CMSC 838T: High Performance Computing & Bioinformatics

Chau-Wen Tseng
Department of Computer Science
University of Maryland, College Park

CMSC 838T

- **Bioinformatics**
 - The creation and development of advanced information and computational techniques for solving problems in biology

- **High Performance Computing (HPC)**
 - Hardware and software techniques for building computer systems to quickly perform large amounts of computation
CMSC 838T

Course goals
1. Learn algorithms and characteristics of bioinformatic applications
2. Examine software techniques used in high-performance computing
3. Study how to apply high-performance computing to bioinformatic applications

Textbook
- “Developing Bioinformatic Computer Skills”
 - Gibas & Jambeck
 - O’Reilly
- High-level overview
- Supplement with papers
CMSC 838T

- **This course will not**
 - Train you to be a programmer
 - Train you to be a biochemist

- **This course will (hopefully)**
 - Teach basic concepts in bioinformatics
 - Allow you to work with researchers in bioinformatics
 - Begin training you to be a bioinformatics researcher

- **To do (relevant) research in bioinformatics**
 - Need to learn some biochemistry
 - Need to work with molecular biologists, biochemists

CMSC 838T

- **My background**
 - High performance computing
 - Parallelizing compilers
 - Programming environments

- **Your background (hopefully)**
 - Computer science
 - Programming
 - Compilers
 - Bioinformatics
 - Basic biology
 - Basic chemistry
CMSC 838T

- **Course organization**
 - I will present some lectures on bioinformatics, computing
 - Students will read & present some papers on bioinformatics

- **Projects (tentative)**
 - Access web-based bioinformatic tools & databases
 - Install, evaluate, and modify bioinformatic software

- **Grading (tentative)**
 - 50% Exams
 - 20% Presentations
 - 30% Projects

Premise of Bioinformatics

- **Gene sequences determine biological function**
 - Genomic DNA \rightarrow Amino acids \rightarrow Proteins \rightarrow Function

- **Similar composition \rightarrow similar function?**
 - DNA sequences
 - Amino acid sequences
 - Protein 3D structure

- **Predicting protein function**
 - Designer drugs
 - Personalized treatments
Bioinformatics

- **Determining protein function**
 - Hard way
 - Biological / chemical analyses
 - Determine 3D structure w/ x-ray crystallography, NMR
 - Easy way?
 - Sequence protein / DNA → find close match in database
 - Guess function based on match
 - Validate guess in lab

- **Bioinformatics is imprecise**
 - Similar to data-mining
 - Usually only suggest possible relationships
 - Must validate correlation → causation

Computers and Bioinformatics

- Amount of biological information quickly increasing
- Computers & software are needed to organize & analyze data
Growth of Bioinformatics

- **1970’s**
 - DNA sequencing
 - Alignment w/ Smith-Waterman (dynamic programming)

- **1980’s**
 - Sequence databases (EMBL, GenBank)
 - Alignment w/ FASTA (linked lists, hashing)

- **1990’s**
 - Automatic DNA sequencing
 - Alignment w/ BLAST (neighborhood words, probabilities)
 - Internet & WWW

- **Now**
 - Genomics, proteomics

Bioinformatics Topics

- **Sequence alignments**
 - Find similarity between DNA / protein (amino acid) sequences

- **Genome assembly**
 - Combining genomic fragments to form whole genome

- **Gene identification & annotation**
 - Identify and classify genes on the genome

- **Microarrays & gene expression analysis**
 - Use DNA microarray (gene chip) to measure mRNA

- **Protein folding**
 - Compute 3D protein structure ↔ protein sequence

- **Phylogenetic analysis**
 - Find genetic relationships between sequences / species
Open Problems in Bioinformatics

- Find genomes of all organisms
- Identify and annotate all genes
- Compute sequence ↔ 3D structure for all proteins
- Compare DNA / protein sequences for similarity
- Compare families of DNA / protein sequences

Reason to be optimistic
- Biology is finite…
 - ~30,000 human genes
 - ~1000 protein superfamilies
- …but computers keep improving!

High Performance Computing (HPC)

- Increase available computation power
- Exploit parallelism
 - Custom supercomputers becoming too expensive
 - Use multiple processors in parallel
 - Application must be parallelized
- Exploit locality
 - processors faster than memory, network
 - in cache → avoid memory latency
 - on processor → avoid network latency
High Performance Computing Topics

- **Architectures**
 - Shared-memory multiprocessors
 - Cluster & distributed processors
- **Software**
 - Parallel programming languages / paradigms
 - **Compilers**
 - Program analysis
 - Program transformations
 - Locality optimizations
 - Parallelism optimizations
 - Run-time systems