptive routing

• Within a job: network topology aware mapping of processes or chares to allocated
nodes

19

Abhinav Bhatele (CMSC416 / CMSC616)

Topology-aware node allocation

20

Abhinav Bhatele (CMSC416 / CMSC616)

Topology-aware node allocation

20

Abhinav Bhatele (CMSC416 / CMSC616)

Topology-aware node allocation

20

Abhinav Bhatele (CMSC416 / CMSC616)

Topology-aware node allocation

20

Abhinav Bhatele (CMSC416 / CMSC616)

Topology-aware node allocation

20

Abhinav Bhatele (CMSC416 / CMSC616)

Topology-aware node allocation

20

Abhinav Bhatele (CMSC416 / CMSC616)

Topology-aware node allocation

20

Abhinav Bhatele (CMSC416 / CMSC616)

Topology-aware node allocation

20

Abhinav Bhatele (CMSC416 / CMSC616)

Topology-aware node allocation

20

Solution: allocate nodes in a manner that prevents sharing of links by multiple jobs
while maintaining high utilization

Abhinav Bhatele (CMSC416 / CMSC616)

AFAR: adaptive flow aware routing

21

A BC DE F

Abhinav Bhatele (CMSC416 / CMSC616)

AFAR: adaptive flow aware routing

Given: traffic for each pair of nodes in the
system and the current routing

1. Calculate current load (network
traffic) on all links in system

2. Find link with maximum load

3. If maximum > threshold, re-route one
flow crossing that link to an under-
utilized link

4. Repeat from 1. using new routing

21

Solution: dynamically re-route traffic to alleviate hot-spots

A BC DE F

Abhinav Bhatele (CMSC416 / CMSC616)

AFAR: adaptive flow aware routing

Given: traffic for each pair of nodes in the
system and the current routing

1. Calculate current load (network
traffic) on all links in system

2. Find link with maximum load

3. If maximum > threshold, re-route one
flow crossing that link to an under-
utilized link

4. Repeat from 1. using new routing

21

Solution: dynamically re-route traffic to alleviate hot-spots

A BC DE F

Abhinav Bhatele (CMSC416 / CMSC616)

AFAR: adaptive flow aware routing

Given: traffic for each pair of nodes in the
system and the current routing

1. Calculate current load (network
traffic) on all links in system

2. Find link with maximum load

3. If maximum > threshold, re-route one
flow crossing that link to an under-
utilized link

4. Repeat from 1. using new routing

21

Solution: dynamically re-route traffic to alleviate hot-spots

A BC DE F

Abhinav Bhatele (CMSC416 / CMSC616)

AFAR: adaptive flow aware routing

Given: traffic for each pair of nodes in the
system and the current routing

1. Calculate current load (network
traffic) on all links in system

2. Find link with maximum load

3. If maximum > threshold, re-route one
flow crossing that link to an under-
utilized link

4. Repeat from 1. using new routing

21

Solution: dynamically re-route traffic to alleviate hot-spots

A BC DE F

Abhinav Bhatele (CMSC416 / CMSC616)

AFAR: adaptive flow aware routing

Given: traffic for each pair of nodes in the
system and the current routing

1. Calculate current load (network
traffic) on all links in system

2. Find link with maximum load

3. If maximum > threshold, re-route one
flow crossing that link to an under-
utilized link

4. Repeat from 1. using new routing

21

Solution: dynamically re-route traffic to alleviate hot-spots

A BC DE F

Abhinav Bhatele (CMSC416 / CMSC616)

AFAR: adaptive flow aware routing

Given: traffic for each pair of nodes in the
system and the current routing

1. Calculate current load (network
traffic) on all links in system

2. Find link with maximum load

3. If maximum > threshold, re-route one
flow crossing that link to an under-
utilized link

4. Repeat from 1. using new routing

21

Solution: dynamically re-route traffic to alleviate hot-spots

A BC DE F

Abhinav Bhatele (CMSC416 / CMSC616)

AFAR: adaptive flow aware routing

Given: traffic for each pair of nodes in the
system and the current routing

1. Calculate current load (network
traffic) on all links in system

2. Find link with maximum load

3. If maximum > threshold, re-route one
flow crossing that link to an under-
utilized link

4. Repeat from 1. using new routing

21

Solution: dynamically re-route traffic to alleviate hot-spots

A BC DE F

Abhinav Bhatele (CMSC416 / CMSC616)

AFAR: adaptive flow aware routing

Given: traffic for each pair of nodes in the
system and the current routing

1. Calculate current load (network
traffic) on all links in system

2. Find link with maximum load

3. If maximum > threshold, re-route one
flow crossing that link to an under-
utilized link

4. Repeat from 1. using new routing

21

Solution: dynamically re-route traffic to alleviate hot-spots

A BC DE F

Abhinav Bhatele (CMSC416 / CMSC616)

Topology-aware mapping

• Within a job allocation, map processes to nodes intelligently

• Inputs: application communication graph, machine topology

• Graph embedding problem (NP-hard)

• Many heuristics to come up with a solution

• Can be done within a load balancing strategy

22

Abhinav Bhatele (CMSC416 / CMSC616)

When do parallel programs perform I/O?

• Reading input datasets

• Writing numerical output

• Writing checkpoints

23

Abhinav Bhatele (CMSC416 / CMSC616)

Non-parallel I/O

• Designated process does I/O

• All processes send data to/receive data from that one process

• Not scalable

24

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel filesystem

• Home directories and scratch space are typically on a parallel file system

• Mounted on all login and compute nodes

• Also referred to as I/O sub-system

25

http://wiki.lustre.org/Introduction_to_Lustre

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel filesystem

26

Compute Cluster

OSS 1

OSS 2

OSS n

MDS

MDS = Metadata Server
MDT = Metadata Target
OSS = Object Storage Server
OST = Object Storage Target

OST 1

OST 2

OST m

Abhinav Bhatele (CMSC416 / CMSC616)

Links between cluster and filesystem

27

Leaf Switch

Each SU (1 management node, 1 login node,
2 LNET router nodes, 2 gateway nodes)

9

9

Leaf Switch

36 total

9 9

9 9

9 9

LNET router node

Object storage server (OSS)

Compute node

9 total

Abhinav Bhatele (CMSC416 / CMSC616)

Different parallel filesystems

• Lustre: open-source (lustre.org)

• BeeGFS: community supported (beegfs.io)

• Commercial support too

• GPFS: General Parallel File System from IBM, now called Spectrum Scale

• PVFS: Parallel Virtual File System

28

http://lustre.org

Abhinav Bhatele (CMSC416 / CMSC616)

How do parallel filesystems help?

• Improve I/O bandwidth by spreading reads/writes across multiple OSTs (disks), even
for single files

• Files can be striped within and across multiple I/O servers (OSSs)

• Each client (compute node) runs an I/O daemon to interact with the parallel
filesystem mounted on it

• MDS serves file metadata (ownership, permissions), and inode/directory updates

29

Abhinav Bhatele (CMSC416 / CMSC616)

Tape drive

• Store data on magnetic tapes

• Used for archiving data

• Use robotic arms to access the right tape: https://www.youtube.com/watch?v=d-
eWDuEo-3Q

30

https://www.youtube.com/watch?v=d-eWDuEo-3Q
https://www.youtube.com/watch?v=d-eWDuEo-3Q

Abhinav Bhatele (CMSC416 / CMSC616)

Burst buffer

• Fast, intermediate storage between compute nodes and the parallel filesystem

• Typically some form of non-volatile (NVM) memory, for persistence, high capacity, and speed (reads and writes)

• Slower, but higher capacity, than on-node memory (DRAM)

• Faster, but lower capacity, than disk storage on parallel file system

• Two designs:

• Node-local burst buffer

• Remote (shared) burst buffer

31

https://datainscience.com/to-burst-or-not-to-burst-that-is-the-question/

Abhinav Bhatele (CMSC416 / CMSC616)

Burst buffer use cases

• Storing checkpoint data

• Prefetching input data

• Workflows that couple simulations to analysis/visualization tasks

32

Abhinav Bhatele (CMSC416 / CMSC616)

I/O libraries

• High-level libraries: HDF5, NetCDF

• Both libraries and file formats for n-dimensional data

• Middleware: MPI-IO

• Support for POSIX like I/O in MPI for parallel I/O

• Low-level: POSIX IO

• Standard Unix/Linux I/O interface

33

Abhinav Bhatele (CMSC416 / CMSC616)

Different I/O patterns

• One process reading/writing all the data

• Multiple processes reading/writing data from/to shared file

• Multiple processes reading/writing data from/to different files

• Performance depends upon number of readers/writers (how many processes/threads
etc.), file sizes, filesystem etc.

34

Abhinav Bhatele (CMSC416 / CMSC616)

I/O profiling tools

• Darshan

• Lightweight profiling tool from Argonne National Laboratory

• Recorder

• Research tool from UIUC

• Tracing framework for capturing I/O activity

• Provides support for different I/O libraries: HDF5, MPI-IO, POSIX I/O

35

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

