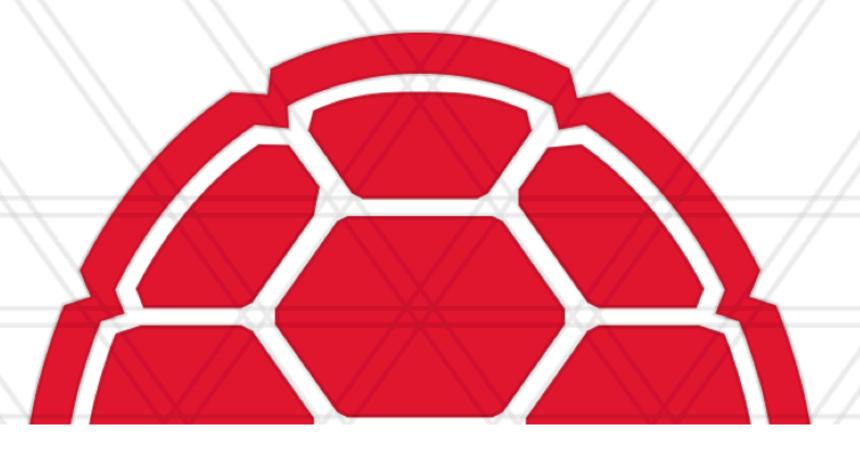
Parallel Computing (CMSC416 / CMSC616)



#### Parallel Deep Learning

Abhinav Bhatele, Department of Computer Science



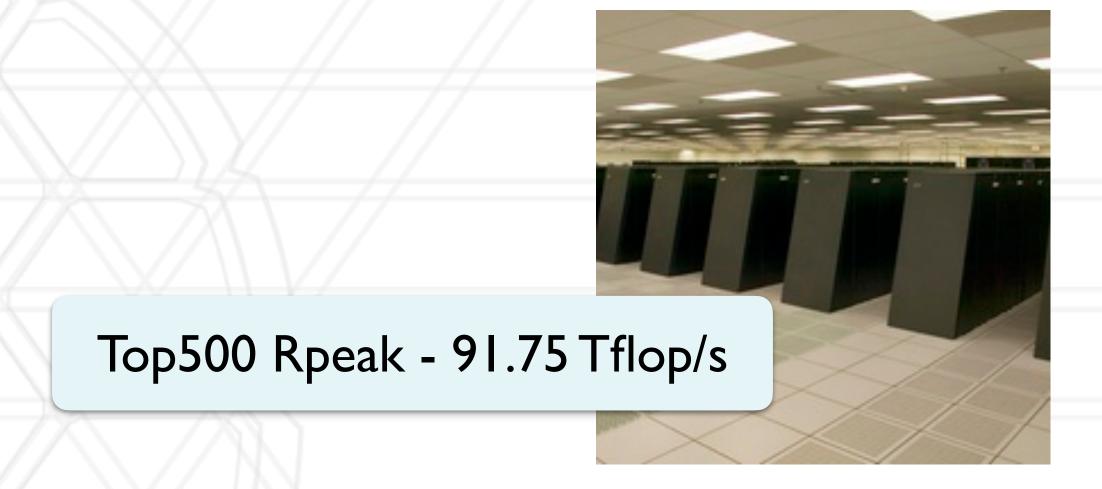
#### Annoucements

- All extra credit assignments have been posted
  - Due on Dec 13 11:59 pm (no extensions for any reason)
- Dec II lecture will be a review session
- Final exam scheduled for Dec 15, 10:30 am, in this room



# The evolution of HPC systems and rise of a new revolution in Al

- In the last two decades, an enormous amount of compute power has become available
- Large datasets and open source software such as PyTorch have also emerged
- Led to a frenzy in the world of Al and the effects are being felt in almost every other domain



IBM Blue Gene/L, 2004

FP64 - 34 Tflop/s

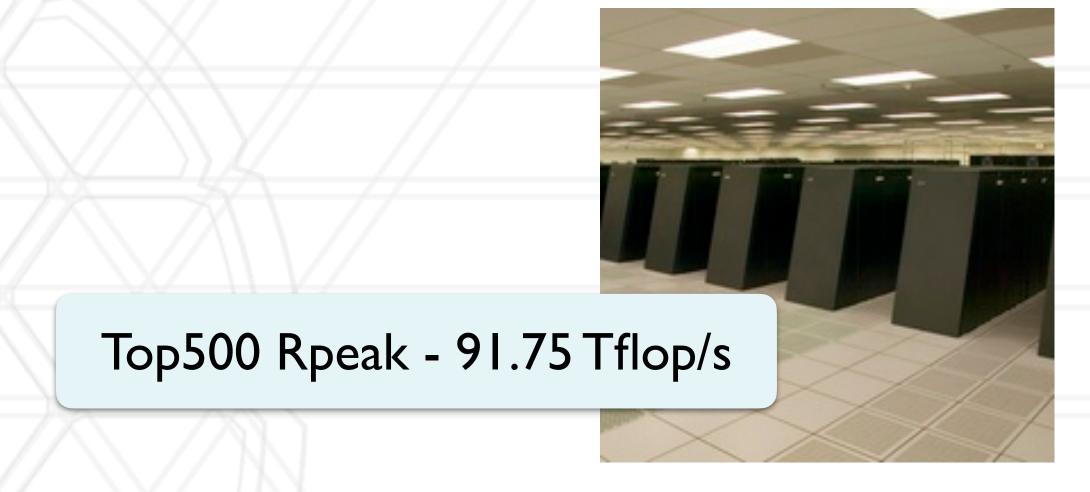


NVIDIA H100, 2024



# The evolution of HPC systems and rise of a new revolution in Al

- In the last two decades, an enormous amount of compute power has become available
- Large datasets and open source software such as PyTorch have also emerged
- Led to a frenzy in the world of Al and the effects are being felt in almost every other domain



IBM Blue Gene/L, 2004

FP16 - 989 Tflop/s

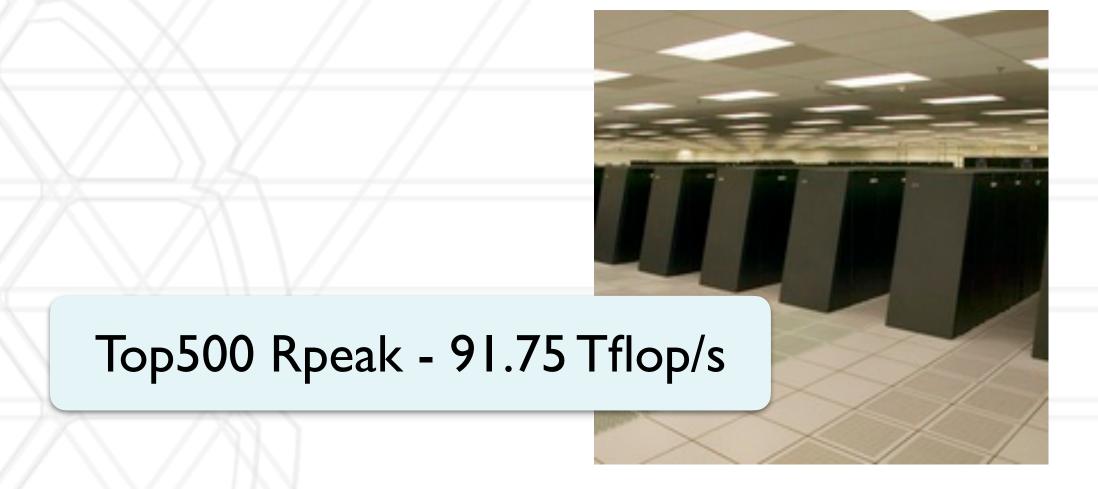


NVIDIA H100, 2024



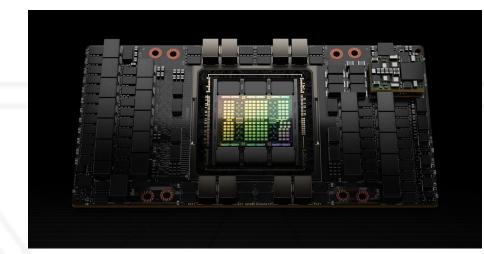
# The evolution of HPC systems and rise of a new revolution in Al

- In the last two decades, an enormous amount of compute power has become available
- Large datasets and open source software such as PyTorch have also emerged
- Led to a frenzy in the world of Al and the effects are being felt in almost every other domain



IBM Blue Gene/L, 2004





NVIDIA H100, 2024



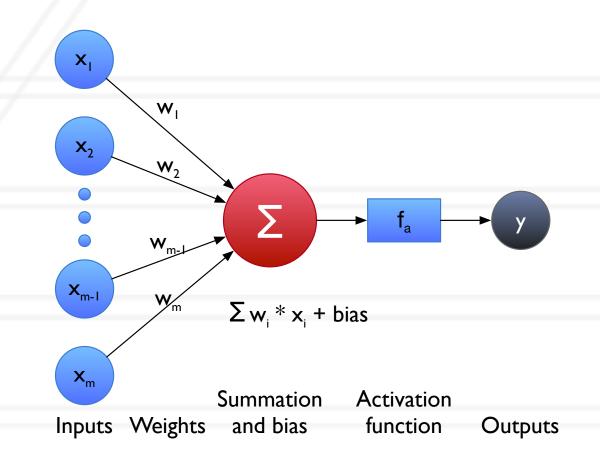
#### Deep neural networks (DNNs)

- An area of machine learning that uses artificial neural networks to learn complex functions
  - Often from high-dimensional data: text, images, audio, ...
- Widespread use in computer vision, natural language processing, etc.
- Neural networks can be used to model complex functions
- Several layers that process "batches" of the input data



### Deep neural networks (DNNs)

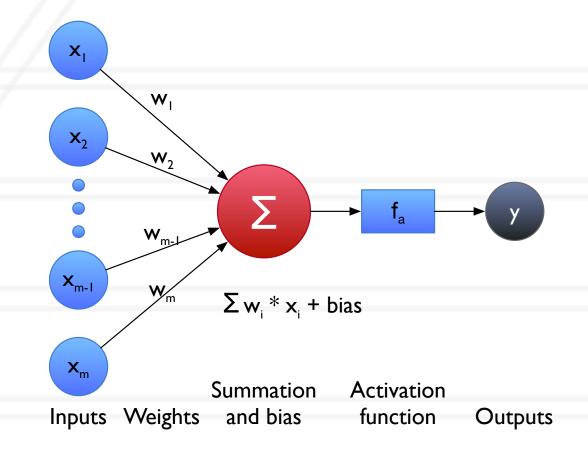
- An area of machine learning that uses artificial neural networks to learn complex functions
  - Often from high-dimensional data: text, images, audio, ...
- Widespread use in computer vision, natural language processing, etc.
- Neural networks can be used to model complex functions
- Several layers that process "batches" of the input data

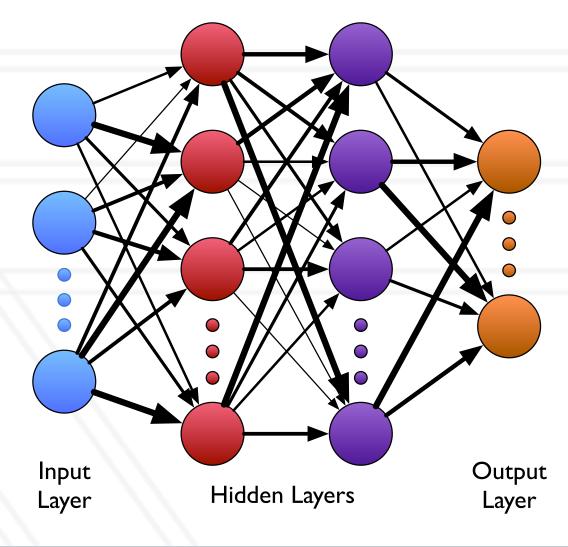




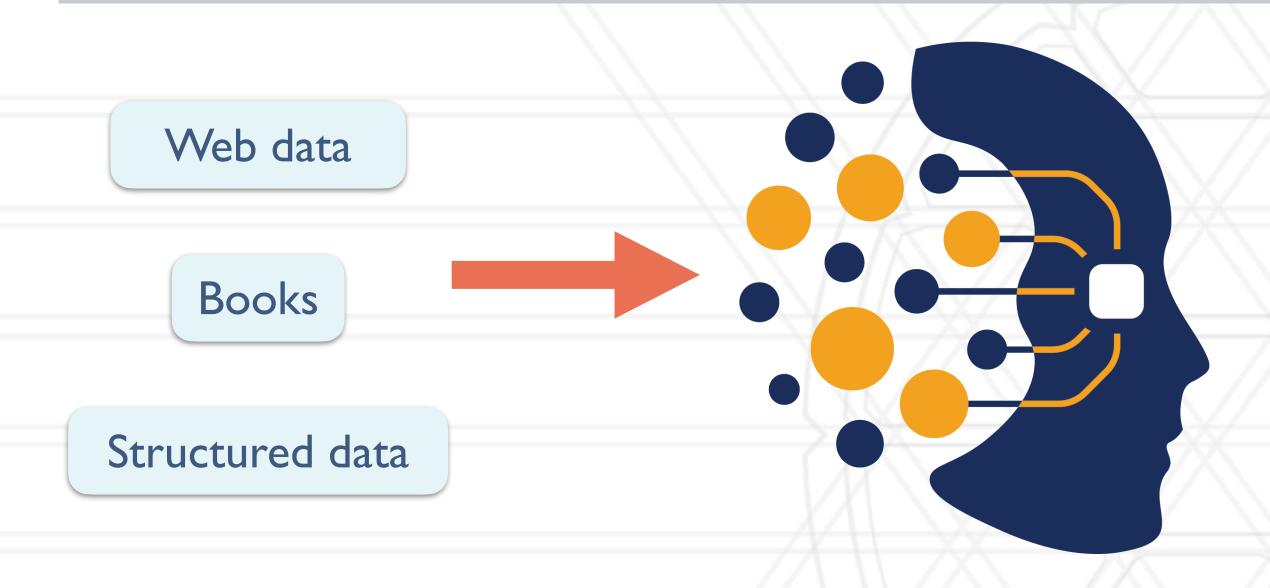
#### Deep neural networks (DNNs)

- An area of machine learning that uses artificial neural networks to learn complex functions
  - Often from high-dimensional data: text, images, audio, ...
- Widespread use in computer vision, natural language processing, etc.
- Neural networks can be used to model complex functions
- Several layers that process "batches" of the input data

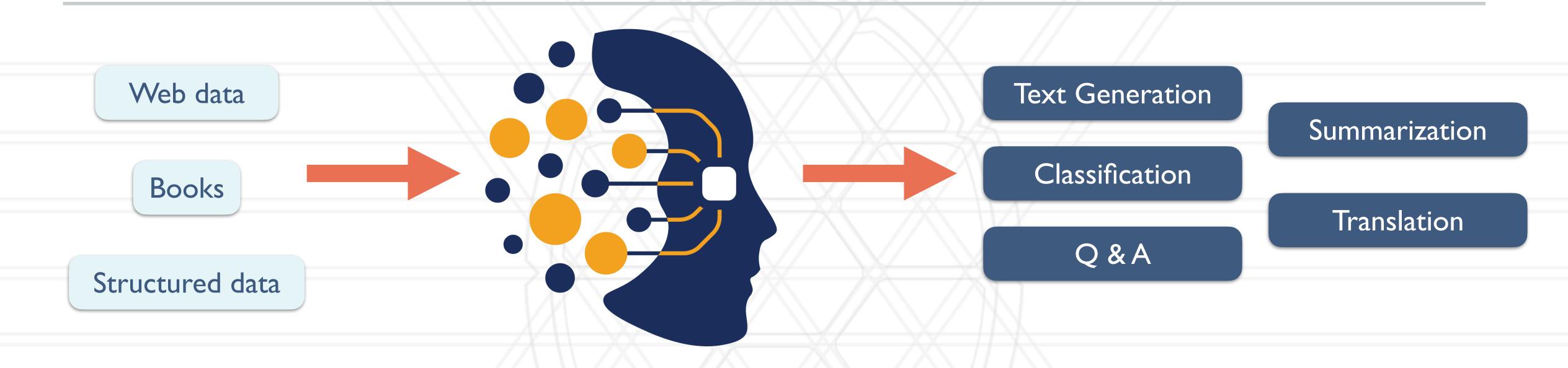




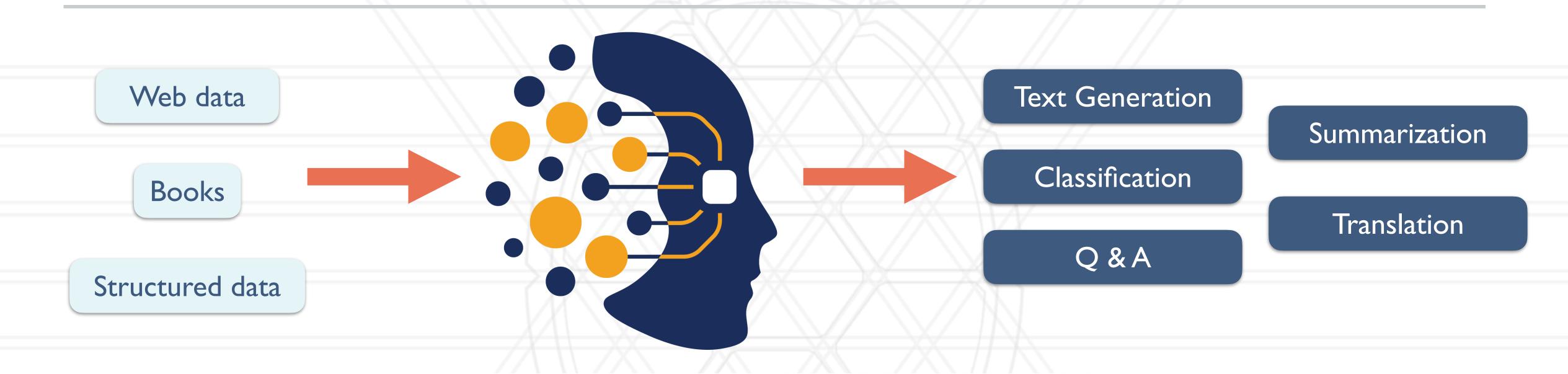


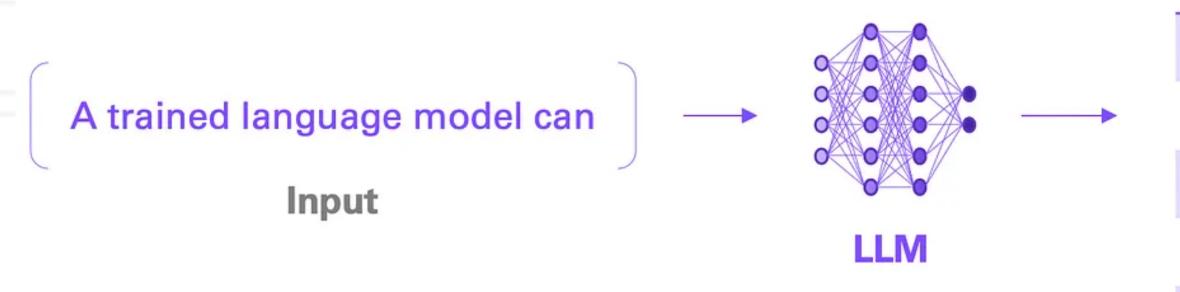






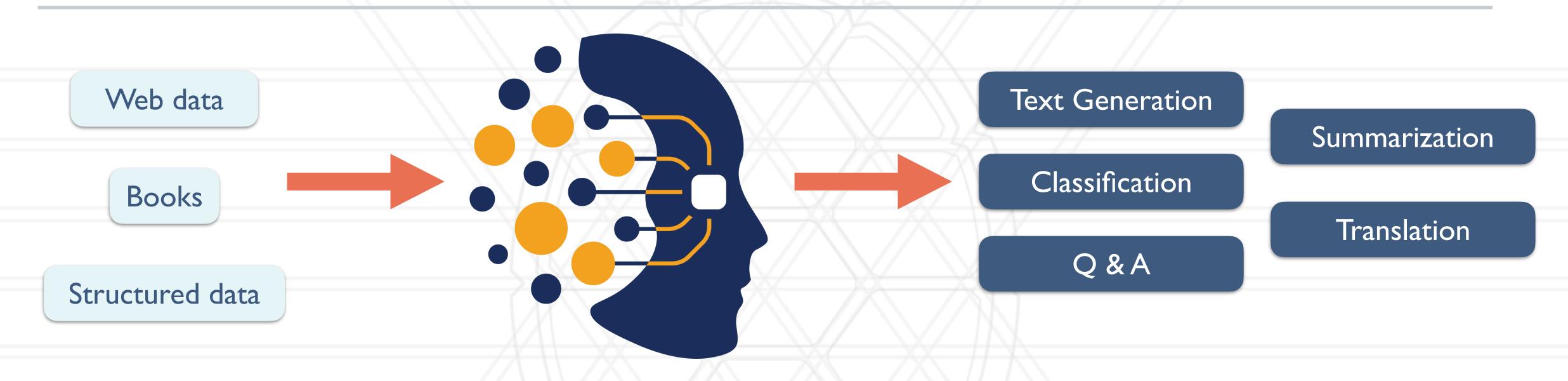


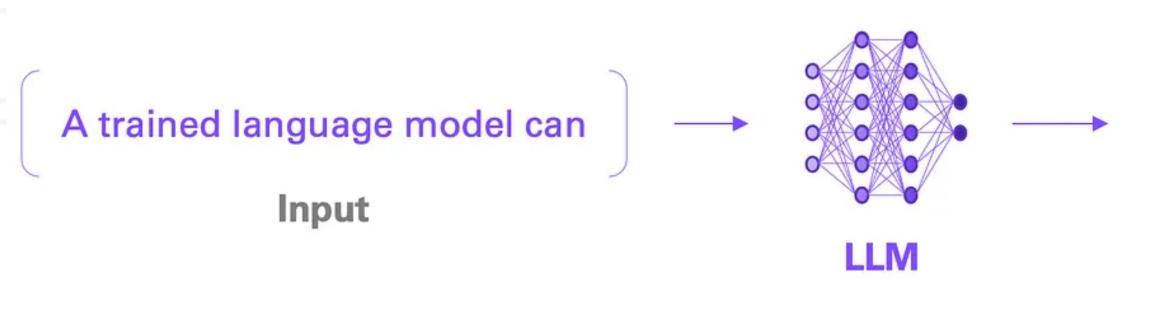




Word Probability
speak 0.065
generate 0.072
politics 0.001
...
walk 0.003







| Probability |
|-------------|
| 0.065       |
| 0.072       |
| 0.001       |
| ***         |
| 0.003       |
|             |

|   | Word     | Probability |
|---|----------|-------------|
|   | ability  | 0.002       |
| • | text     | 0.084       |
|   | coherent | 0.085       |
|   |          |             |
|   | ideas    | 0.041       |



#### Other definitions

- Learning/training: task of selecting weights that lead to an accurate function
- Loss: a scalar proxy that when minimized leads to higher accuracy
- Gradient descent: process of updating the weights using gradients (derivates) of the loss weighted by a learning rate
- Mini-batch: Small subsets of the dataset processed iteratively
- Epoch: One pass over all the mini-batches

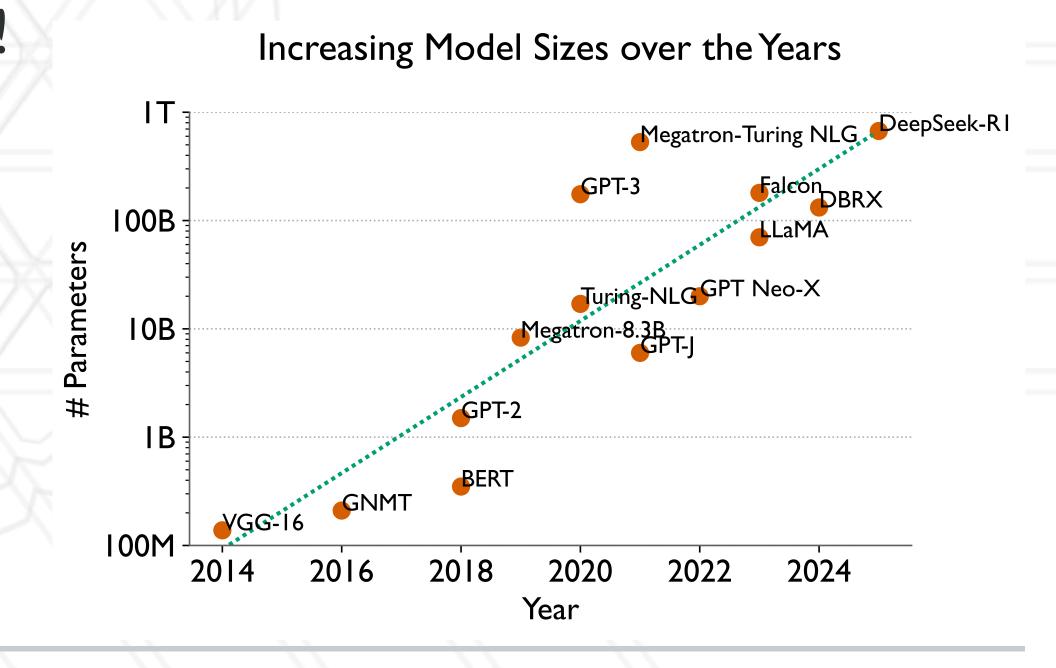


- Largest language model you can train on an H100 96 GB GPU: ~3.5-4 billion parameters
- On a single node (with four H100 GPUs): around ~16 billion parameters model

- Largest language model you can train on an H100 96 GB GPU: ~3.5-4 billion parameters
- On a single node (with four H100 GPUs): around ~16 billion parameters model
- Training a 16B parameter would take 33 years!

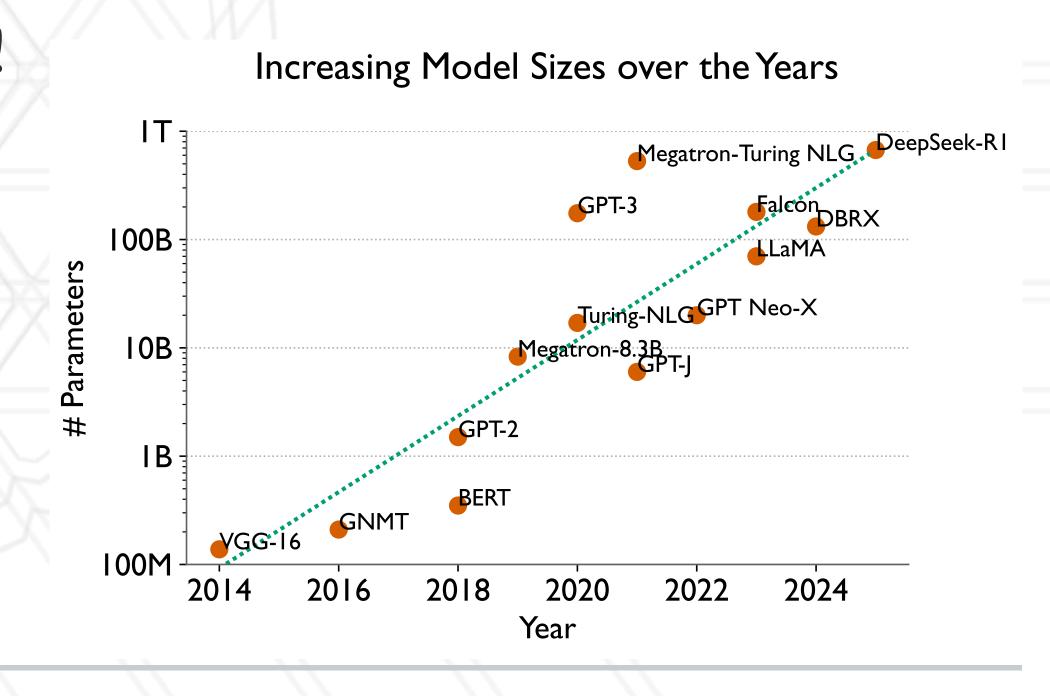


- Largest language model you can train on an H100 96 GB GPU: ~3.5-4 billion parameters
- On a single node (with four H100 GPUs): around ~16 billion parameters model
- Training a 16B parameter would take 33 years!





- Largest language model you can train on an H100 96 GB GPU: ~3.5-4 billion parameters
- On a single node (with four H100 GPUs): around ~16 billion parameters model
- Training a 16B parameter would take 33 years!
- OpenAl's GPT 4.0 is estimated to have 1.8 trillion parameters
- Meta's Llama-3.1-405B has more than 400 billion parameters





## Scaling distributed Al is challenging

- Single GPU performance: ensure efficient compute kernels
- Multi-node performance: scalable communication, especially collectives
- File I/O: for certain categories of Al models such as image, video, etc.
- We need scalable algorithms AND good practical implementations of them



### Sequential LLM training

W

```
while (remaining_batches) {
   Read a single batch
```

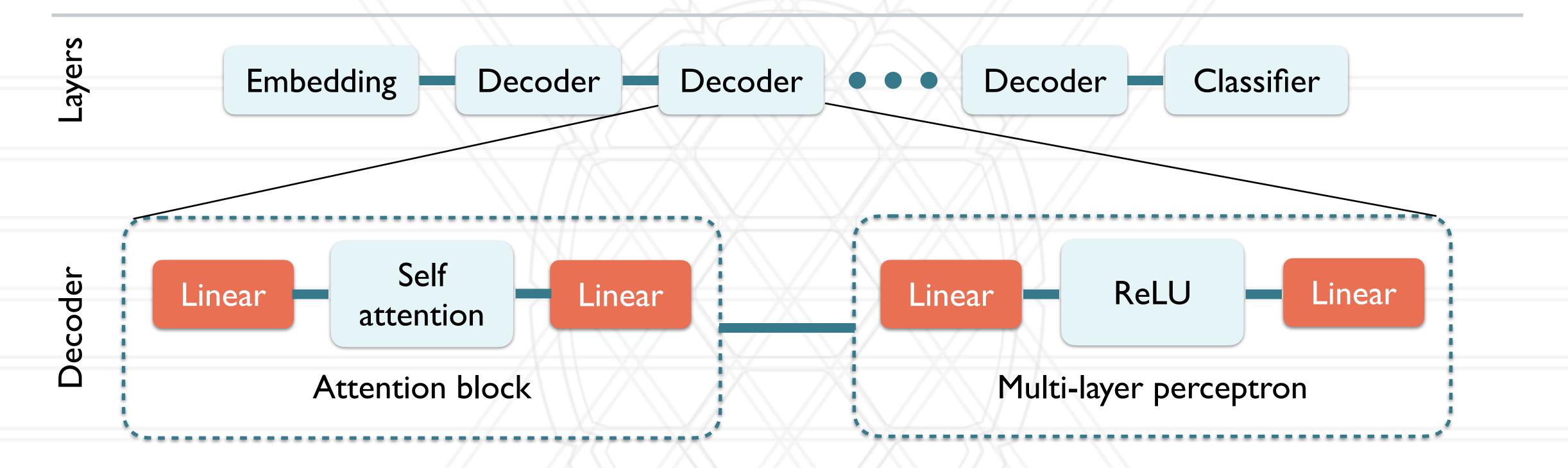
Forward pass: perform matrix multiplies to compute output activations, and a loss on the batch

Backward pass: matrix multiplies to compute gradients of the loss w.r.t. parameters via backpropagation

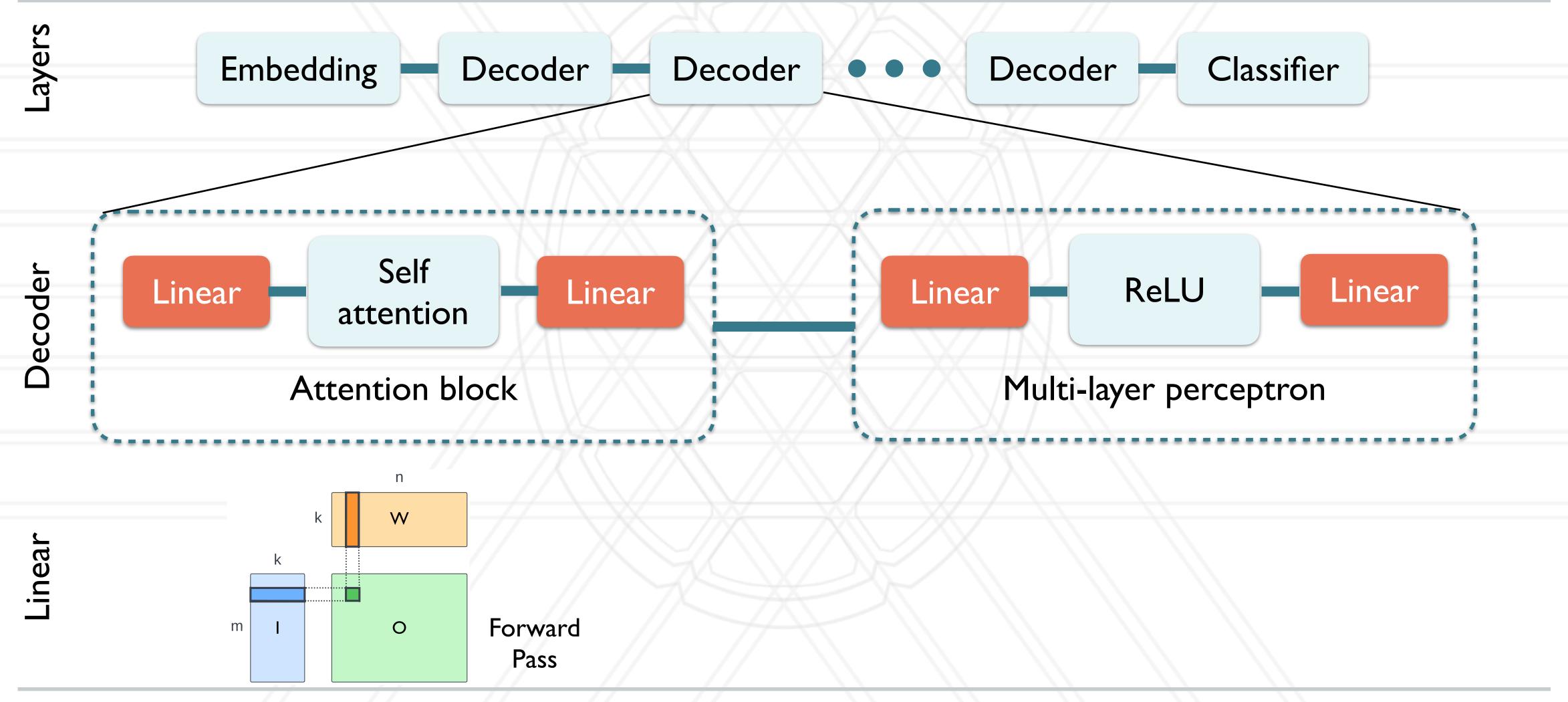
Optimizer step: use gradients to update the weights or parameters such that loss is gradually reduced



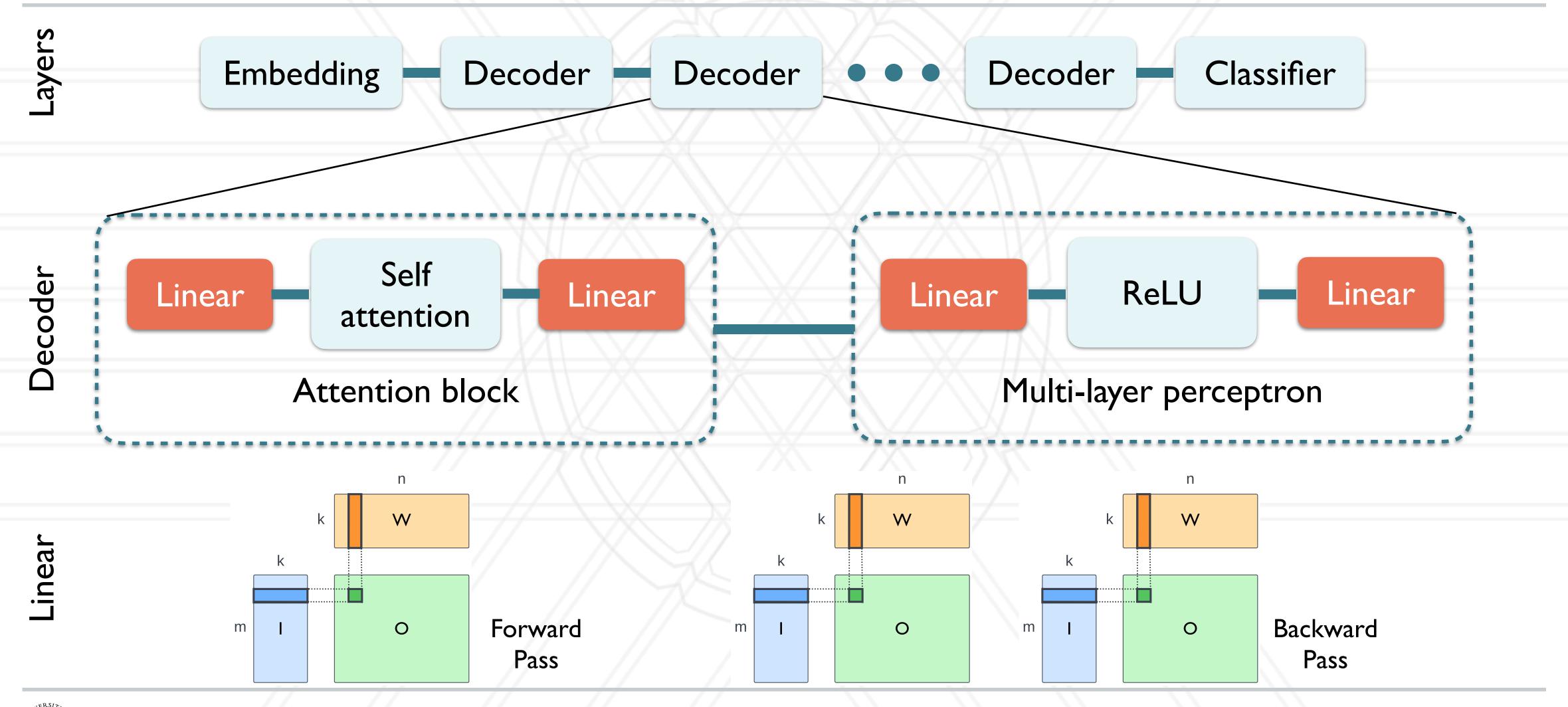
Embedding — Decoder — Decoder — Decoder — Classifier













#### Parallel/distributed training

- Many opportunities for exploiting parallelism
- Iterative process of training (epochs)
- Many iterations per epoch (mini-batches)
- Many layers in DNNs



- Divide training data (input batch) among workers (GPUs)
- Each worker has a full copy of the entire NN and processes different minibatches
- All reduce operation to synchronize gradients
- Example: PyTorch's DDP, ZeRO

- Divide training data (input batch) among workers (GPUs)
- Each worker has a full copy of the entire NN and processes different minibatches

Batch

- All reduce operation to synchronize gradients
- Example: PyTorch's DDP, ZeRO



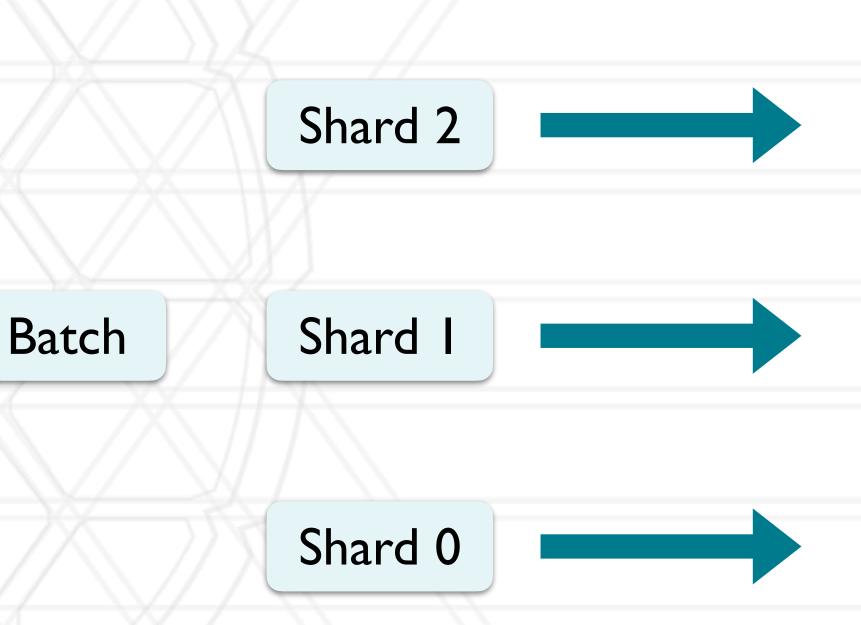
- Divide training data (input batch) among workers (GPUs)
- Each worker has a full copy of the entire NN and processes different minibatches
- All reduce operation to synchronize gradients
- Example: PyTorch's DDP, ZeRO

Shard 2

Batch Shard I

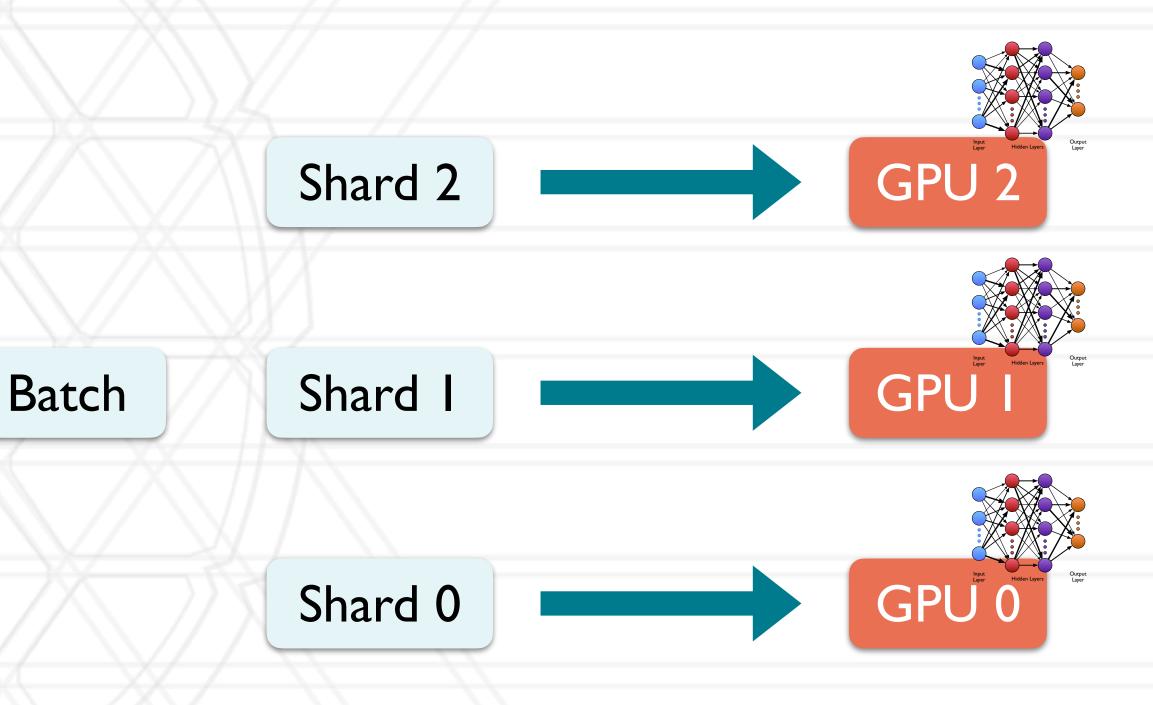
Shard 0

- Divide training data (input batch) among workers (GPUs)
- Each worker has a full copy of the entire NN and processes different minibatches
- All reduce operation to synchronize gradients
- Example: PyTorch's DDP, ZeRO





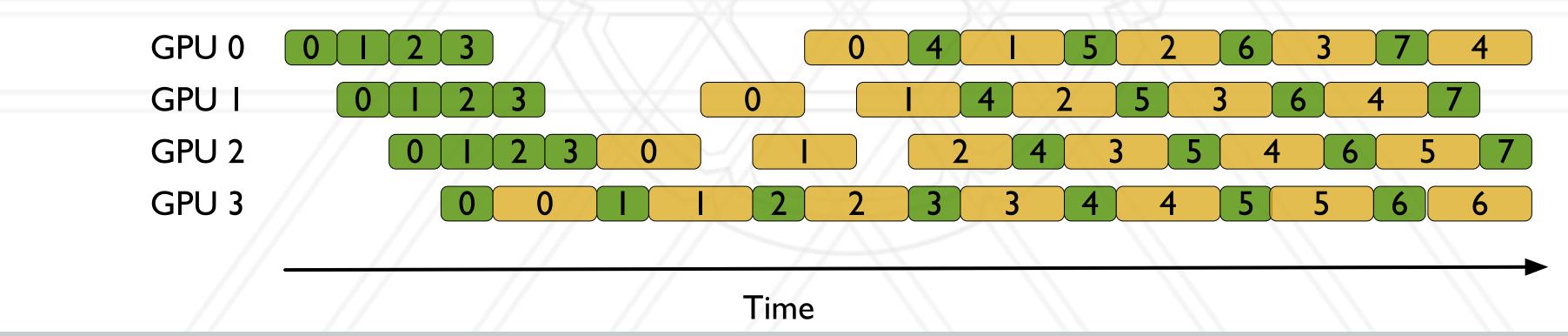
- Divide training data (input batch) among workers (GPUs)
- Each worker has a full copy of the entire NN and processes different minibatches
- All reduce operation to synchronize gradients
- Example: PyTorch's DDP, ZeRO



Data Parallelism

#### Inter-layer parallelism

- Assign entire layers to different processes/GPUs
  - Ideally map contiguous subsets of layers
- Point-to-point communication (activations and gradients) between processes/GPUs managing different layers
- Use a pipeline of mini-batches to enable concurrent execution



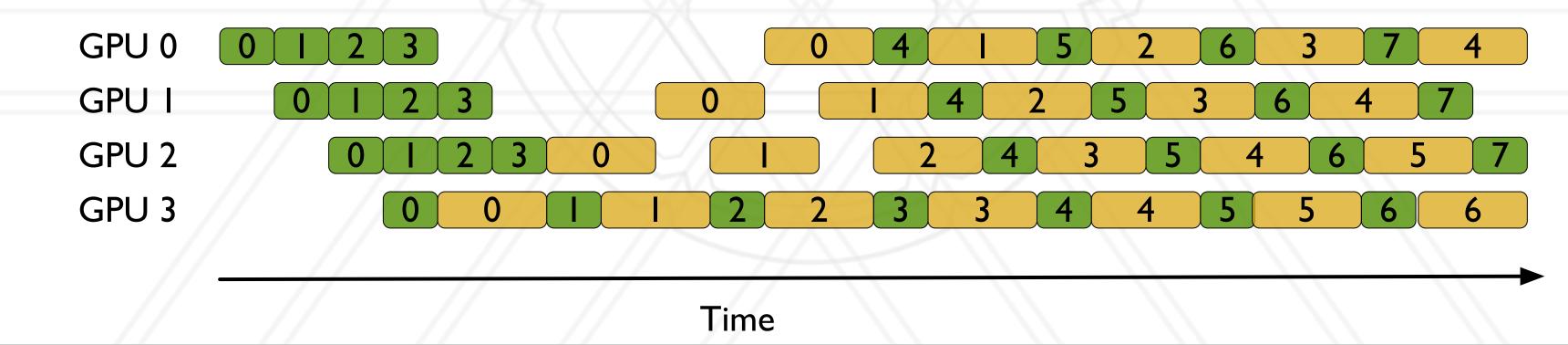


#### Inter-layer parallelism

- Assign entire layers to different processes/GPUs
  - Ideally map contiguous subsets of layers

Pipeline parallelism

- Point-to-point communication (activations and gradients) between processes/GPUs managing different layers
- Use a pipeline of mini-batches to enable concurrent execution





#### Intra-layer parallelism

- Enables training neural networks that would not fit on a single GPU
- Distribute the work within each layer to multiple processes/GPUs
  - Essentially parallelize matrix operations such as matmuls across multiple GPUs
- Example: Megatron-LM



#### Intra-layer parallelism

Tensor parallelism

- Enables training neural networks that would not fit on a single GPU
- Distribute the work within each layer to multiple processes/GPUs
  - Essentially parallelize matrix operations such as matmuls across multiple GPUs
- Example: Megatron-LM



### Hybrid parallelism

- Using two or more approaches together in the same parallel framework
- 3D parallelism: use all three
- Popular serial frameworks: pytorch, tensorflow
- Popular parallel frameworks: DDP, MeshTensorFlow, Megatron-LM, ZeRO, AxoNN

#### A four-dimensional hybrid parallel approach

A hybrid parallelism approach

 Combines data parallelism with 3dimensional parallel matrix multiplication (PMM)



#### A four-dimensional hybrid parallel approach

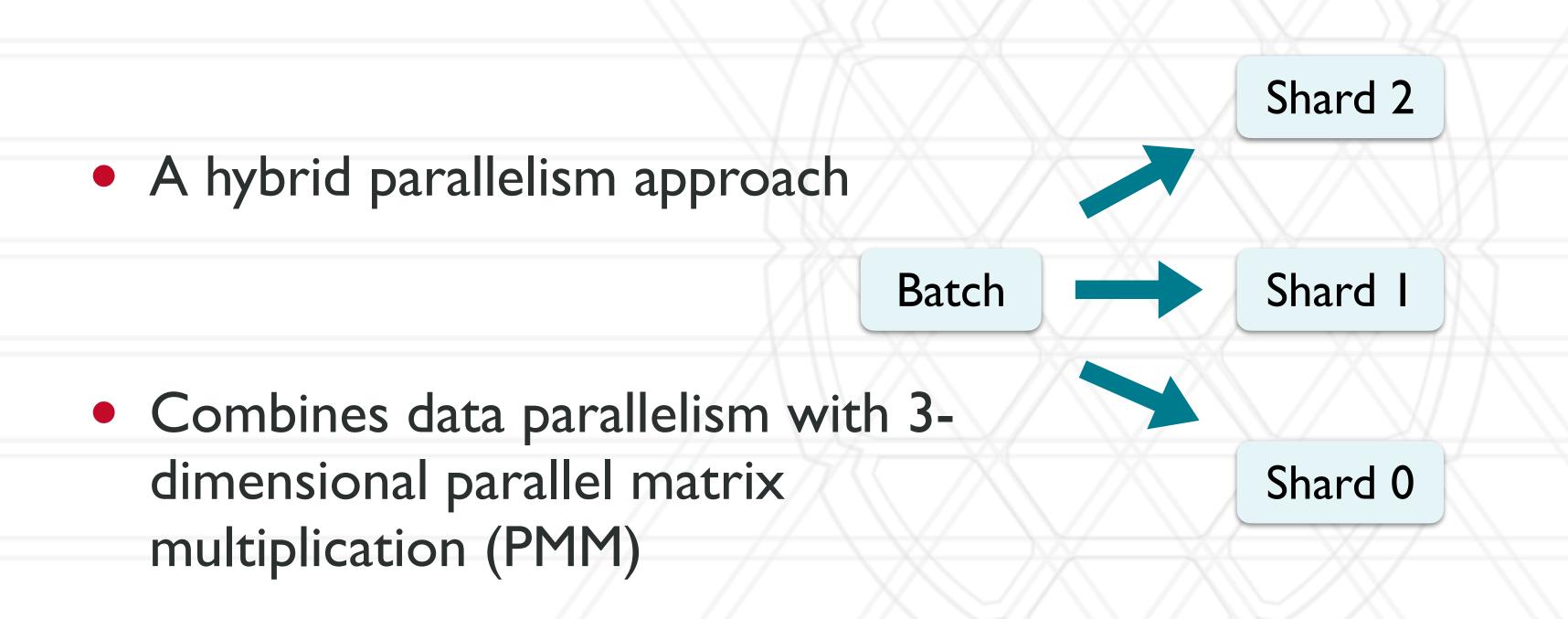
A hybrid parallelism approach

Batch

 Combines data parallelism with 3dimensional parallel matrix multiplication (PMM)

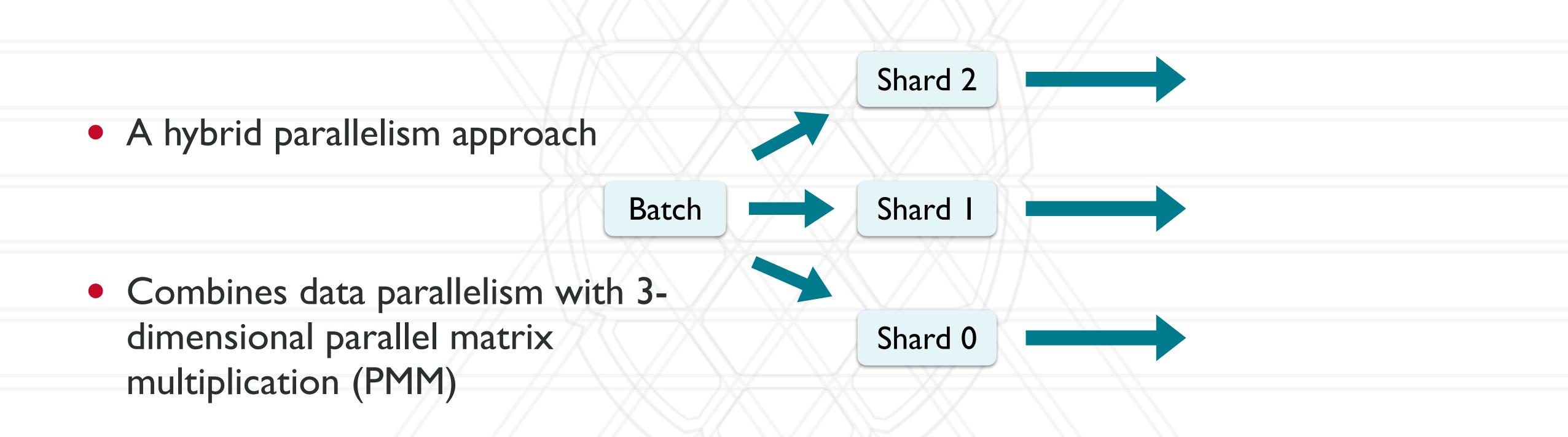


#### A four-dimensional hybrid parallel approach

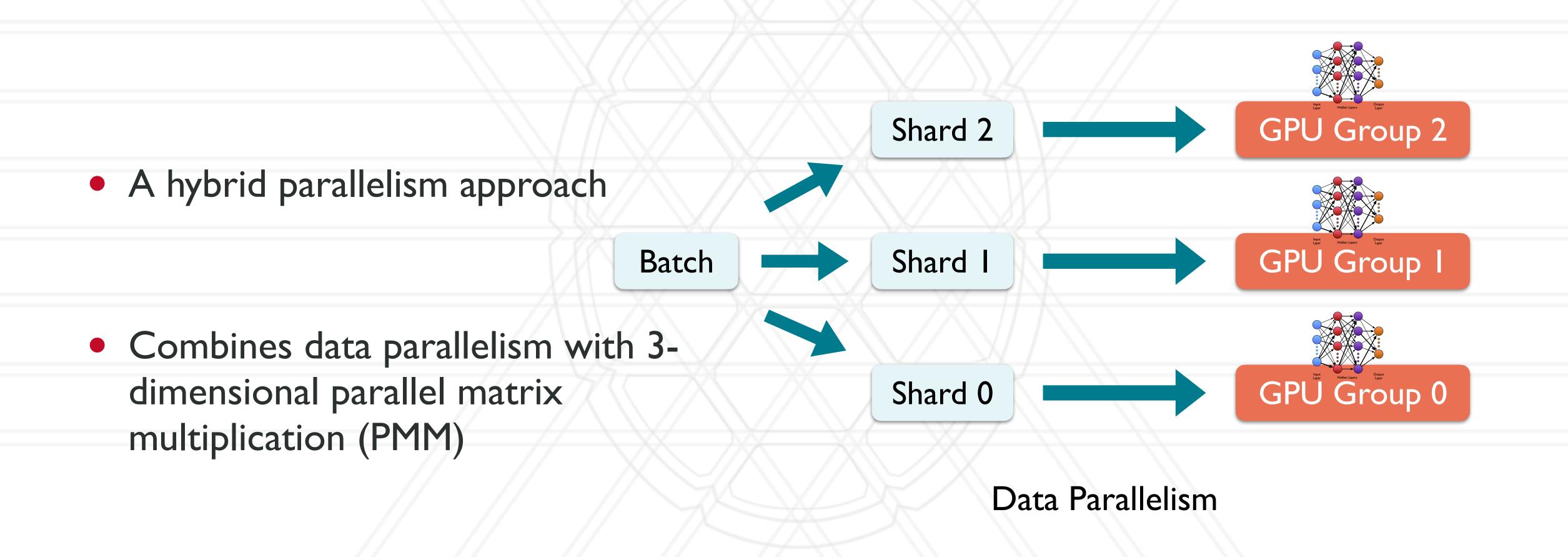




#### A four-dimensional hybrid parallel approach

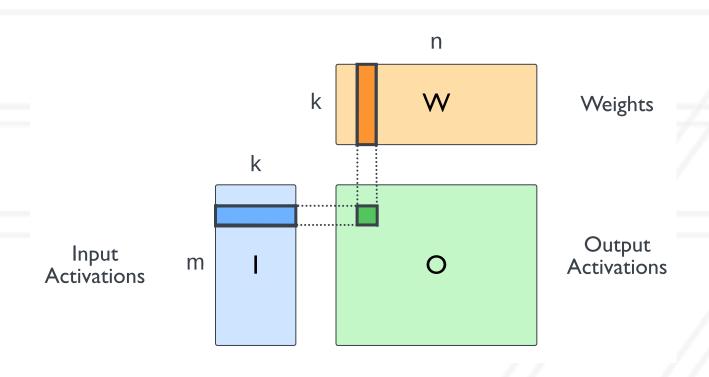


#### A four-dimensional hybrid parallel approach

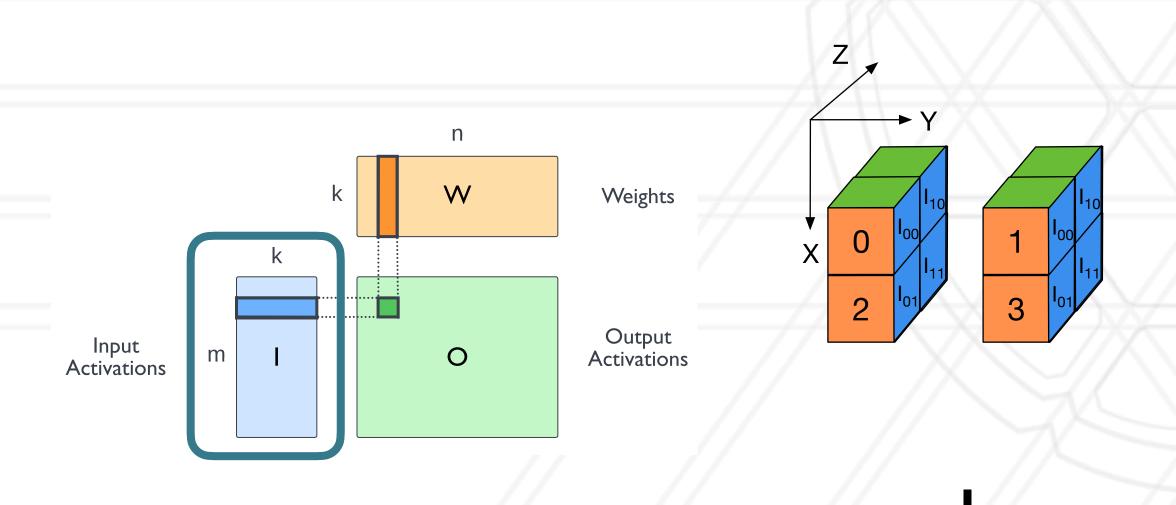




- Each layer is multiplying input activations with weights to produce output activations
- Distribute I and W across a 3D grid of GPUs
- Compute partial output activations, O on each GPU

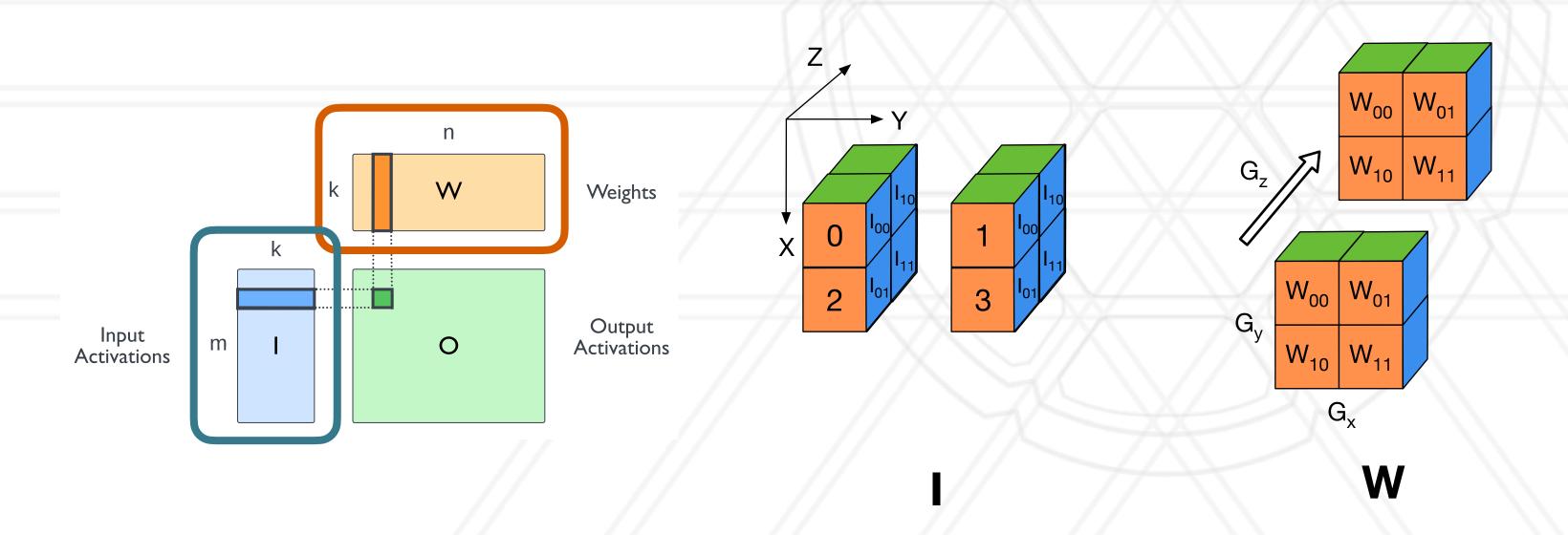


- Each layer is multiplying input activations with weights to produce output activations
- Distribute I and W across a 3D grid of GPUs
- Compute partial output activations, O on each GPU



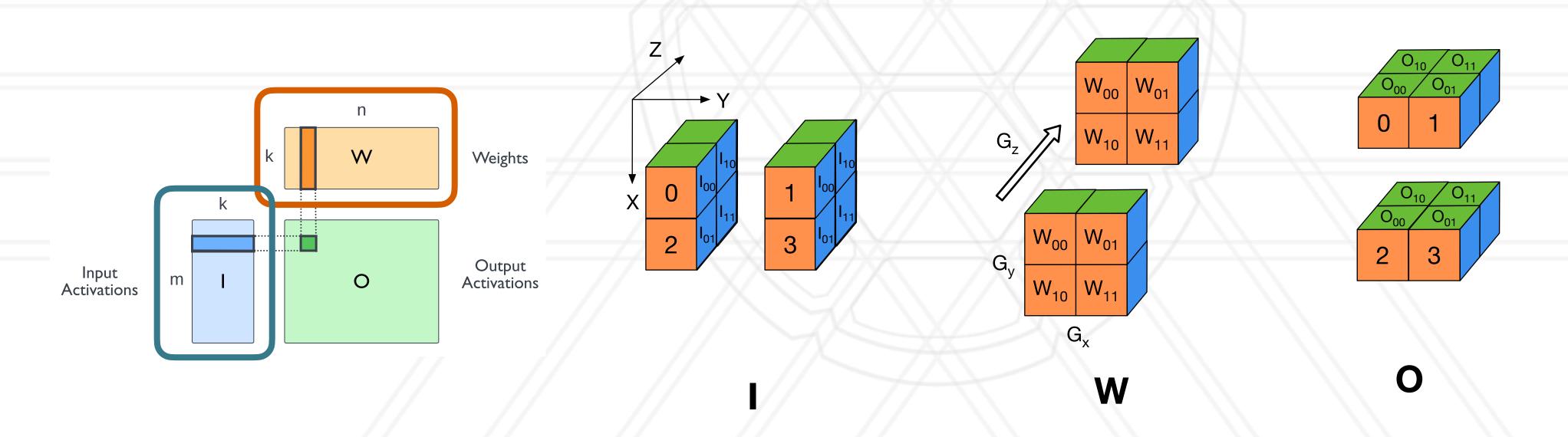


- Each layer is multiplying input activations with weights to produce output activations
- Distribute I and W across a 3D grid of GPUs
- Compute partial output activations, O on each GPU

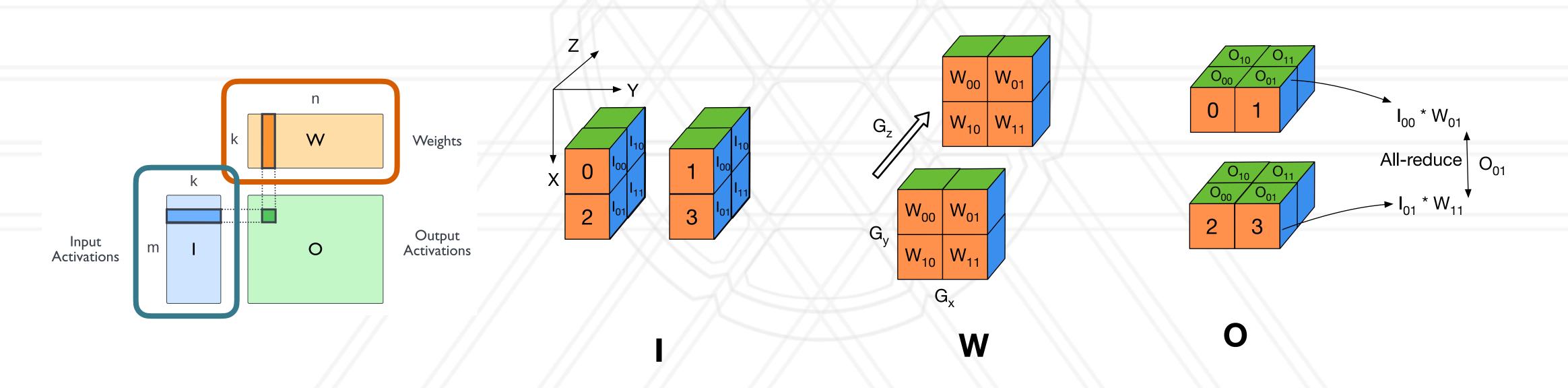




- Each layer is multiplying input activations with weights to produce output activations
- Distribute I and W across a 3D grid of GPUs
- Compute partial output activations, O on each GPU



- Each layer is multiplying input activations with weights to produce output activations
- Distribute I and W across a 3D grid of GPUs
- Compute partial output activations, O on each GPU



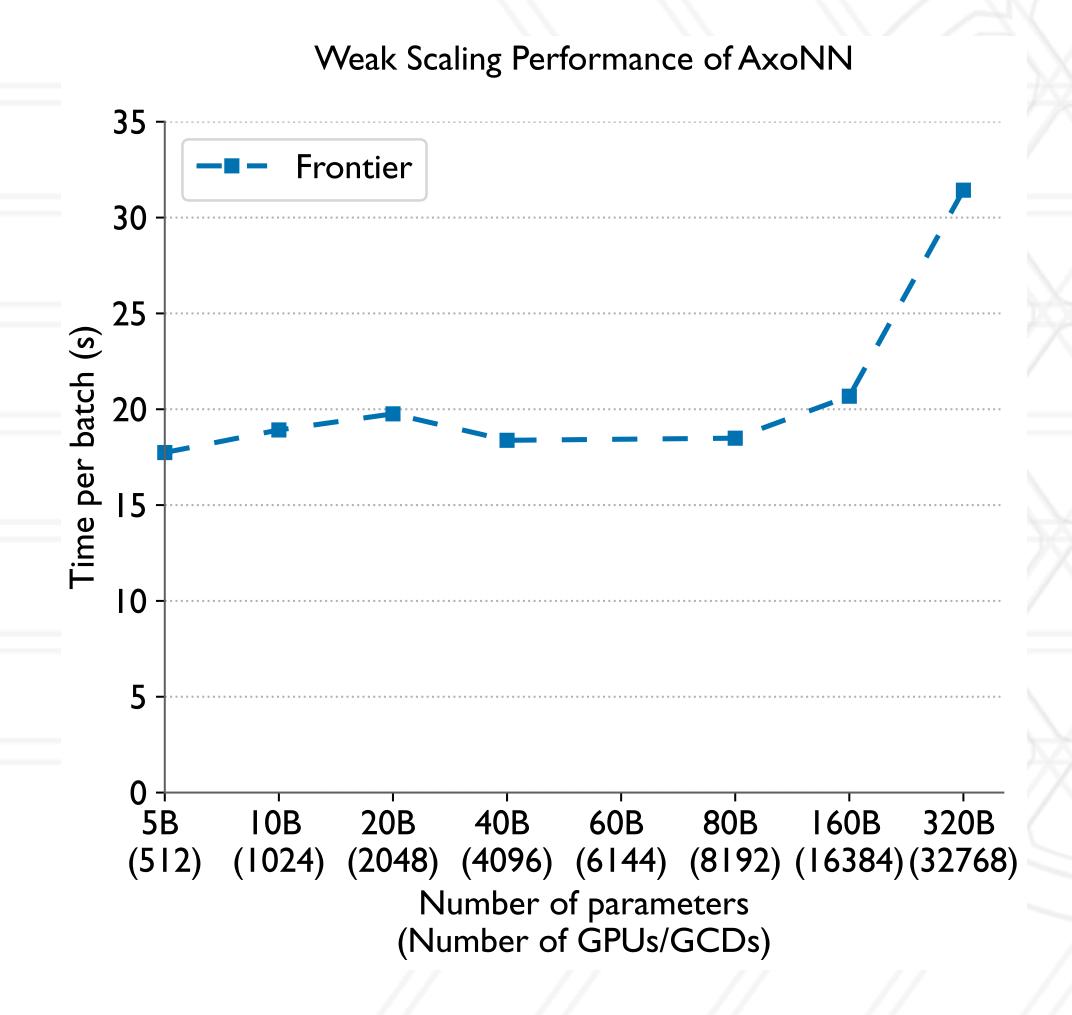
### Easy parallelization using AxoNN

Requires minimal code changes to model architecture (code):

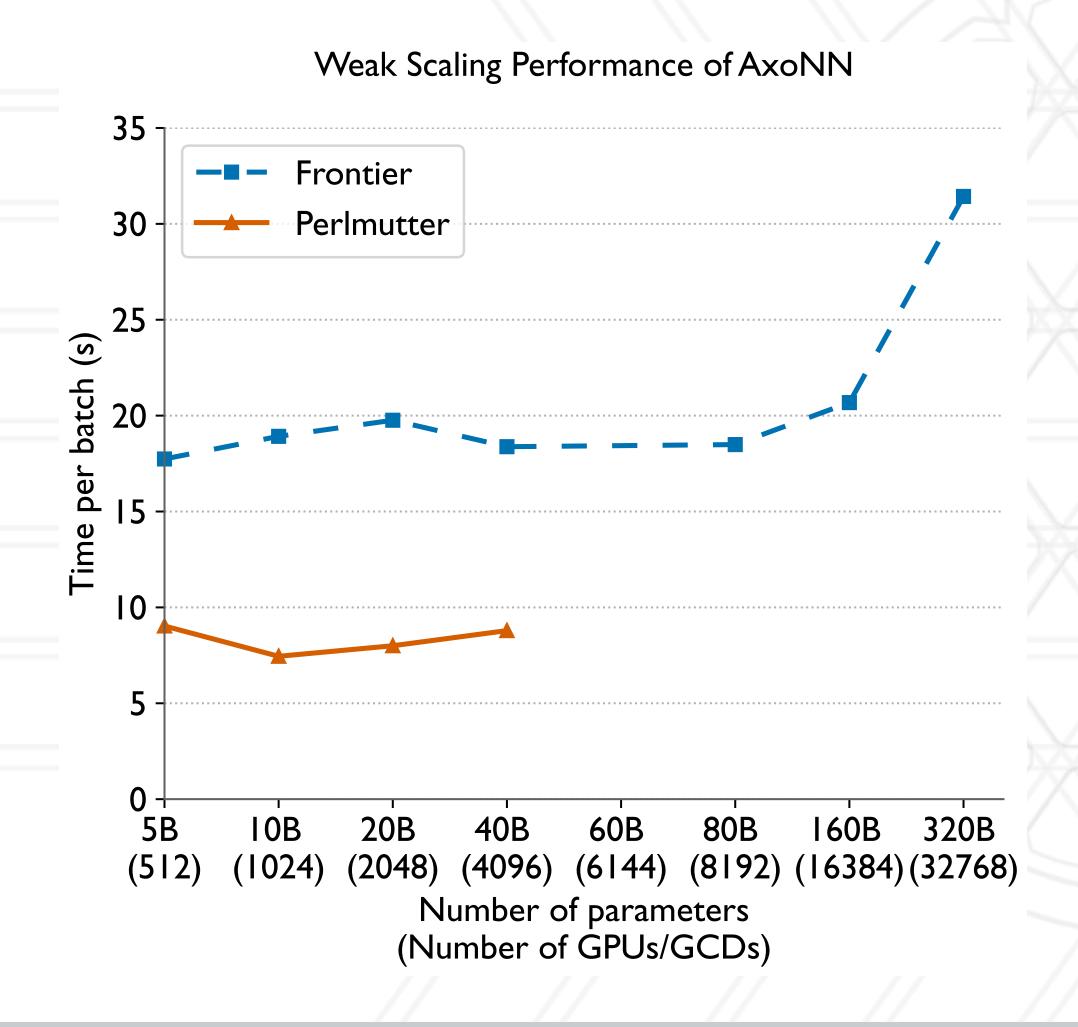
```
from axonn.intra_layer import auto_parallelize
with auto_parallelize():
   net = # declare your sequential model here
```

- AxoNN intercepts all declarations of torch.nn.Linear, and parallelizes them
- Our ML collaborators used this mode for the memorization experiments
- We also have backends for lightning and accelerate

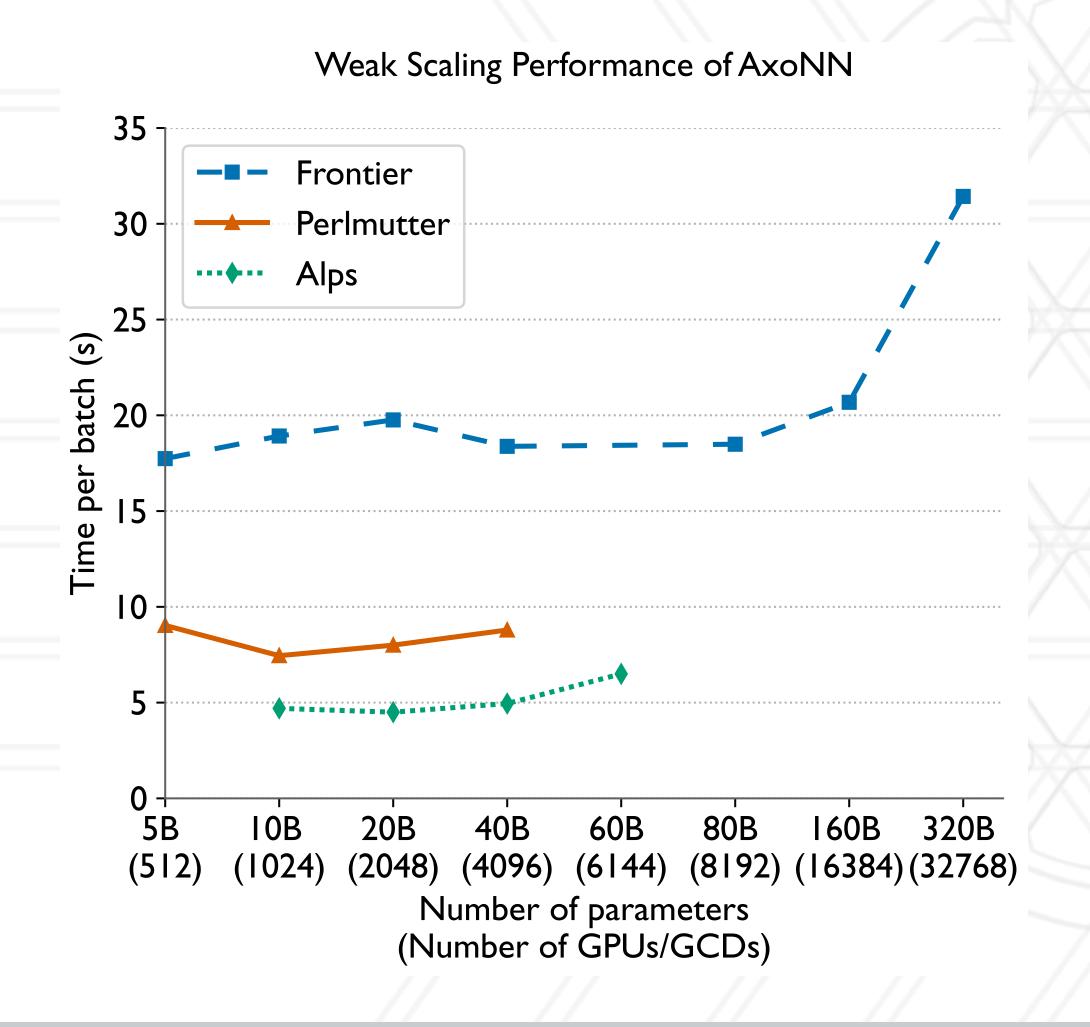




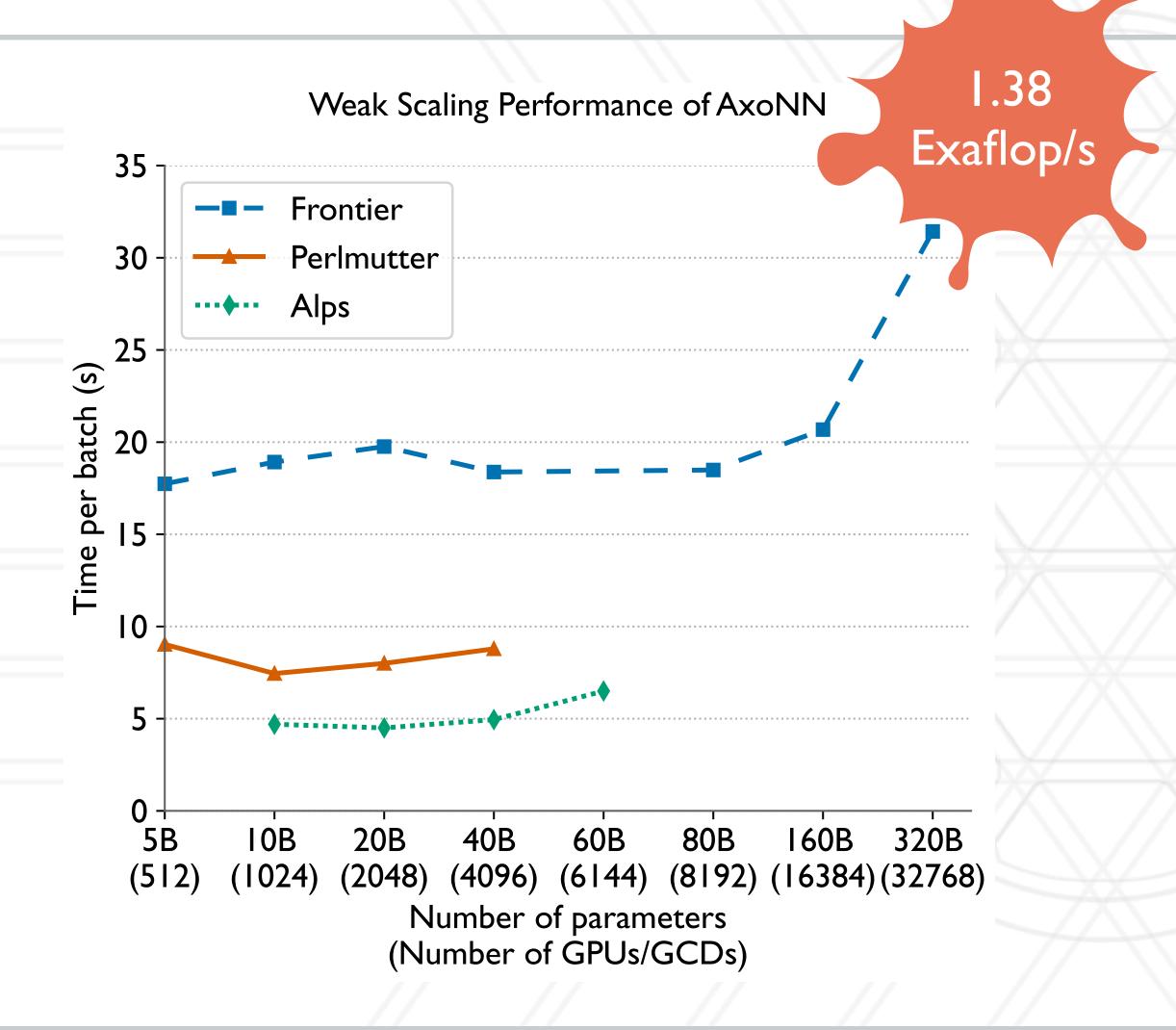




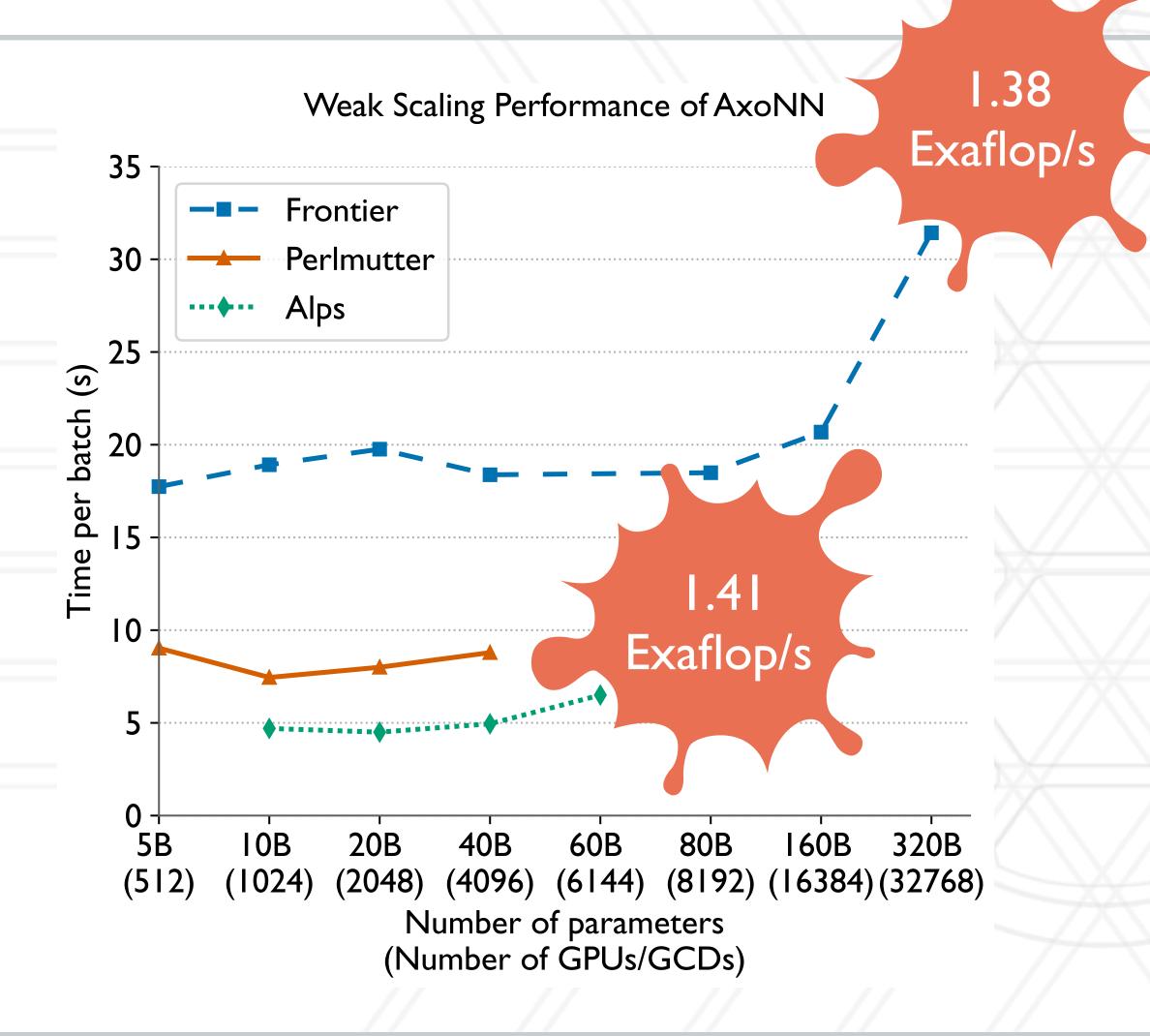




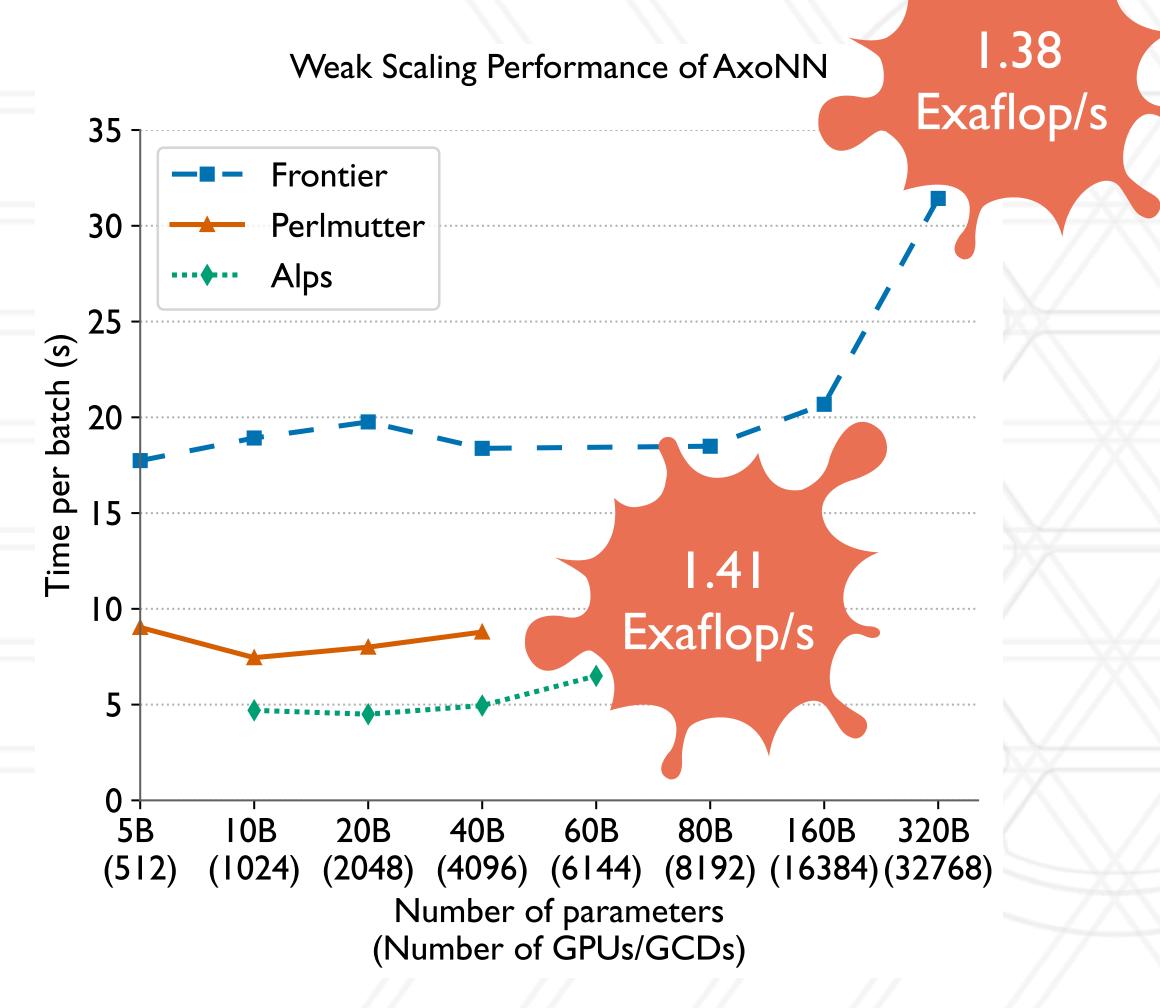


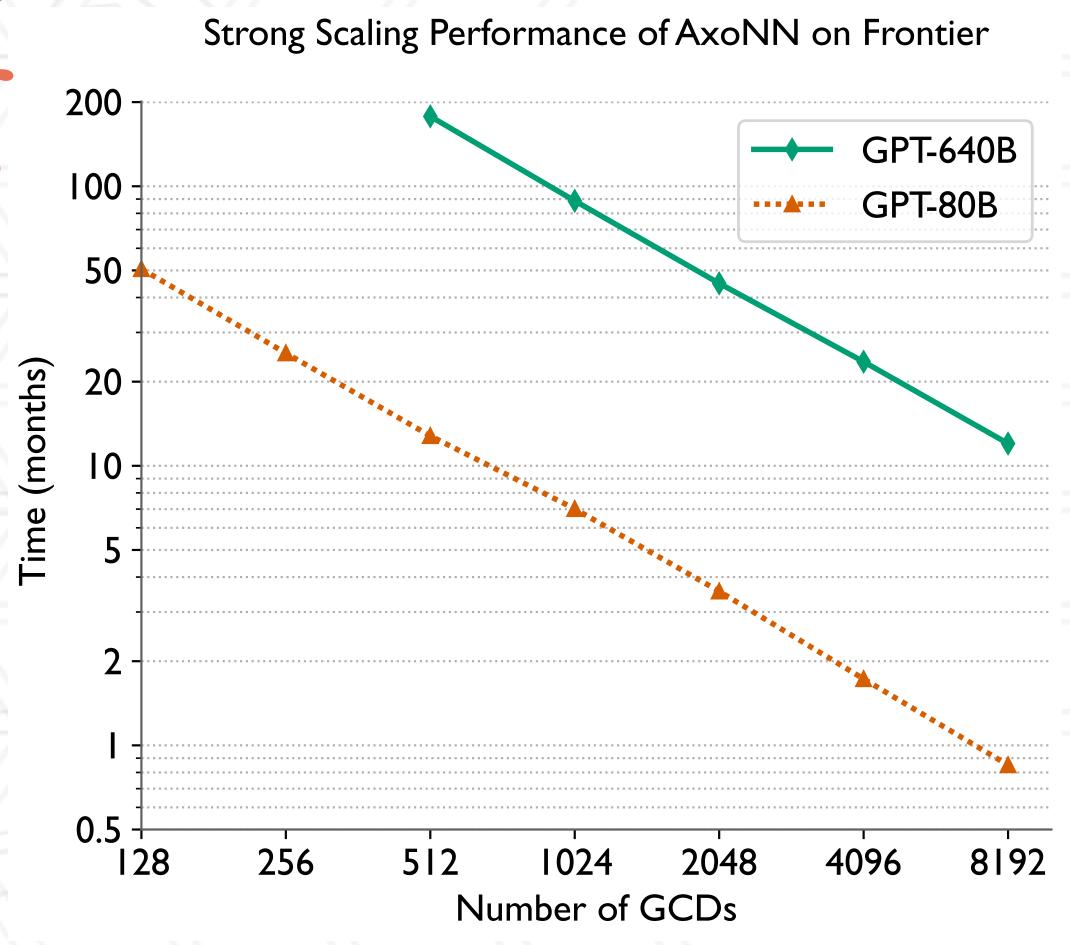






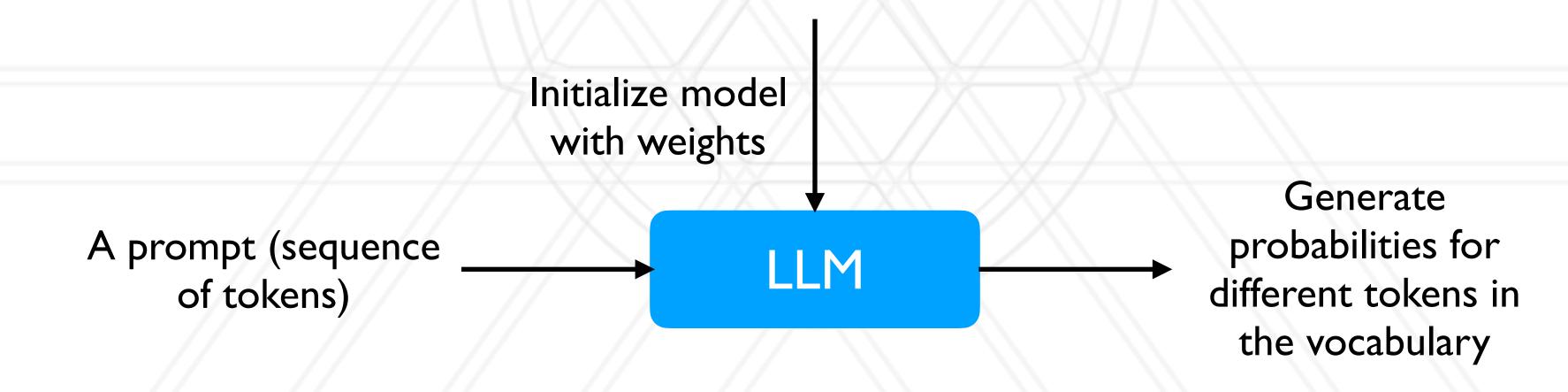






#### How is inference done?

- Start with initializing a model on a GPU with weights from a pre-trained model
- Input: a user prompt
- Output: a generation of output tokens

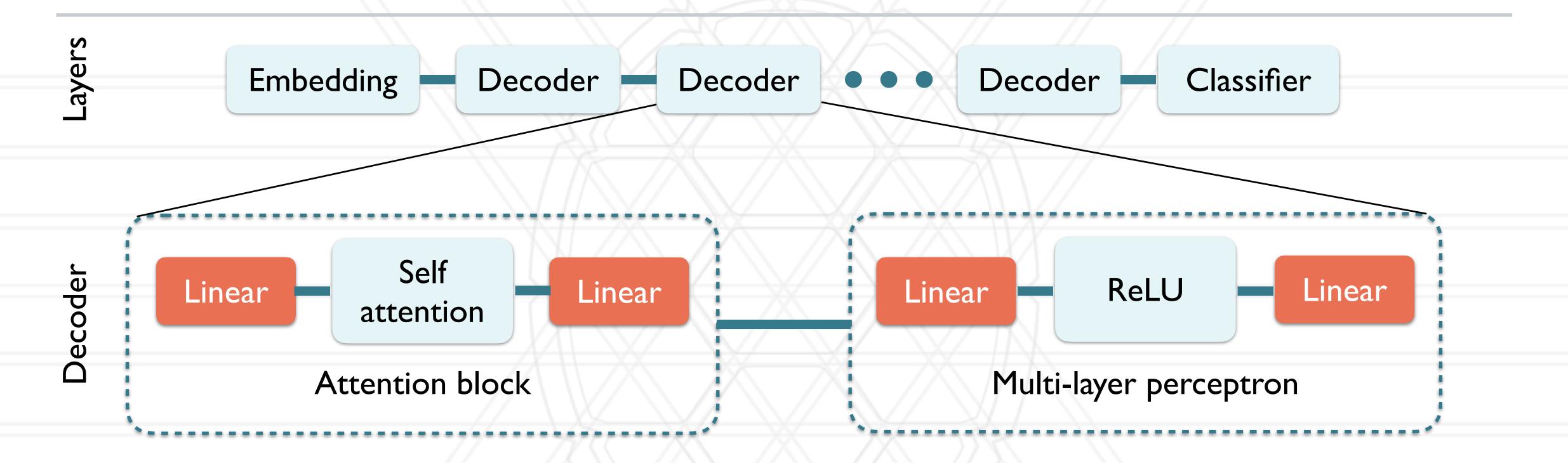




### Compute work in transformer models

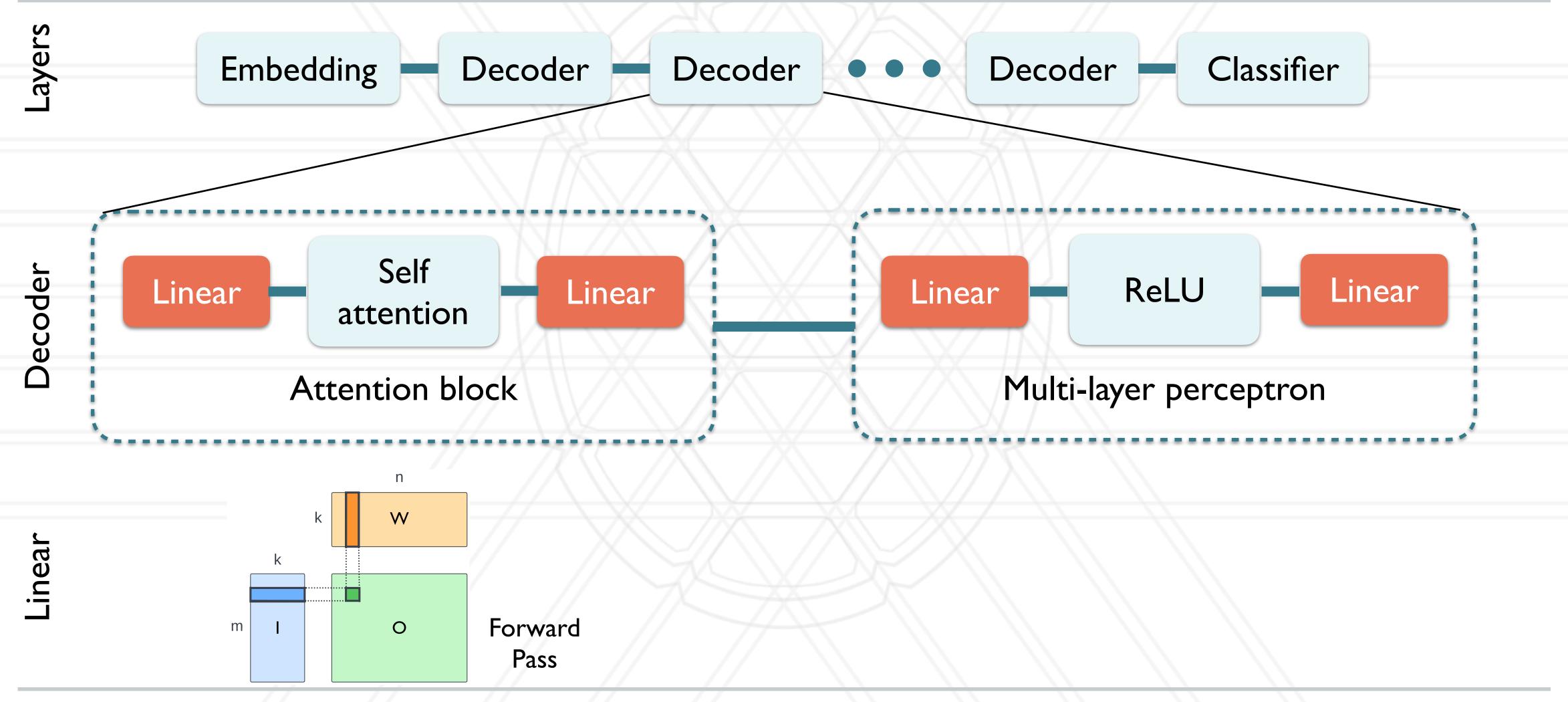
Embedding — Decoder — Decoder — Decoder — Classifier

#### Compute work in transformer models





#### Compute work in transformer models



### Graph Neural Networks

Thomas Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017



#### Graph Neural Networks

- Type of neural network to learn from graph datasets
- Graph Convolutional Networks (GCNs) have become widely popular in recent years for studying properties of graphs

Thomas Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017



#### Graph Neural Networks

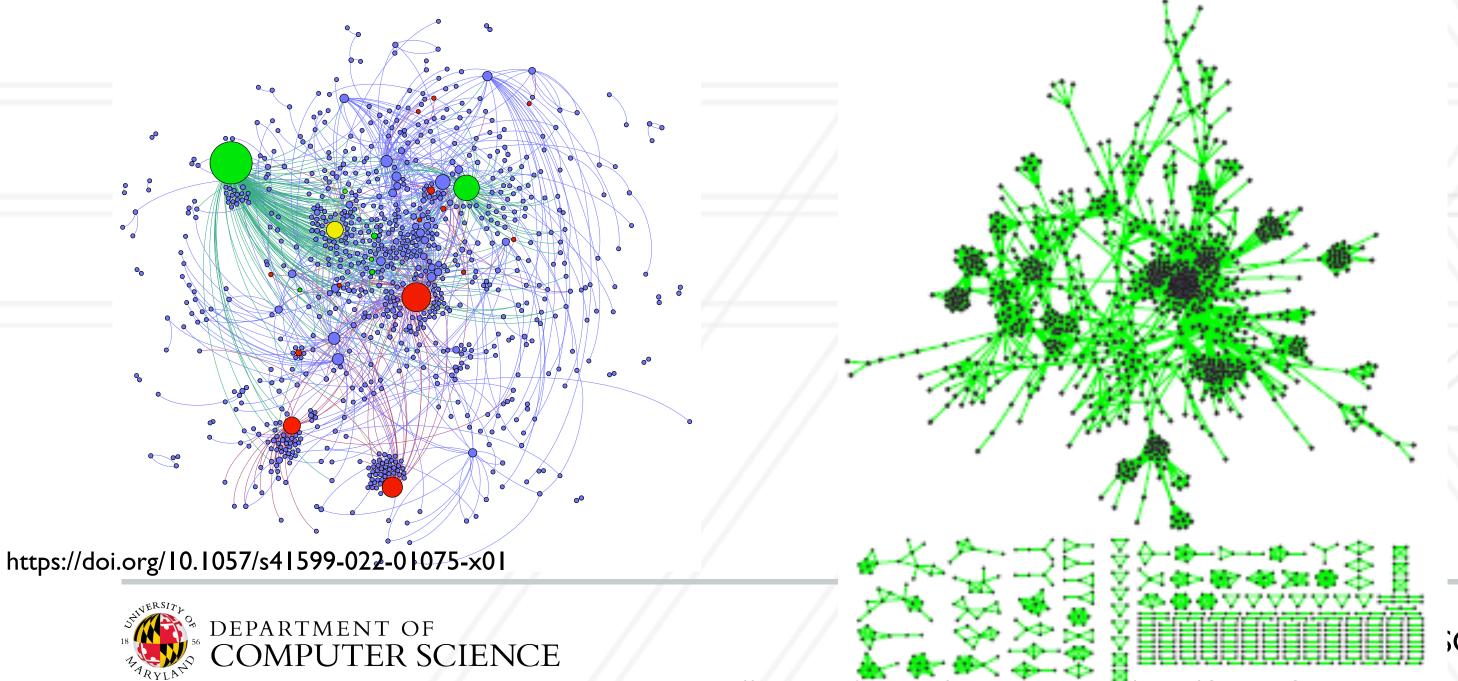
- Type of neural network to learn from graph datasets
- Graph Convolutional Networks (GCNs) have become widely popular in recent years for studying properties of graphs
- Systems challenges with GNNs:
  - Graphs are irregular as opposed to images or text
  - Input datasets representing extremely large graphs do not fit within memory

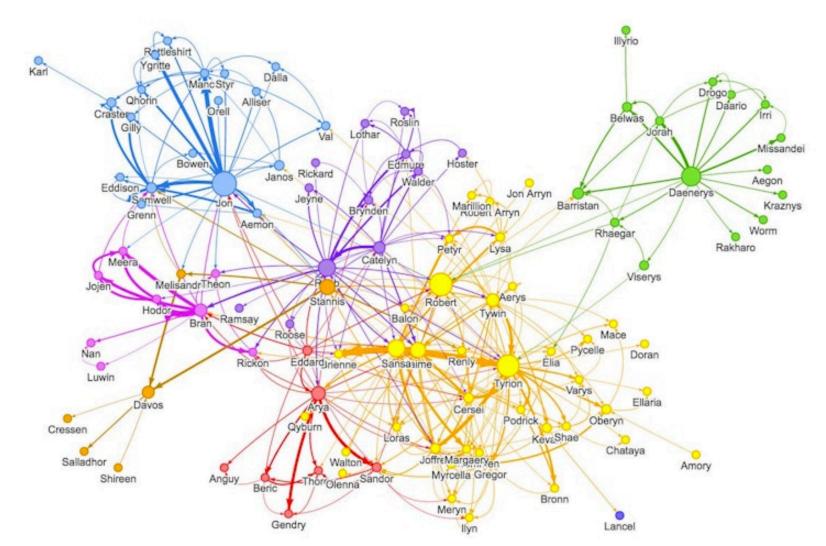
Thomas Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017



### Real-world graphs

- Graphs are everywhere: financial transaction networks, protein-protein interactions, social networks
- Learn complex properties of and relationships within graphs
- Use cases: fraud detection, bioinformatics, recommendation systems





https://www.cylynx.io/blog/a-comparison-of-javascript-graph-network-visualisation-libraries/

(C616)

Aggregation





Aggregation

H = SPMM(A, F)

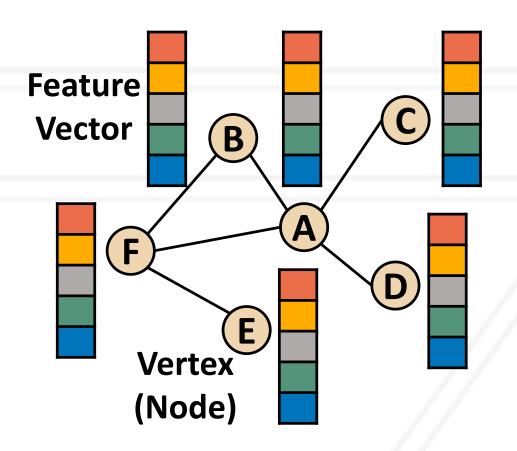


#### Aggregation

$$H = SPMM(A, F)$$



#### **Adjacency Matrix**

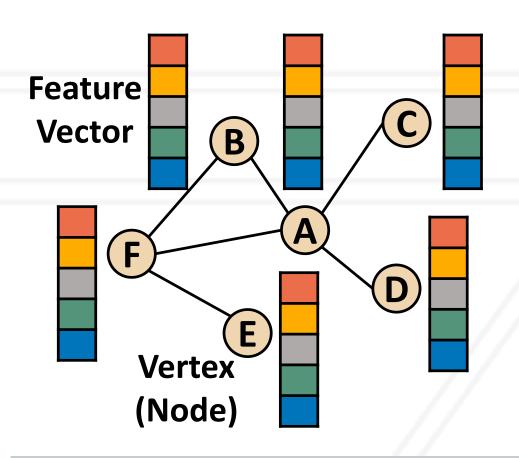




#### Aggregation

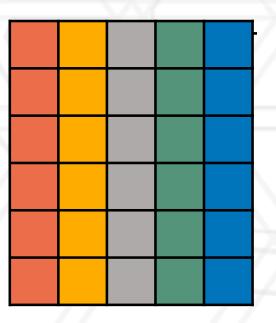
H = SPMM(A, F)





#### **Feature Matrix**

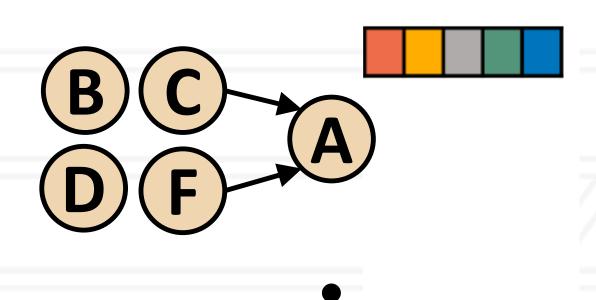
NXD

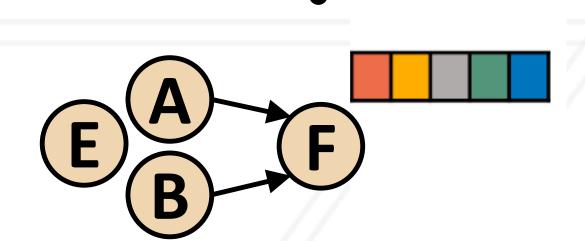




#### Aggregation

$$H = SPMM(A, F)$$





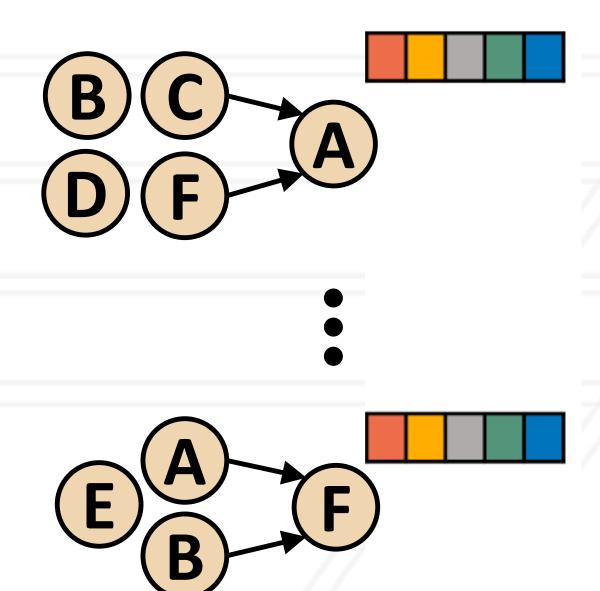


#### Aggregation

H = SPMM(A, F)

#### Combination

$$Q = SGEMM(H, W)$$

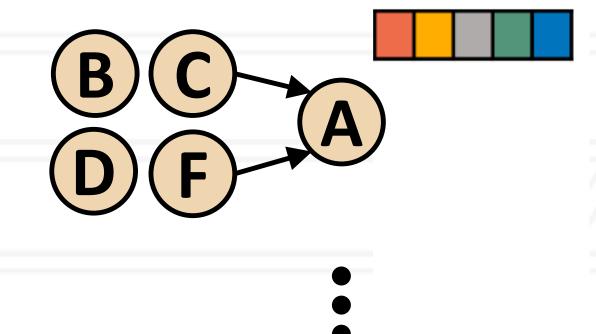


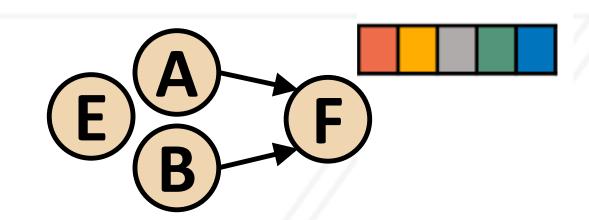




#### Aggregation

H = SPMM(A, F)





#### Combination

$$Q = SGEMM(H, W)$$



DXD





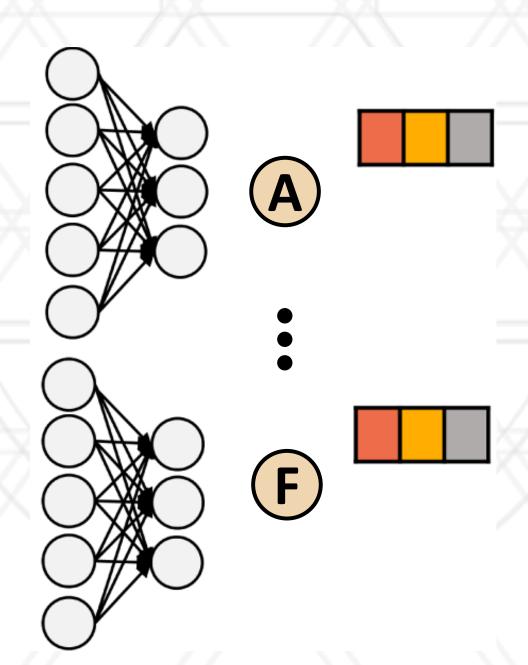
#### Aggregation

$$H = SPMM(A, F)$$



#### Combination

$$Q = SGEMM(H, W)$$

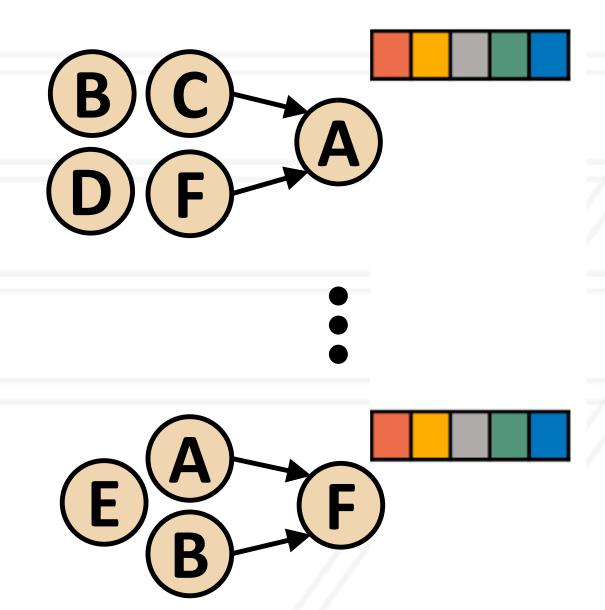






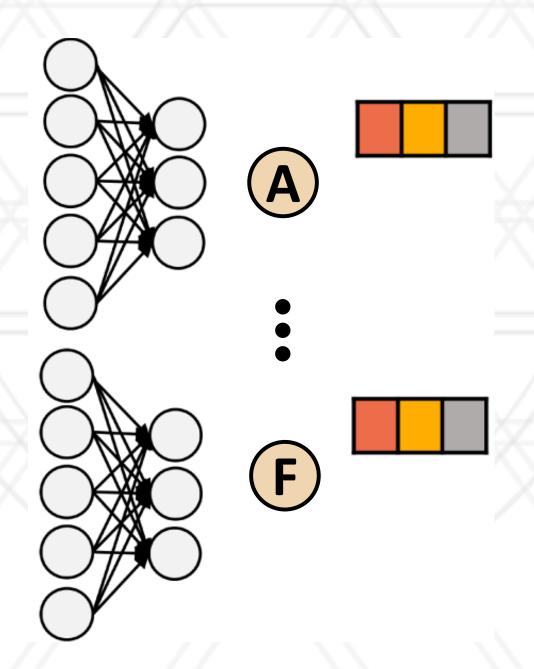
#### Aggregation

$$H = SPMM(A, F)$$



#### Combination

$$Q = SGEMM(H, W)$$

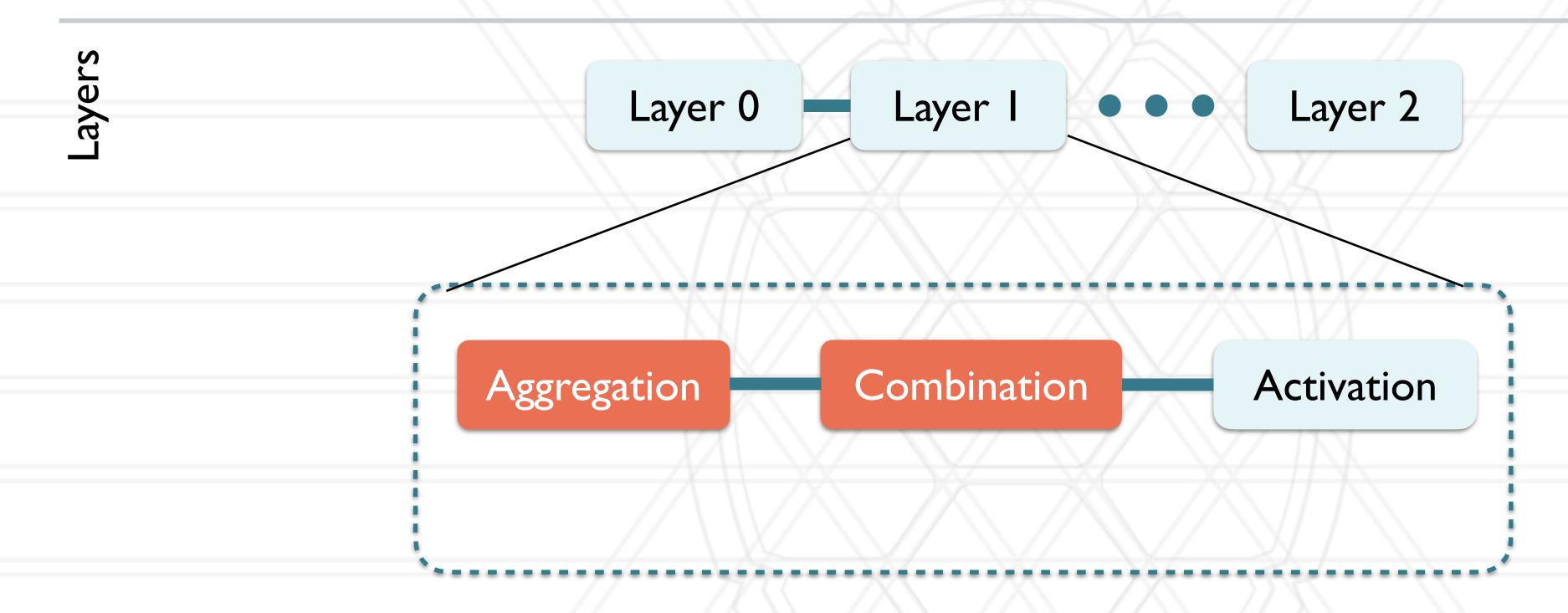


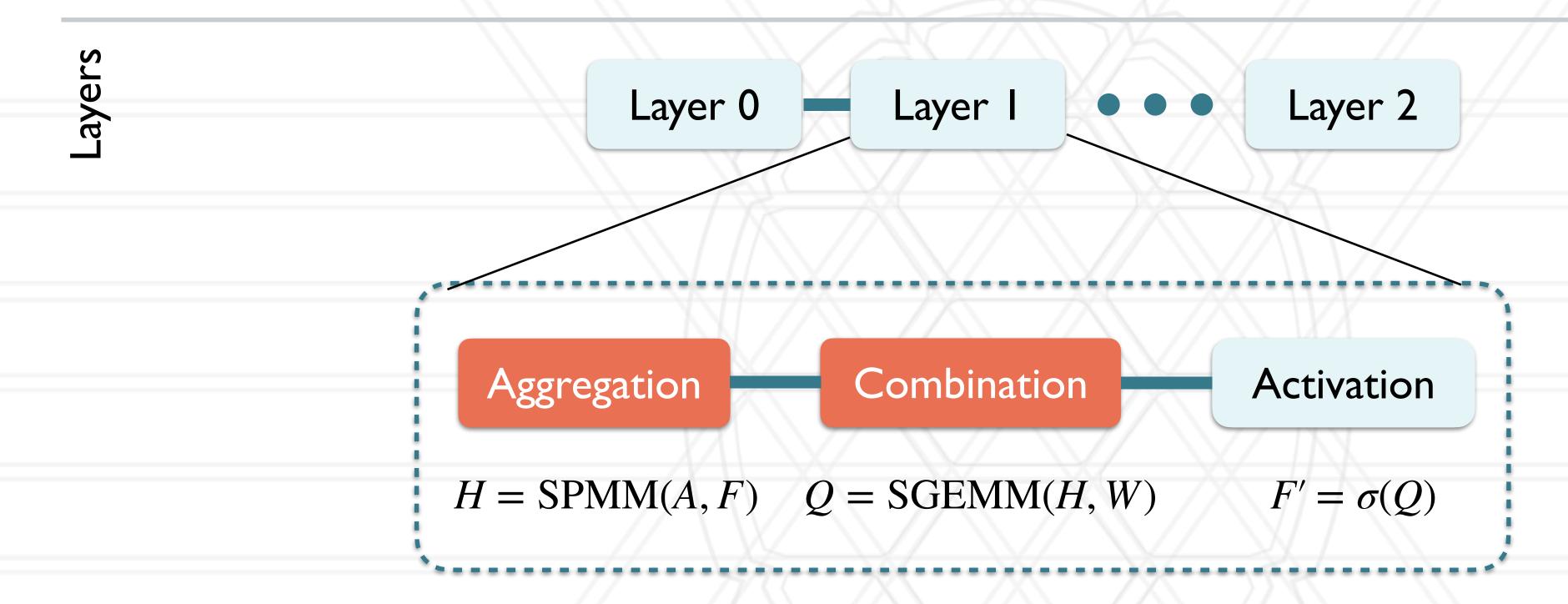
#### Activation

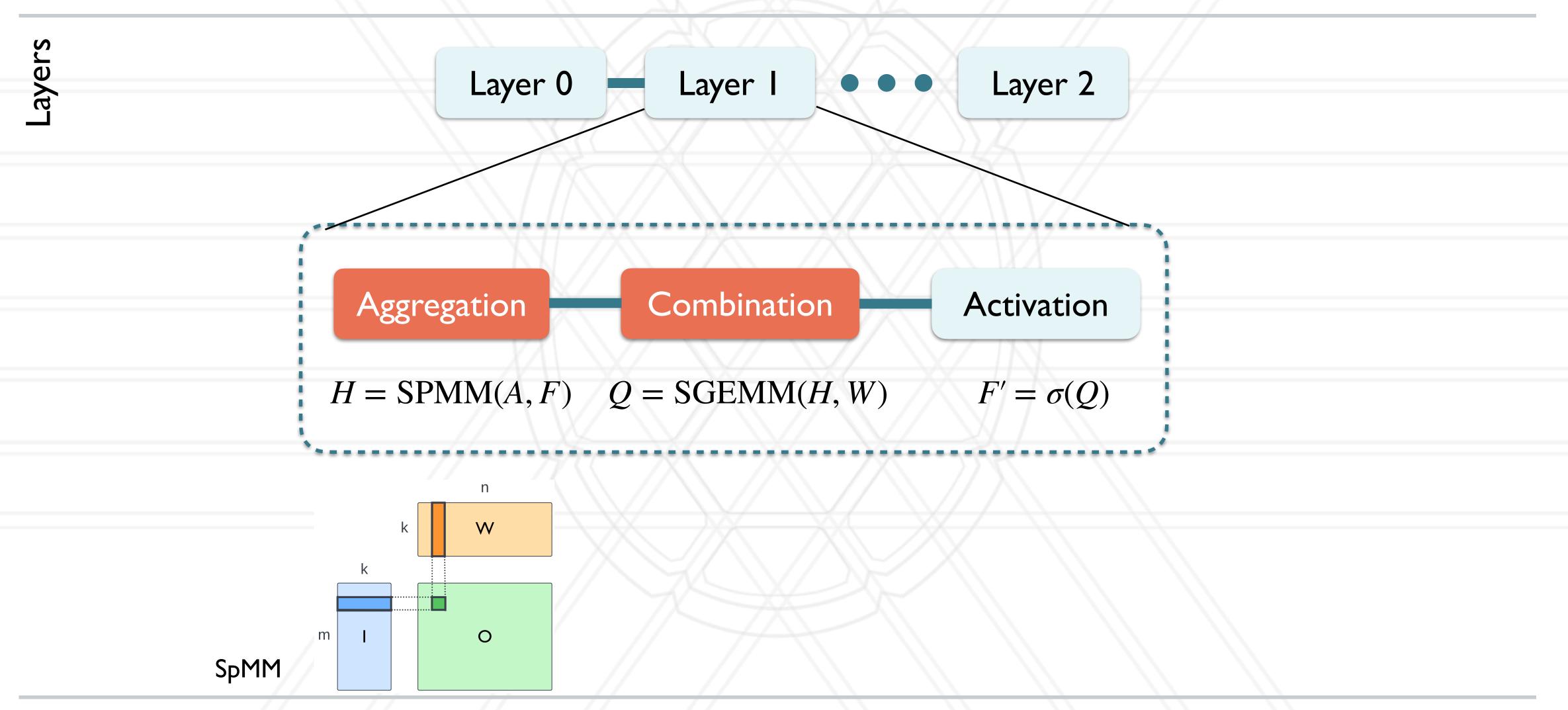
$$F' = \sigma(Q)$$

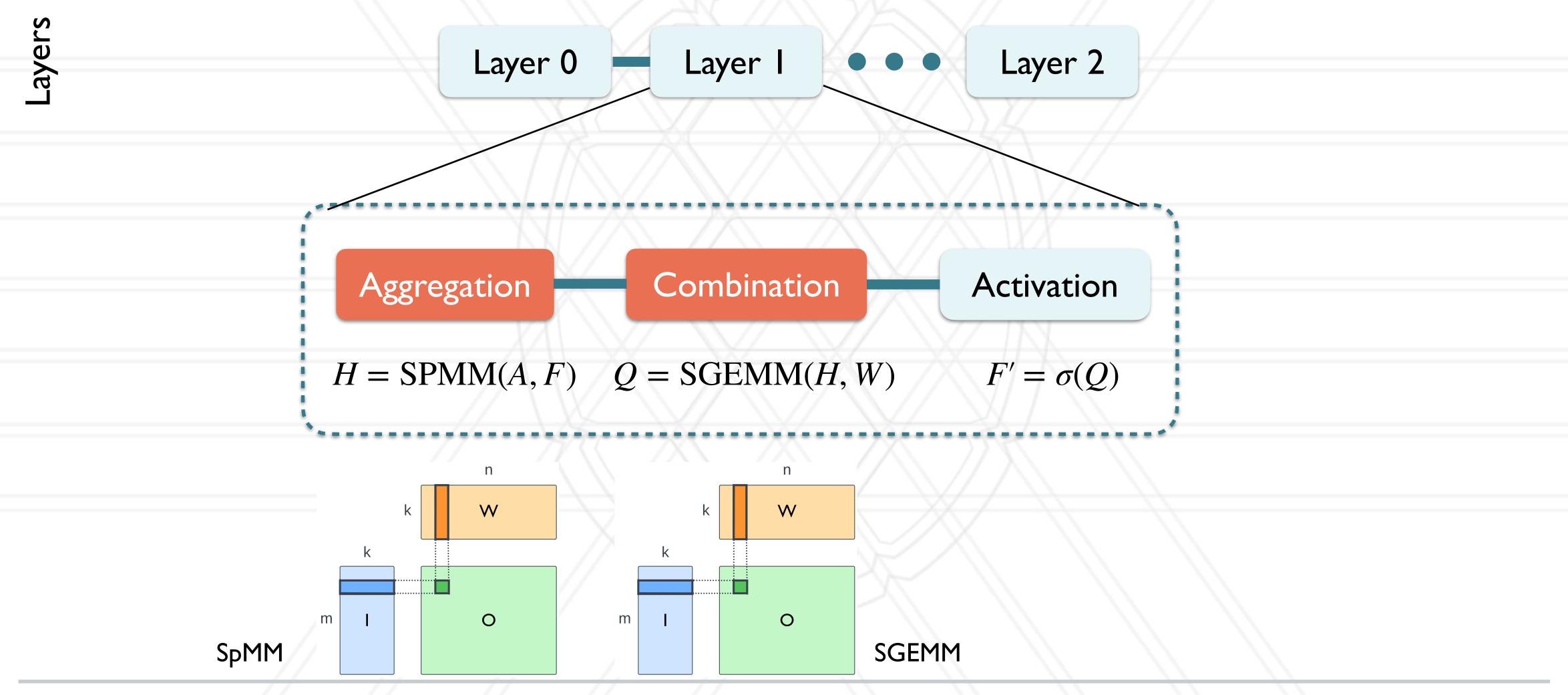


Layer 0 — Layer I • • Layer 2

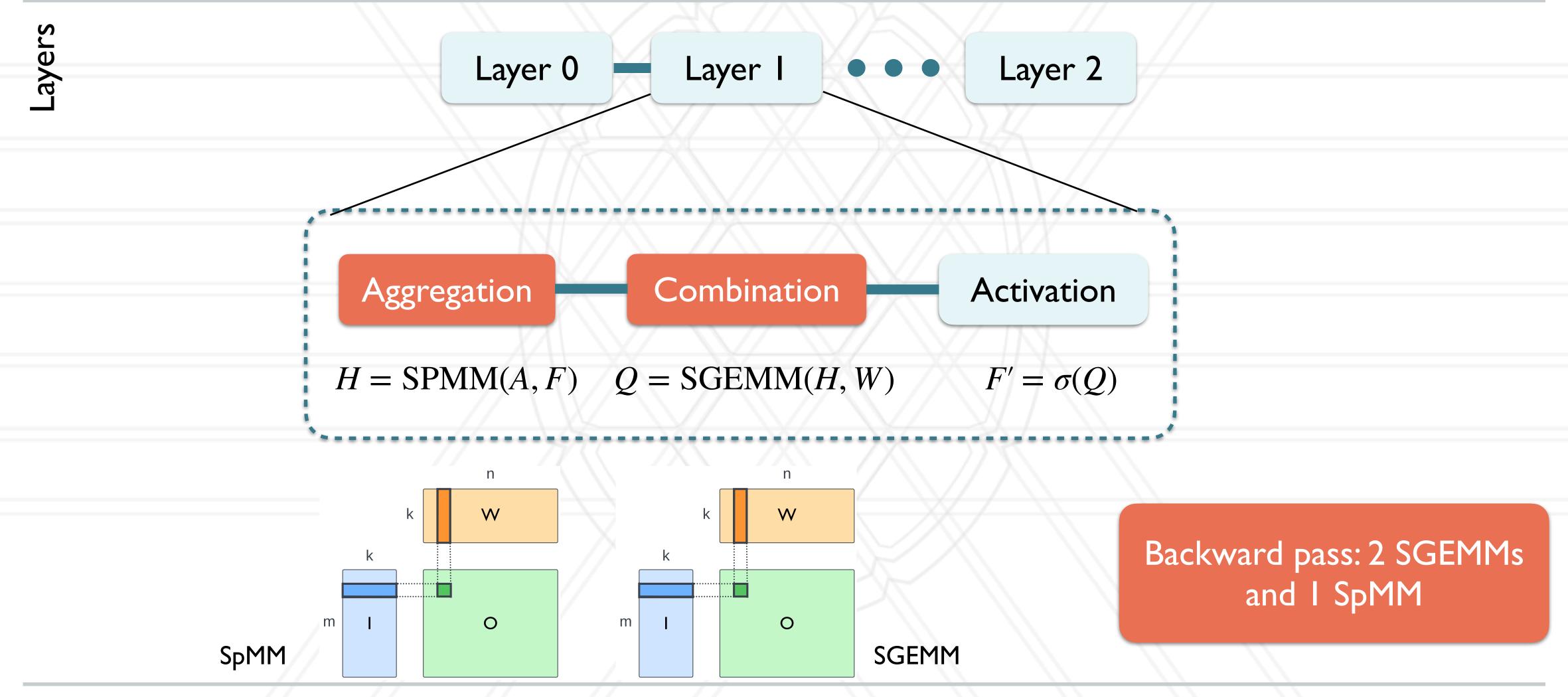












### Challenges with Parallel GNN Training

- Very large graphs require effective parallelization over multiple GPUs
- Irregularity in graph structure leads to highly imbalanced and highly sparse adjacency matrices
  - Leads to load imbalance when distributing work
- Significant communication for synchronizing activations and gradients: N X D



#### Plexus: 3D Tensor Parallel Approach

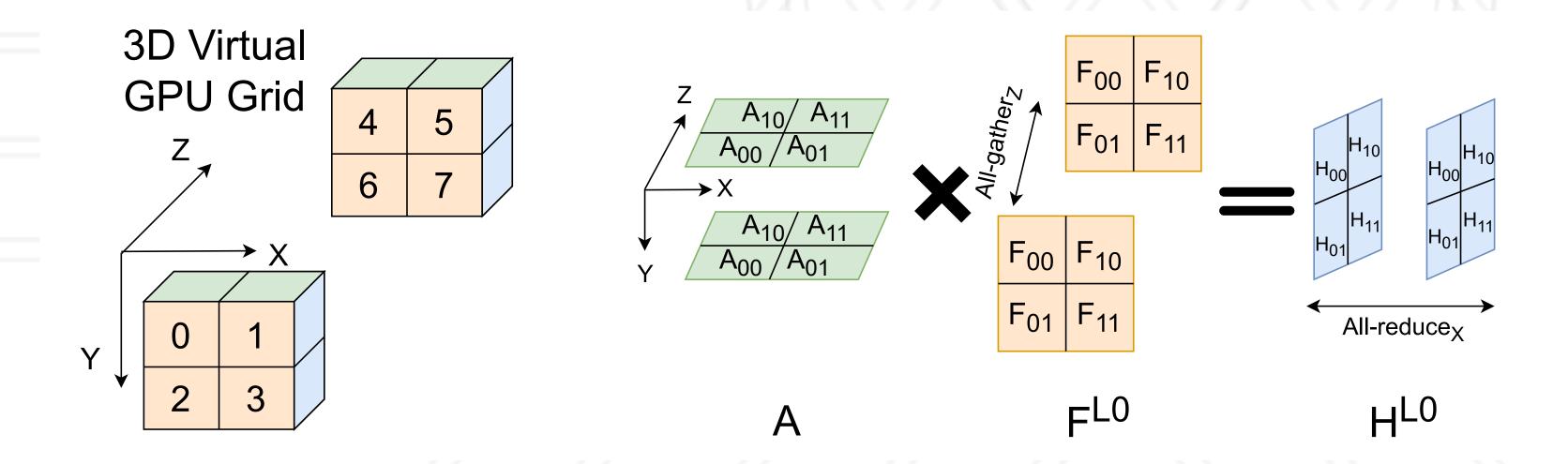
- Based on our work on AxoNN and 3D Tensor Parallelism in LLM training
- Divide the Adjacency, Feature and Weight matrices across GPUs



#### Plexus: 3D Tensor Parallel Approach

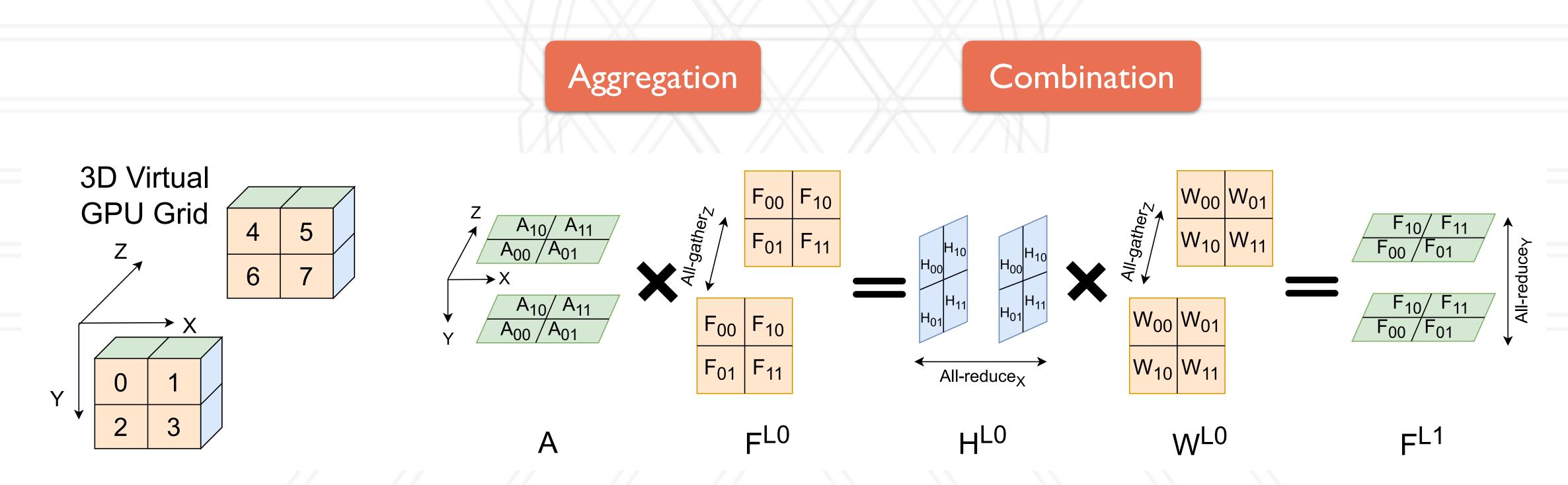
- Based on our work on AxoNN and 3D Tensor Parallelism in LLM training
- Divide the Adjacency, Feature and Weight matrices across GPUs

Aggregation

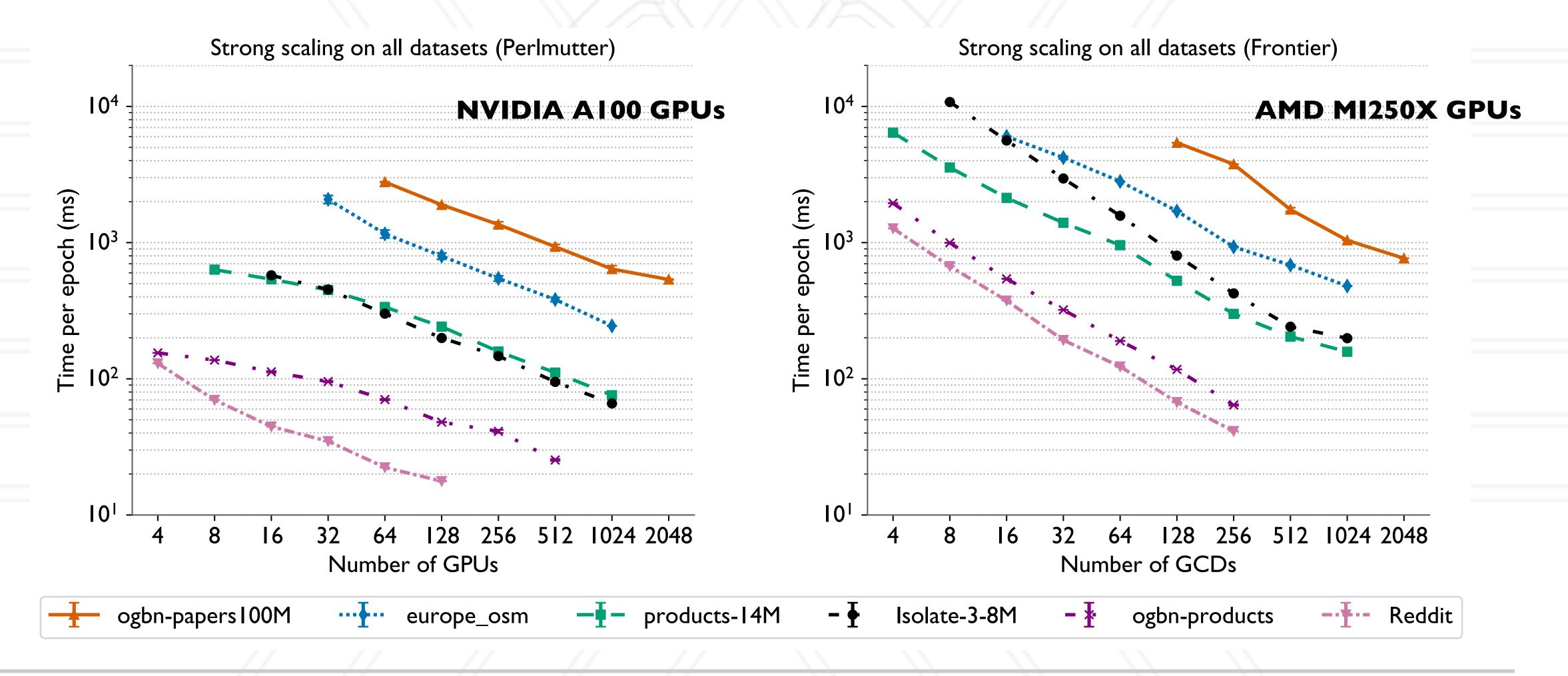


#### Plexus: 3D Tensor Parallel Approach

- Based on our work on AxoNN and 3D Tensor Parallelism in LLM training
- Divide the Adjacency, Feature and Weight matrices across GPUs



#### Strong scaling performance of Plexus







**Abhinav Bhatele** 

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu