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Differentiable systems in the wild

Differentiable Rendering

Differentiable Physics Simulation Differentiable Geometry



What is Differentiable System?

Physical states at time step 0  
(e.g. position of chains  )

Physical states at time step 100  
(e.g. position of chains  )

Physics Simulator



What is Differentiable System?

Physical states at time step 0  
(e.g. position of chains  )

Diff. Physics Simulator

Physical states at time step 100  
(e.g. position of chains  )

Gradients of Physical States 
 

e.g. How does the chain positions at time step 100  
change when those at time step 0 change?



Differentiable Geometry

(Internal) 
Representation  

 
(e.g. Neural network 

parameters)

Differentiable Operation
Geometric Information  

(e.g. Surface of the 
shape)

x y
𝑑𝑦
𝑑𝑥



Case Study) Signed Distance Function 
(SDF)

Function that returns signed distance of the given query point



SDF: Representation + Operation

Neural network parameters 
(Neural SDF)



SDF: Representation + Operation



SDF: Operation (Marching Cubes)

For the given SDF, evaluate signed distance on the grid points 
(Red = inside, Blue = outside)



SDF: Operation (Marching Cubes)

For the edges that connect inside and outside, 
find the zero-crossing point by interpolation



SDF: Operation (Marching Cubes)

Connect zero-crossing points using pre-defined rules 
 Note that the operations that we used are all differentiable!→



SDF: Operation (Marching Cubes)

With Marching Cubes, we can extract surface mesh from SDF

As the grid becomes denser, the extracted surface becomes more accurate



Case Study) Signed Distance Function 
(SDF)

1. Network 
parameters 

(Neural SDF) 
 

2. SDF 
encoded grid 

points

For a given 
point , get 

 
 

1. Giving  as 
an input to the 

network 
 

2. Interpolating 
grid SDF 

values based 
on 

p
SDF(p)

p

p

Mesh 
surface

Differentiable  
Marching Cube

Finally, compute the loss (e.g. rendering loss) on the mesh surface  
and backpropagate to the representations to update them!



Case Study) Signed Distance Function 
(SDF)

1. Predict SDF from density field  
2. Extract surface mesh from SDF 
3. Render the surface mesh and compute the rendering loss



Various 3D representations

Neural Radiance Fields (NeRF)

Neural Distance Fields

Point Cloud Parametric Surfaces

(Triangular) Mesh 3D Gaussian Splatting
(Neural) Implicit Representations Explicit Representations



Various 3D representations
• (Neural) Implicit representations are preferred over explicit 

representations in the current ML pipeline
• High representation power
• Differentiability

• Recently, 3D Gaussian Splatting gained popularity
• Similar representation power as NeRF
• Differentiable, but not as differentiable as implicit rep.
• Much less computational cost than neural implicit rep.

• How about the other explicit representations, especially Mesh?
Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." Communications of the ACM 65.1 (2021): 99-106. 

Wang, Peng, et al. "Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction." arXiv preprint arXiv:2106.10689 (2021). 
Long, Xiaoxiao, et al. "Neuraludf: Learning unsigned distance fields for multi-view reconstruction of surfaces with arbitrary topologies." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. 

Kerbl, Bernhard, et al. "3D Gaussian splatting for real-time radiance field rendering." ACM Trans. Graph. 42.4 (2023): 139-1.



DMesh: A Differentiable Mesh Representation
Sanghyun Son, Matheus Gadelha, Yang Zhou, Zexiang Xu, Ming C. Lin, Yi Zhou

NeurIPS 2024



Why Mesh?
• Efficient data structure

• Vertices
• Connectivity (Edge, Face)

• Optimized pipeline for downstream tasks
• Rendering
• Physics simulation

• Easy to modify & control
• 3D modeling tools (e.g. Blender)

Chen, Yiwen, et al. "MeshAnything: Artist-Created Mesh Generation with Autoregressive Transformers." arXiv preprint arXiv:2406.10163 (2024). 



Mesh in ML: Obstacles
• Two obstacles in using mesh in the current ML pipeline  

• Discrete connectivity
• If two vertices are connected, encoded as 1
• Otherwise, encoded as 0  

• Exponential increase of possible connectivity 

• When number of points is , total number of (triangular) faces is 𝑛 (𝑛
3)



Mesh in ML: Implicit rep. to mesh
• Solution 1) Circumvent the problem by extracting mesh from implicit 

representations using iso-surface extraction algorithm

• Optimize neural implicit representations (or 3D GS) and extract mesh
• +) Preserve fine detail, can represent various topology
• -) Excessive computational cost, bad mesh quality

• Optimize vertex-wise signed distance values and extract mesh
• +) Much more efficient and better mesh quality than neural representations
• -) Limited topology (mainly volume), self-intersections, hardly extensible to scene-scale

Lorensen, William E., and Harvey E. Cline. "Marching cubes: A high resolution 3D surface construction algorithm." Seminal graphics: pioneering efforts that shaped the field. 1998. 347-353. 
Ju, Tao, et al. "Dual contouring of hermite data." Proceedings of the 29th annual conference on Computer graphics and interactive techniques. 2002. 

Guillard, Benoit, Federico Stella, and Pascal Fua. "Meshudf: Fast and differentiable meshing of unsigned distance field networks." European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022. 

Wang, Peng, et al. "Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction." arXiv preprint arXiv:2106.10689 (2021). 
Long, Xiaoxiao, et al. "Neuraludf: Learning unsigned distance fields for multi-view reconstruction of surfaces with arbitrary topologies." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023 

Liu, Yu-Tao, et al. "Neudf: Leaning neural unsigned distance fields with volume rendering." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. 
Wei, Xinyue, et al. "Neumanifold: Neural watertight manifold reconstruction with efficient and high-quality rendering support." arXiv preprint arXiv:2305.17134 (2023). 

Guédon, Antoine, and Vincent Lepetit. "Sugar: Surface-aligned gaussian splatting for efficient 3d mesh reconstruction and high-quality mesh rendering." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024. 

Shen, Tianchang, et al. "Deep marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis." Advances in Neural Information Processing Systems 34 (2021): 6087-6101. 
Shen, Tianchang, et al. "Flexible Isosurface Extraction for Gradient-Based Mesh Optimization." ACM Trans. Graph. 42.4 (2023): 37-1. 
Liu, Zhen, et al. "Ghost on The Shell: An Expressive Representation of General 3D Shapes." arXiv preprint arXiv:2310.15168 (2023).



Mesh in ML: Autoregressive models
• Solution 2) Use autoregressive models to generate mesh by predicting 

mesh connectivity step by step  

• +) Great mesh quality, almost human-made mesh quality
• -) Excessive computational cost, little topological guarantee, outlier issue (data-driven)

Siddiqui, Yawar, et al. "Meshgpt: Generating triangle meshes with decoder-only transformers." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024. 
Chen, Yiwen, et al. "MeshAnything: Artist-Created Mesh Generation with Autoregressive Transformers." arXiv preprint arXiv:2406.10163 (2024). 

Shen, Tianchang, et al. "SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes." SIGGRAPH Asia 2024 Conference Papers. 2024. 
Hao, Zekun, et al. "Meshtron: High-Fidelity, Artist-Like 3D Mesh Generation at Scale." arXiv preprint arXiv:2412.09548 (2024).



Mesh in ML: (Limited) Differentiable Mesh
• Solution) Fix the mesh connectivity, and only optimize vertex positions 

• +) Low computational cost
• -) Limited topology

Differentiable Geometry

 Topologically, it is still a ball!→



Differentiability & Challenges

Vertex positions Edge Connectivity
Previous Work O X

Ours O O

Differentiable connectivity has not been discussed so far

 Challenge: Non-differentiability in discrete data structure for connectivity→



Definitions
Face Simplex

D=2 Line segment Triangle
D=3 Triangle Tetrahedron

Mesh = Set of faces

2D mesh = Set of line segments
3D mesh = Set of triangles



Toward differentiable mesh: DMesh
• DMesh: Our solution for truly differentiable mesh
1) Discrete connectivity  Use probabilistic approach for mesh 
connectivity

→



Toward differentiable mesh: DMesh
• DMesh: Our solution for truly differentiable mesh 
 
2) Exponential connectivity  Based on Weighted Delaunay 
Triangulation (WDT), exclude most of possible cases

→

  
 = Number of points
𝑂(𝑁3) → 𝑂(𝑁),

𝑁



Approach
• DMesh is defined with a set of featured points  

• Position  

• Weight: Used for Weighted Delaunay Triangulation
• Represents the importance of the point
• If weight of a point is smaller than that of surrounding  

points, the point is discarded  

• “Real” value: Used for selecting faces from WDT



Approach
• Compute WDT of the points, which depends on point positions and weights

• WDT tessellates the convex hull of the points without self-intersections



Approach
• Select desirable faces from WDT using point-wise “real” values

• Only when every point on a face has “real” value of 1, the face is selected



Approach: Sum Up
• Two conditions for a face  to be included in the mesh:

•  should be included in WDT
• Every points on  should have “real” value of 1

• For each condition, compute probability to satisfy it
•
•

• Then, the final existence probability for  is 

𝐹
𝐹

𝐹

𝜦𝒘𝒅𝒕(𝑭 )
𝜦𝒓𝒆𝒂𝒍(𝑭 )

𝐹 𝜦𝒘𝒅𝒕(𝑭 )  ×  𝜦𝒓𝒆𝒂𝒍(𝑭 )



Approach: Sum Up

DMesh is free from 1) self-intersections and 2) ill-formed triangles,  
because of (weighted) Delaunay Triangulation



Approach: Sum Up

While DMesh features change continuously, 
discrete topological changes take place



Pipeline

In this work, we proposed differentiable reconstruction loss formulations for probabilistic mesh.
Backpropagate the loss, and update per-point features to optimize mesh.



Experimental Results (1)
• 3D mesh reconstruction from point clouds

• Input: 100K points uniformly sampled from ground truth mesh
• Reconstruction loss: Chamfer Distance (CD) loss



Experimental Results (1)



Experimental Results (2)
• 3D mesh reconstruction from multi-view images

• Input: Diffuse and depth images captured from 64 viewpoints
• Reconstruction loss: L1 loss on rendered images

Epoch 1 Epoch 4



Experimental Results

DMesh yields more accurate and efficient mesh than the other methods 



Experimental Results

While every other representation has topological limitation (e.g. closed surface), 
DMesh can represent a shape of any topology



Limitations of DMesh
• Computational cost

• Linear computational cost of , where  is the number of points
• Cannot handle complex shapes that require more than 100K points (800ms per 

step)

𝑶(𝑵 ) 𝑁



DMesh++: An Efficient Differentiable Mesh for Complex 
Shapes

Sanghyun Son, Matheus Gadelha, Yang Zhou, Matthew Fisher,  
Zexiang Xu, Yi-Ling Qiao, Ming C. Lin, Yi Zhou

ICCV 2025



Minimum Ball Condition
• Two conditions for a face  to be included in the mesh𝐹

DMesh DMesh++
 is in WDT  satisfies the 

Minimum-Ball 
condition

Vertices on  
have real 
value of 1

Vertices on  
have real 
value of 1

By changing definition of , we can reduce computational cost:  
 

𝐹
𝑂(𝑁 )  → 𝑂(log𝑁 )



Minimum Ball Condition

A face has an infinite number of bounding balls
 The Minimum Ball is the smallest of those bounding balls →



Minimum Ball Condition

If the Minimum Ball of a face does not have any other points inside it, 
the face satisfies the Minimum Ball condition



Minimum Ball Condition
Lemma. If a face  satisfies the Minimum Ball condition, it exists in 
Delaunay Triangulation (DT) 

• Therefore, DMesh++ inherits nice properties of DMesh
• Free from self-intersections
• Minimizes the number of ill-formed triangles

𝐹



Computational Cost



Experimental Results
• 2D & 3D mesh reconstruction from point clouds

• Input: 200K points sampled from ground truth geometry
• Loss: Chamfer Distance loss

• 3D mesh reconstruction from multi-view images
• Input: 64 diffuse and depth images captured from ground truth geometry
• Loss: L1 loss on rendered images



2D Point Cloud Reconstruction



2D Point Cloud Recon.



3D Point Cloud Recon. (Closed Surface)



3D Point Cloud Recon. (Open Surface)



3D Multi-View Recon. (Closed Surface)



3D Multi-View Recon. (Open Surface)



3D Multi-View Recon.



Conclusion
• DMesh and DMesh++ is a differentiable, probabilistic approach for mesh  

• Compared to the other baseline methods, it has advantages in
• Computational cost (vs. Neural implicit methods)
• Representation power (vs. Methods based on iso-surface extraction)
• Ready for downstream application (vs. 3DGS)
• Lower-level method that is not data-driven (vs. Autoregressive models) 



WIP: 3D Scene Reconstruction
• DMesh and DMesh++ could 

not do 3D recon. from real-
world images

• Triangle Splatting+ is using 
a similar formulation of 
DMesh to extract opaque 
triangles and define mesh



WIP: Differentiable Tetrahedral Mesh

For physics simulation, we need tetrahedral mesh of the volumetric shape
 Quality of the tet. mesh is critical for the simulation quality→



WIP: Differentiable Tetrahedral Mesh

There are skinny triangles (tetrahedra) in this mesh, which is undesirable



WIP: Differentiable Tetrahedral Mesh

Triangle (Tetrahedra) quality becomes much better after optimization



WIP: Differentiable Tetrahedral Mesh



THANK YOU!


