Genomics

- Genome sequencing & fragment assembly
- Gene prediction

What is genomics?
- The study of all DNA of an organism (genome)

Issues
- Sequencing the genome
- Identifying genes (transcribed DNA) on the genome
- Determining gene function
- Discover how each gene is regulated
- Study natural variations in gene among / between species
- Study variations between healthy / diseased genes
Genomics

- Genome sequencing
 - Made possible by automated methods
 - Scientists → less data generation, more data analysis

Genomics Overview

- Outline
 - Molecular biology techniques
 - Restriction enzyme digests
 - Cloning
 - Sequence tagged sites (STS)
 - Sequencing
 - Assembly
 - Gene structure
 - Gene prediction
Technique – Restriction Enzymes

- **Restriction enzyme**
 - Proteins found in bacteria
 - Cuts DNA at specific pattern (usually palindrome)

- **Example**
 - EcoRI

 5’ – G A A T T C – 3’
 3’ – C T T A A G – 5’

 cut

 5’ – G C T T A A A T A C – 3’
 3’ – A T A C G – 5’

Sticky ends

Technique – Restriction Enzymes

- **Restriction enzymes**
 - Over 300 restriction enzymes found in bacteria
 - Cut DNA at different **recognition sites** (patterns)
 - Smaller pattern → more frequent cuts → many small fragments
 - Larger pattern → less frequent cuts → few large fragments

- **Restriction mapping**
 - Cutting DNA with multiple restriction enzymes
 - Analyzing # of fragments, order of breaks
 - Determines relative positions of recognition sites in DNA

- **Clone library**
 - Collection of DNA fragments from genome
 - Contains redundancy, overlaps
Clone Library Example

Molecular Biology Technique – Cloning

🔹 Cloning
 - Creates large amounts of target DNA
 1. Insert DNA fragments into vectors
 2. Grow vector in laboratory
 3. Recover DNA from vector

🔹 Cloning vectors
 - Chromosome-like carriers for target DNA
 - Plasmids (small extra-chromosomal pieces of DNA)
 - Up to 25K base pairs
 - Bacteria BACs (Bacterial Artificial Chromosome) / yeast DNA
 - For 100K to 1 million base pairs
Molecular Biology Technique – Cloning

- **Cloning algorithm**
 1. Cut DNA & vector with restriction enzymes
 2. Use complementary **sticky ends** to join DNA to vector
 3. Grow vector
 4. Extract DNA from vector

![Cloning algorithm diagram](image)

Technique – Sequence Tagged Sites (STS)

- **Sequence tagged site (STS)**
 - A short DNA sequence (about 200-300 bases)
 - Unique position in the genome
 - Probe for STS
 - Short strand of labeled DNA
 - Attaches (hybridizes) to STS

- Use STS probe to provide rough map of clones
Genomics Overview

- **Outline**
 - Molecular biology techniques
 - Sequencing
 - Physical mapping
 - Ordered cloning
 - Primer walking
 - Shotgun sequencing
 - Assembly
 - Gene structure
 - Gene prediction

Sequencing an Entire Genome

- **Physical mapping**
 - Break genome into clones (large contiguous fragments)
 - Find markers along the genome
 - Find unique overlapping clones covering the genome
 - Find which STS probes attach to which clone
 - Find order & orientation of clones

- **Sequencing clones**
 - Break clone into several short fragments (< 700 bps)
 - Automatically sequence fragments
 - Assemble fragments together
Sequencing – Using STS Probes

- **Physical mapping**
 - Find STS probes present in each contig
 - Results form STS matrix
 - Find permutation of columns in STS matrix [Booth 76]
 - Where 1’s in each row are consecutive
 - Yields order & overlap of contigs

- **Complications**
 - False positive – clone does not actually contain STS
 - False negative – clone contains unreported STS
 - Chimera – multiple DNA fragments combine and act as clone

Sequencing – Clones and Probes
Sequencing – STS Matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Sequencing – STS Matrix (Reordered)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>B</th>
<th>G</th>
<th>C</th>
<th>A</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Sequencing – Automatic Sequencing

- **Automatic sequencers**
 - Alternative / complement to physical mapping
 - Limited to ~700-800 chunks known as “reads” due to
 - Biochemistry of DNA polymerase enzyme
 - Resolution of gel / capillary electrophoresis

- **Sequencing projects must (at some point)**
 1. Divide DNA into overlapping 700 bp fragments
 2. Assemble fragments into contiguous sequences (contigs)

- **Assembly is a computational problem**

Sequencing – Sequencing Strategy

- **Approaches to genome sequencing**
 - Ordered sub-cloning
 - Primer walking
 - Shotgun sequencing

- **Selecting an approach based on faith in**
 - Speed of sequence analysis
 - Reliability of assembly software
Sequencing – Ordered Cloning

◆ **Approach**
 - Divide large clones into small ordered overlapping fragments
 - Applying more detailed physical mapping to each clone

◆ **Observations**
 - Requires much more initial cloning work in the laboratory
 - Reduces # of actual sequencing reads required
 - Much easier to assemble the reads
 - Used by researchers who don't trust assembly software

Sequencing – Primer Walking

◆ **Approach**
 - Make new primer from the end of each new sequence read
 - Apply PCR to isolate next section of DNA
 - Sequence new section of DNA, repeat

◆ **Observations**
 - Each sequencing step uses information from previous read
 - Requires fast & accurate analysis of sequence reads
 - Skips sub-cloning of clones
 - Both order and overlap of reads are known
 - Very easy to assembly reads
 - Expensive to make a lot of PCR primers
Sequencing – Primer Walking Example

CMSC 838T – Lecture 10

Sequencing – Shotgun Sequencing

- **Approach**
 - Fragment complete genome into small DNA fragments
 - Assemble all fragments at once

- **Observation**
 - Exploits speed & low cost of automated sequencing
 - Relies on robust assembly software
 - Works well on small bacteria / virus genomes

- **Problem**
 - May not result in single contig for larger genomes
 - Rely on ordered cloning / primer walking to connect contigs
Sequencing – The Human Genome

- **Race to sequence the human genome**
 - Human Genome Project (academic consortium)
 - Celera (private company)

- **Human Genome Project used ordered cloning**
 - Breaking the genome into mapped BAC clones
 - Shotgun sequence the BAC clones

- **Celera used a modified shotgun method**
 - Random clones of various sizes (size selected libraries)
 - Plus relative mapping of clone ends (they must be located in the assembly at the correct distance and orientations)
 - Created custom assembly software
 - Made use of the “scaffold” built by the HGP

Genomics Overview

- **Outline**
 - Molecular biology techniques
 - Sequencing
 - Assembly
 - Issues
 - Algorithms
 - Gene structure
 - Gene prediction
Fragment Assembly

◆ Given
 - A collection of DNA fragments
 - Assemble fragments into maximal length contiguous sequences (contigs) using overlap information

Fragment Assembly – Approach

◆ Approach
 - Look for ungapped overlaps at end of fragments
 - High degree of identity over a short region
 - Exclude chance matches, but tolerate sequencing errors

◆ Match must be at ends of sequence
Fragment Assembly – Issues

- **Reads have errors**
 - Incorrectly determined bases, insertions & deletions
 - Error rate highest at beginning / end of reads
 - Precisely regions that need to be overlapped
- **Lack of sufficient coverage**
 - Fragments do not cover entire clone → separate contigs
- **Different fragments may combine (chimeras)**
- **Unknown orientation (which strand of DNA?)**
- **Repeats in the genome**
- **Vector contamination**
 - Sequences from cloning vectors included in read
 - Often at beginning / end of reads

Fragment Assembly – Possible Overlaps

CMSC 838T – Lecture 10
Fragment Assembly – Approach

◆ **Orientation**
 - For each fragment and partial contig formed
 - Consider both the sequence and its reverse complement

◆ **Optimal solution (in the absence of errors)**
 - Find shortest common superstring
 - Problem is NP-hard

◆ **Greedy algorithm**
 - Find two fragments with maximum overlap, combine
 - Repeat by treating contigs as fragments
 - Refinements reduce approximation factor to 2.2

Fragment Assembly – Refinements

◆ **Preprocessing**
 - Eliminate pairs of fragments w/o significant overlap
 - Compute optimal overlap between promising pairs
 - Using dynamic programming
 - If fragment is completely contained in another
 - Discard shorter fragment

◆ **Generating consensus sequence**
 - Find all overlapping fragments
 - Perform multiple sequence alignment
 - Results in better contigs
Genomics Overview

◆ **Outline**
 - Molecular biology techniques
 - Sequencing
 - Assembly
 - Gene structure
 - Promoter elements
 - Regulatory proteins
 - Open reading frames (ORF)
 - Alternative splicing
 - Gene prediction

Gene Structure

◆ **Views of a gene**
 - Portion of genomic DNA transcribed / expressed in mRNA
 - Active / useful portion of genome
 - DNA processed by RNA-polymerase enzyme

◆ **Real story is more complicated**
 - In prokaryotes, RNA-polymerase translates most ORFs
 - In eukaryotes, RNA-polymerase looks for many signals
 - mRNA undergoes processing before translation to protein
Gene Structure

- **RNA requires post-transcription modifications**
 - Capping – chemical alterations to 5’ end of RNA
 - Splicing – wholesale removal of sections of RNA
 - Polyadenylation – adding ~250 A’s to 3’ end of RNA
 - Produces many (heterogeneous) hnRNA intermediates

```
DNA  5'--------[Promoter]--------3'  
      |                        |  
      | Transcription           |  
      | 3'--[Exon:Intron:Exon]--3' |  
      |                      |  
      | RNA Splicing          |  
hnRNA 5'----[5' Cap]----------3'  
      |                        |  
      | mRNA                  |  
      | 3'--[5' Cap]----------3' |  
```

- **Promoter elements**
 - Portions of genomic DNA that act as transcription signals

- **Regulatory proteins**
 - Proteins bind to promoter elements
 - Positively or negatively regulates transcription
 - Enhances / inhibits RNA-polymerase

- **Open reading frames (ORF)**
 - Portion of DNA translated by ribosome to protein

- **Pseudo-genes**
 - Originally active gene
 - Rendered inactive due to mutations
Gene Structure – Prokaryotes

- **Features of prokaryotic genes**
 - High gene density (85% coding), no introns
 - Start with ATG, finish with TAA, TGA, TAG
 - Long open reading frames (ORF)
 - Usually > 180+ amino acids in length
 - Different composition (AT / GC ratio) in coding regions
 - Single RNA polymerase (from multiple proteins)
 - Promoter sequences in 5’ flanking region
 - E. Coli has 7 promoters located at –35 and –10 bases
 - $\sigma^{70} – TTGACA (-35) \& TATAAT (-10)$
 - $\sigma^{32} – TCTC?CCCTGAA (-35) \& CCCCAT?TA (-10)$
 - Shine-Dalgarno sequence (AGGAGGU) in 5’ UTR
 - Ribosome loading site
Gene Structure – Eukaryotes

- **Features of eukaryotic genes**
 - Low gene density (3% coding, 27% promoters / introns)
 - High variability in size / composition of genes
 - Three kinds of RNA polymerase (from 8-12 proteins)
 - Promoter sequences in 5' flanking region (may be distant)
 - RNA polymerase I −45 to +20 bases
 - RNA polymerase II far upstream to -25 bases
 - RNA polymerase III +50 to +100 bases
 - Different promoter sequence(s) for each gene
 - Example – TATA box (-25) in 70% of genes
 - Many regulatory proteins (12+ basal transcription factors)
 - Bind to transaction factor binding sites in specific order
 - Facilitate transcription by RNA polymerase

- **Intron Structure**
 - **Intron begins with GT**
 - **Intron ends with AG**

CMSC 838T – Lecture 10
Gene Structure – Eukaryotes

- **GC content**
 - CG dinucleotides *(CpG islands)*
 - Underrepresented by 80% in DNA
 - Generally found upstream of 5’ ends of genes
 - From −1500 to +500
 - Rarely found in non-coding regions
 - **Isochores** (long regions of DNA with uniform GC ratio)
 - 5 types of isochores in humans (39, 42, 46, 49, 54%)
 - Most genes in high GC isochores (20x ratio genes)
 - **Codon usage bias**
 - Organisms prefer certain triplet codons for amino acid
 - Distinguishes genes from random DNA sequences

- **Splicing**
 - Eight types of introns found
 - Most protein-coding gene introns conform to GU–AG rule
 - Additional splicing signals within intron (minimum 60 bps)
 - Average intron ~450 bp, most between 100 and 2000+ bps
 - 95% human genes with 1+ introns, some with 100+
 - **Alternative splicing** creates multiple proteins
Gene Structure – Alternative Splicing
Gene Structure – Alternative Splicing

Genomics Overview

- **Outline**
 - Molecular biology techniques
 - Sequencing
 - Assembly
 - Gene structure
 - Gene prediction
 - cDNA sequencing
 - EST clustering
 - Microarrays covering entire genome
 - Genetics in model organisms
 - Mutation rate comparisons (across & within species)
 - Computational gene finding
Gene Prediction – Motivation

- **Identifying genes is important**
 - Targets for expression microarrays
 - Producing proteins
- **The full gene (including 5’ and 3’ UTRs) is needed**
 - Avoiding misleading fragmentation / fusion artifacts
 - Understanding mRNA targeting and stability
 - Finding transcription factor binding sites
 - Understanding regulatory networks
- **Unreal (incorrectly labeled) genes can**
 - Mislead analysis of multiple sequence alignments
 - Distort protein classification systems and phylogenies
 - Misclassify other genes (since genes annotated by homology)

Gene Prediction – Computational Gene Finding

- **Annotation of Celera human genome assembly**
 - Small section of chromosome 3
 - Requires expert curation, very labor intensive
Gene Prediction – Methods

- **Methods for identifying genes**
 - cDNA sequencing
 - EST clustering
 - Microarrays covering entire genome
 - Genetics in model organisms
 - Mutation rate comparisons (across & within species)
 - Computational gene finding

Gene Prediction – cDNA Sequencing

- **Collecting cDNAs**
 - Extract mRNA from cells
 - Apply reverse transcriptase and a poly-U primer
 - Convert to cDNA starting at poly-A tail
 - Insert cDNA into vectors
 - Sequence read insert using primers on vector
 - If sequence looks to be new, sequence full cDNA

- **Artifacts and limitations are possible at each stage**
Gene Prediction – cDNA Problems & Solutions

- For rarely expressed genes little RNA is available
 - Normalize libraries
 - Use embryonic and exotic tissues as mRNA source

- Reverse transcriptase problems
 - Falls off before finishing (produces fragments)
 - Preferentially taking larger cDNAs
 - Normalizing only on 5’ ends (Soares)
 - High error rate, prone to small deletions
 - Compare cDNA to genomic DNA
 - Sequence multiple cDNA clones

Gene Prediction – cDNA / EST Problems

- cDNA includes introns, UTRs

![Diagram showing genomic DNA, hnRNA, problematic cDNA, and mature mRNA with exons and introns.](image)
Gene Prediction – EST Clustering

- **Simplified version of cDNA analysis**
 - Extract mRNA from cells
 - Apply reverse transcriptase
 - Convert to cDNA
 - Sequence fragment of cDNA from either 5' or 3' end

- **Result**
 - Sequence for only parts of cDNA
 - Called “expressed sequence tag” (EST)
 - Disadvantage
 - High error rates, partial cDNA
 - Advantage
 - Automated, high volume!

EST example

![Diagram of genomic DNA, mRNA, and ESTs](image)
Gene Prediction – EST Clustering

- **Clustering**
 - Build clusters of ESTs from the same gene
 - Can help identify gene

- **Simple approach**
 - Use pairwise comparisons to put ESTs into clusters
 - Compare all pairs of ESTs
 - Use fragment assembly software
 - Problems
 - ESTs from different individuals / strains of one species
 - Distinguishing between mutations and sequencing errors
 - Genomic & protein databases provide additional clues

Gene Prediction – EST Clustering Problem

- **Lack of Coverage**

```markdown
mRNA

ESTs

gaps
```
Gene Prediction – EST Clustering Problem

- **Duplicated genes**

 mRNA (from gene) mRNA (from duplicated gene)

 ESTs

 high degree of similarity

Gene Prediction – EST Clustering

- **More efficient approach**
 - Initially, treat each EST as a cluster by itself
 - If two ESTs from two different clusters show significant overlap, merge the clusters
 - Use union-find data structure

 pass alignment test → merge → single cluster
Gene Prediction – EST Clustering

- **Quality of overlap**
 - Length of maximal common substring

- **Promising pairs**
 - Pairs with maximal common substring length \(\geq \psi \)
 - Find promising pairs on demand
 - Find promising pairs in decreasing order of quality
 - Can use generalized suffix tree

Gene Prediction – Whole Genome Microarrays

- **Microarray**
 - Technique for directly detecting cDNA
 - Based on hybridization to thousands of oligomers (short DNA sequences) at once
 - Can now cover non-repetitive portions of entire chromosomes

- **Observations**
 - Brute force, no homology required
 - Detect lower concentrations of mRNA than randomly sequencing EST
 - Rarely expressed genes may not stand out above background
 - Have to cope with cross-hybridization, other issues
Gene Prediction – Genetics in Model Organisms

♦ Approach
 - Zap yeast, plants, flies, mice with x-rays
 - Inbreed offspring and look for genetic defects

♦ Advantages
 - Works at DNA level, so expression level doesn't matter
 - Immediate hints of gene function
 - Discover gene interactions by breeding mutants

♦ Disadvantages
 - Finding mutated DNA may be slow & difficult
 - Essential genes can be hard to find
 - Reduced fertility in the inbreeding stage
 - Genes only needed in certain environments
 - Unable to detect all gene mutations

Gene Prediction – Mutation Rate Comparisons

♦ Approach
 - Compare mutation rates in genome
 - Compare across species & individuals
 - Look for highly conserved regions

♦ Motivation
 - Mutations occur randomly across genome, but...
 - Mutations in functional areas reduced by natural selection
 - Comparing DNA across species / individuals
 - Functional areas (genes, promoters) are more conserved
Gene Prediction – Mutation Rates Across Species

- **Mutation rates in beta-like globin genes**
 - Comparing human, mouse, rabbit, cow
 - Nucleotide substitution rate/site/billion years

![Graph showing mutation rates across different regions of the gene](image)

Prediction – Mutation Rate Across Individuals

- **% conserved positions in human genes**
 - 3165 mappings of human RefSeq mRNAs to the genome
 - Sampling 200 evenly spaced bases in different gene regions
 - Peaks of conservation at transitions between regions
 - Start/end codons, GU-AG splicing signals, etc...

![Graph showing conservation rates across different regions of the gene](image)
Gene Prediction – Computational Gene Finding

- **Computational gene finding**
 - Identify genes in DNA sequences using computer analysis
 - Look for gene features & compare with EST / protein databases
 - Discover exons, introns, promoters, etc...
 - Simple for prokaryotes (bacteria), difficult for eukaryotes

Gene Prediction – Computational Gene Finding

- **Approaches**
 - Homology based
 - Search against translated protein sequences
 - Direct analysis methods (content-based & site-based)
 - Grammar based
 - Neural networks
 - Hidden markov models (HMMs)
 - Composite methods (combines direct analysis & homology)
 - EST data
 - Gene homology
 - Multiple specie genomes
Gene Prediction – Homology Based

- **Approach (Procrustes 1996)**
 - Takes protein sequence as input
 - Uses dynamic programming spliced alignment algorithm
 - Coding regions must be fairly well conserved
- **Result**
 - Find best exons matching protein
 - Incomplete gene structure
 - No promoters, etc…
- Or just use BLAST…

Gene Prediction – Direct Analysis

- **Content based**
 - Relies on overall (bulk) properties of sequence
 - Codon frequency
 - Periodicity of repeats
 - Compositional complexity
- **Site based**
 - Focus on presence / absence of specific patterns
 - Binding sites for transcription factors (promoters)
 - Donor & acceptor splice sites
 - Start & stop codons
Gene Prediction – Grammar Based

Approach *(GeneLang, 1994)*
- Encode rules for gene features as context-free grammar
- Generate parser for grammar
- Attempt to syntactically recognize target sequences

Gene Prediction – Neural Networks

Approach *(GRAIL, 1991)*
- Fragment sequence into 4096 6-base hexamers
- Compute probability of hexamers at each gene location
- Recognize gene factors
 - Codon usage
 - Base composition
 - Splice site characteristics
 - PolyA signals
 - Di-, tri-, hexa-nucleotide frequencies
 - Translation signals
 - Transcription signals
 - Size distributions
Gene Prediction – Hidden Markov Models

Approach (GenScan, 1997)
- Multiple probabilistic models for different gene structures
- Analyze sequence to assign probabilities for exons, etc…
- Recognize gene factors using 5th-order Markov model
 - GC content
 - # of genes
 - Exon / intron
 - Mean length of
 - Exon / intron
 - Transcript
 - Inter-gene region
 - Signal models for
 - Coding
 - Splicing
 - Etc…

Gene Prediction – Problems

Homology based methods
- Can only find genes we already know
 - By searching comparisons to known protein
- Does not detect promoters, UTRs

Direct analysis methods
- Tend to overpredict genes
 - Many false positives
- Introns are vast, GT/AG splice signals are small
 - Coding signal is stronger than start / stop signal
 - Difficult to predict splice sites
 - Gene fragmentation / fusion often result

CMSC 838T – Lecture 10
Gene Prediction – Composite Methods

◆ Composite methods
 - Combines homology & direct analysis methods
 - Use bioinformatic databases to correct / enhance predictions

◆ Approaches
 - Use EST info to constrain prediction
 • Genie (Generalized HMM + EST alignment)
 - Use protein homology info to constrain prediction
 • GenomeScan
 - Use cross-species genomic alignment to improve prediction
 • Twinscan, SLAM, SGP

Gene Prediction – Accuracy

◆ GASP1
 - Genome Annotation Assessment Project, 1999
 - Experimentally compare computational gene finding

◆ Evaluation measures
 - True Positive (TP), False Positive (FP), False Negative (FN)
 - Sensitivity – % found = TP / (TP + FN)
 - Specificity – % correct = TP / (TP + FP)
 - Missed / wrong exons
 - Missed / wrong genes
 - Split / joined genes
 \[\text{Incorrect boundaries}\]
Gene Prediction – GASP1 Results

- **Results**
 - Genie (constrained w/ EST database) a top performer
 - Incorrectly split genes more problematic than joined genes
 - Including homology does not always yield improvement
 - HMM seems to be best approach
 - Poor prediction of promoters
 - Computational gene finding not sufficiently accurate

<table>
<thead>
<tr>
<th></th>
<th>Bases</th>
<th>Exons</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (% found)</td>
<td>97%</td>
<td>77%</td>
<td>65%</td>
</tr>
<tr>
<td>Specificity (% correct)</td>
<td>91%</td>
<td>55%</td>
<td>38%</td>
</tr>
<tr>
<td>Missed</td>
<td></td>
<td>5%</td>
<td>11%</td>
</tr>
<tr>
<td>Wrong</td>
<td></td>
<td>20%</td>
<td>42%</td>
</tr>
</tbody>
</table>

- Genes
- Exons
- Bases

Genomics – Summary

- **Sequencing & assembly**
 - Reasonably well understood, quality solutions available
 - Assembly computationally intensive for large sequences

- **Gene prediction**
 - Many laboratory & computational techniques
 - Major effort for bioinformatics researchers
 - Computational techniques insufficiently precise