CMSC 838T – Lecture 14

- Genetics
 - Analyzing genes & inheritance
- Comparative genomics
 - Extracting information from cross-genome comparisons

Outline

- Genetics
 - Inheritance
 - Meiosis & recombination
 - Linkage maps
 - Genetic diseases
 - Polymorphisms
- Comparative genomics
Genetics

- **Inheritance**
 - Mendel studied inheritance in garden peas in 1865
 - Tested 34 varieties of peas, growing 28,000 pea plants
 - Found attributes determined by gene from each parent

- **Biology**
 - (Diploid) organisms maintain 2 copies of each chromosome
 - Each parent contributes 1 copy during reproduction (meiosis)
 - Chromosomes may be mixed during meiosis (recombination)
 - Different versions exist for each gene (alleles)
 - Example – blue eyes vs. brown eyes

Genetics – Inheritance

- **Phenotype determined by inherited genes**

![Diagram of inheritance process](image)
Genetics – Meiosis & Recombination

Diploid parent

- Ss

Interphase

- Ss

Meiosis I

- The alleles have segregated

Meiosis II

- S

Gametes

- S

- S

- S

- S

- Cross Over

- Homologous Chromosomes Pair

- Recombination

- Recombinant Chromatids

Genetics – Linkage Maps

Biology of reproduction

- Genes located on same chromosome (syntenic) usually transmitted together
- Recombination may separate genes
- Probability → distance on chromosome

Linkage map

- Examine inheritance data for population
 - Usually for genetic diseases
 - Estimate relative distance between genes
- May use SNP genetic markers
- Create linkage map
- Try to identify gene(s)

Linkage map for corn
Genetics – Genetic Diseases

- **Genetic diseases**
 - May be caused by single gene
 - Huntington’s, cystic fibrosis, sickle-cell anemia, etc...
 - May be caused by interaction between multiple genes
 - Asthma, heart disease, cancer
 - Gene may be a risk factor for disease
 - May be caused by multiple groups of genes
 - All showing same symptom

- **Clinical manifestation of genetics**
 - Susceptibility vs. resistance
 - Variations in disease severity or symptoms
 - Reaction to drugs (pharmacogenetics)

Chromosome 4

- **Huntington disease**
 - Wolf-Hirschhorn syndrome
 - PKU due to dihydropteridine reductase deficiency

- **Dentinogenesis imperfecta-1**
 - Acute lymphocytic leukemia

- **C3b inactivator deficiency**
 - Aspartylglucosaminuria
 - Williams-Beuren syndrome, type II

- **Sideroblastosis**
 - Anterior segment
 - Mesenchymal dysgenesis
 - Pseudohypopaldosteronism

- **Hepatocellular carcinoma**
 - Glutaric acidemia type II
 - Factor XI deficiency
 - Fletcher factor deficiency

- **MPS 1 (Hurler and Scheie syndromes)**
 - Mucopolysaccharidosis I
 - Periodontitis, juvenile

- **Dysalbuminemic hyperzincemia**
 - Dysalbuminemic hyperthyroxinemia
 - Aleukocytosis

- **Hereditary persistence of alpha-fetoprotein**
 - Aplastic anemia

- **Polycystic kidney disease, adult, type II**
 - Mucolipidosis II
 - Mucolipidosis III

- **Severe combined immunodeficiency due to 112 deficiency**
 - Bierer syndrome

- **Dysfibrinogemienemia, gamma types**
 - Hypofibrinogenemia, gamma types

- **Dysfibrinogenemia, alpha types**
 - Amyloidosis, hereditary renal, 105.200

- **Dysfibrinogenemia, beta types**
 - Facioscapulohumeral muscular dystrophy
Genetics – Polymorphisms & SNPs

♦ Polymorphism
 - Genetic variant appearing in > 1% of population
 ● Filter out spontaneous mutations
 - May form alleles (versions of genes)

♦ SNPs (Single Nucleotide Polymorphism)
 - Very common, 3.7 million (human) in dbSNP as of April 2003
 - Occurring every ~1250 bases (on average) between individuals
 - Most (estimated 99+%) have no effect on phenotype
 ● Occur in non-coding DNA, degenerate codons
 - Serve as markers for genes in laboratory
 ● If SNP is known to be physically close to gene (linked)
 ● Find SNP → identify allele, genetic disease
 - A few thousand SNPs can characterize human genome

Outline

♦ Genetics
♦ Comparative genomics
 - Genomes & model organisms
 - Genomic rearrangement / synteny
 - Genomic alignment
 - Clusters of orthologous genes (COGs)
 - Comparative gene analysis & prediction
Comparative Genomics

- **Description**
 - Large scale comparison of genomes
 - Understand biology of individual genome
 - Discover principles governing genomes

- **Assumption**
 - Biology is shared by different species
 - Analyzing multiple species together increases information
 - Can understand human genes by studying their relatives (orthologs) in simpler organisms
 - Mouse & rat used extensively as model for human

Genomics – Genomes & Model Organisms

- **Genome sequences in GenBank (April 2003)**
 - 519 eukaryotes
 - 426 bacteria
 - 1310 viruses
 (incl. SARS corona virus)

- **Model organisms**
 - Focus of multiple studies due to scientific interest
 - E. Coli, yeast, nematode worm, fruit fly, mustard plant, zebrafish, mouse, human

<table>
<thead>
<tr>
<th>Species</th>
<th>Genome (Mbp)</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycoplasma</td>
<td>0.58</td>
<td>470</td>
</tr>
<tr>
<td>Rickettsia</td>
<td>1.11</td>
<td>834</td>
</tr>
<tr>
<td>Bacillus</td>
<td>4.2</td>
<td>4,100</td>
</tr>
<tr>
<td>E. Coli</td>
<td>4.6</td>
<td>4,288</td>
</tr>
<tr>
<td>Saccharomyces</td>
<td>13.5</td>
<td>6,034</td>
</tr>
<tr>
<td>Arabidopsis</td>
<td>119</td>
<td>25,498</td>
</tr>
<tr>
<td>Drosophila</td>
<td>165</td>
<td>13,601</td>
</tr>
<tr>
<td>Caenorabditus</td>
<td>97</td>
<td>18,424</td>
</tr>
<tr>
<td>Homo sapien</td>
<td>3,300</td>
<td>30,000+</td>
</tr>
</tbody>
</table>
Genomics – Gene Order Comparison

- **Chromosomal rearrangement**
 - Chromosomes can break at random location
 - Fragments rejoined at random by DNA repair mechanisms

- **Comparing genomes between species**
 - Analyze rearrangements using locations of orthologs
 - Gene order changed by rearrangements over time
 - Genes w/ similar biological function tend to remain localized

- **Synteny**
 - Same species – genes on same chromosome
 - Multiple species – matching sections of chromosomes (with same genes in same order)

Chromosomal Rearrangement – Genome Plot

- **Genome plot**
 - Dot matrix plot of genes
 - **Ortholog** (common ancestor & function)
 - **Paralog** (duplication)

- **Plot shows order of many orthologs preserved**
Chromosomal Rearrangement – Human Mouse

- **Human and mouse genomes**
 - 99% similar
 - Can cut human genome into >100 pieces and map onto mouse genome fairly accurately

![Genome Comparison Diagram]

Genomics – Genome Alignment

- **Aligning genomes**
 - Must be able to align very long sequences
 - Better alignments possible from similar genomes
 - GLASS – recursively align genomes starting with long matches
 - WABA – break genome into small overlapping pieces, align

- **Genome visualization tools**
 - VISTA
 - Sequence alignment visualization tool
 - Emphasize regions of high similarity
 - VCMAP
 - Visualize locations of orthologs between genomes
VISTA – Comparing Human & Rat Genomes

Virtual Chromosome Map – Human Rat Mouse

- **VCMap**
 - Rat map framework markers in red
 - Chromosome numbers in blue
 - Conserved regions in common color
Genomics – Clusters of Orthologous Genes

- **Comparing genomes to find orthologs**
 - Cluster orthologous genes (COG) between genomes
 - COGs usually represent classes of metabolic function
 - NCBI COG database stores relationships, annotations

- **Example**
 - Relationship between several yeast and bacterial orthologs in NCBI COG database

Genomics – Clusters of Orthologous Genes

- **Using COG database to predict gene function**
Genomics – Comparative Analysis & Prediction

- **Comparing genomes to extract information**
 - Conserved regions identify genes & regulation factors
 - ROSETTA – gene model + GLASS alignment

- **Predict gene function based on**
 - Cross annotation between genomes
 - Genes for proteins in same pathway should be correlated
 - Find correlated genes using clustering / statistics
 - Gene fusion
 - Genes producing interacting proteins sometimes fuse to produce single protein
 - Look for fused genes

Genetics & Comparative Genomics

- **Genetics**
 - Evaluation of inheritance based on phenotypes
 - Use variation in inheritance rate to derive linkage maps

- **Comparative genomics**
 - Extract information from multiple genomes
 - Techniques for mapping and comparing genomes

- **Analysis of evolutionary history**
 - Reveals selective pressure on mutations
 - Can provide hints to gene location & function