Phylogenetics

- Study of evolutionary relationships (sequences / species)
- Infer evolutionary relationship from shared features
- May improve multiple sequence alignment (MSA)

Phylogeny

- Relationship between organisms with common ancestor

Phylogenetic tree

- Graph representing evolutionary history of sequence / species

Premise

- Members sharing common evolutionary history (i.e., common ancestor) are more related to each other
- Can infer evolutionary relationship from shared features

Long history of phylogenetics (from field of genetics)

- Historically → based on analysis of observable features (e.g., morphology, behavior, geographical distribution)
- Now → mostly analysis of DNA / RNA / amino acid sequences
Phylogenetics – Motivation & Alignment

✦ Goal of phylogenetics
 - Understand relationship of sequence to similar sequences
 - Construct phylogenetic tree representing evolutionary history

✦ Motivation / application
 - Identify closely related families
 - Use phylogenetic relationships to predict gene function
 - Follow changes in rapidly evolving species (e.g., viruses)
 - Analysis can reveal which genes are under selection
 - Provide epidemiology for tracking infections & vectors
 - Few direct applications

✦ Relationship to multiple sequence alignment (MSA)
 - Alignment of sequences should take evolution into account
 - More precise phylogenetic relationships ↔ improved MSA

Phylogenetics Overview

✦ Phylogenetic trees
✦ Tree construction algorithms
 - Distance methods
 - UPGMA
 - Neighbor-joining
 - Maximum parsimony
 - Maximum likelihood
✦ Assessing phylogenetic trees
Phylogenetic Trees

♦ **Leaves / taxa**
 - Original sequences

♦ **Branches**
 - Represent change
 - Length represents evolutionary distance

♦ **Cluster / clade**
 - All sequences in subtree with common ancestor (treated as single node)

♦ **Join / node**
 - Point of joining two leaves / clusters

CMSC 838T – Lecture 5

Phylogenetic Trees

♦ **Use binary trees (evolution is bifurcating process)**
 - Can approximate all tree shapes (w/ arbitrarily short edges)
 - Simplifies tree generation & analysis

♦ **Trees can be represented in rectangular form**
 - Alternative form of representation
 - Distance determined only by “height” of branch

CMSC 838T – Lecture 5
Phylogenetic Trees

- Can label branches of tree with change to sequence

<table>
<thead>
<tr>
<th>seq</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>8</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>9</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phylogenetic Trees – Distance

- (Evolutionary) Distance
 - Many possible measures
 - Fraction of sites that differ between two sequences
 - # of changes needed to convert one sequence to another
 - Pairwise alignment scores, normalized by average score for random alignment [Feng & Doolittle 1996]
 \[
 \text{Score} = \frac{(S.\text{actual} - S.\text{random})}{(S.\text{identical} - S.\text{random})}
 \]
 Where $s.\text{identical} = \text{score for aligning identical sequence}$

- Distance matrix
 - Matrix of pairwise distances between all sequences
 - Used to generate tree

- Tree shape
 - Varies with construction method, distance metric
Phylogenetic Trees – Distance

- **Distances are ultrametric if**
 - Same rate of change on all branches in tree (rare in practice)
 - All leaves equidistant from root
 - Also known as a “molecular clock”
 - Distance matrix must satisfy the following 3-point condition
 - For any three leaves i, j, k, distances d_{ij}, d_{ik}, d_{jk}
 - two of three distances are equal and \geq third

\[
d_{ij} = d_{ik} \geq d_{jk}
\]

- **Distances are additive if**
 - Distance between any two leaves i & j on tree = sum of lengths of edges connecting i & j
 - Distance matrix must satisfy the following 4-point condition
 - For any four leaves i, j, k, m, two of the distances $d_{ij}+d_{km}$, $d_{ik}+d_{jm}$, $d_{im}+d_{jk}$ are equal and greater than the third

\[
d_{ij}+d_{km} < d_{im}+d_{jk} = d_{ik}+d_{jm}
\]

- In fact, the difference is $2 \times$ the length of the “bridge” edge(s)
Tree Construction – UPGMA

- **UPGMA** (Unweighted Pair Group Method using Arithmetic Averages) [Sokal & Michener 1958]

- **Algorithm**
 1. Find pair of sequences A, B with smallest distance \(D_{AB} \)
 2. Insert join for A, B at tree height = \(\frac{1}{2} D_{AB} \)
 3. Update distance to new cluster as the average distance between pairs of sequences in each cluster
 4. Repeat until all sequences / clusters joined
 5. Produces rooted tree

- **Assumptions**
 - Distances for tree are ultrametric
 - Branch lengths for 2 leaves same after join
 - Distances for tree are additive

Tree Construction Example

Original tree

Distance matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>8</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>9</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that tree distances are additive (i.e., distance between X, Y = sum of lengths of edges connecting X, Y)
Tree Construction Example – UPGMA

Distance matrices

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>—</td>
<td>8</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>B</td>
<td>—</td>
<td>—</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>—</td>
<td>11</td>
<td>—</td>
</tr>
<tr>
<td>D</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

UPGMA tree

- Height = \(\frac{1}{2} \) distance
- UPGMA keeps all leaves in clusters and uses them in calculations

Tree Construction – Neighbor-Joining

- **Goal**
 - Join closest neighbors (nodes with the same parent) in tree
 - Avoids problem with UPGMA when rates of change differ

- **Example**
 - Closest leaves not neighbors in correct tree, but joined first by UPGMA

- **Assumptions**
 - Rate of change can differ
 - Branch lengths may differ after join
 - Branch lengths for tree are additive
Calculating branch lengths after join (additive tree)

\[
\begin{array}{ccc}
A & B & C \\
A & - & d_{A,B} \quad d_{A,C} \\
B & - & d_{B,C} \\
C & - & - \\
\end{array}
\]

Simple algebra shows

- Given
 - \(d_{A,B} = a + b \)
 - \(d_{A,C} = a + c \)
 - \(d_{B,C} = b + c \)

- We can calculate
 - \(a = \frac{1}{2} (d_{A,B} + d_{A,C} - d_{B,C}) \)
 - \(b = \frac{1}{2} (d_{A,B} + d_{B,C} - d_{A,C}) \)
 - \(c = \frac{1}{2} (d_{B,C} + d_{A,C} - d_{A,B}) \)

Example (additive tree, not ultrametric)

Given distance matrix, calculate branch lengths

\[
\begin{array}{ccc}
A & B & C \\
A & - & 8 \quad 13.5 \\
B & - & 15.5 \\
C & - & - \\
\end{array}
\]

Calculation results

- \(a = \frac{1}{2} (d_{A,B} + d_{A,C} - d_{B,C}) = \frac{1}{2} (8 + 13.5 - 15.5) = 3 \)
- \(b = \frac{1}{2} (d_{A,B} + d_{B,C} - d_{A,C}) = \frac{1}{2} (8 + 15.5 - 13.5) = 5 \)
- \(c = \frac{1}{2} (d_{B,C} + d_{A,C} - d_{A,B}) = \frac{1}{2} (15.5 + 13.5 - 8) = 10.5 \)
Neighor-Joining – Basic Principle

- **Exploit principle for neighbor-joining algorithm**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>d_A,B</td>
<td>d_A,C</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>d_B,C</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Replace distance to C**
 - Used normalized divergence r_A, r_B (~ avg. distance to nodes)
 - We can calculate
 - $a = \frac{1}{2} (d_{A,B} + d_{A,C} - d_{B,C}) \rightarrow \frac{1}{2} (d_{A,B} + r_A - r_B)$
 - $b = \frac{1}{2} (d_{A,B} + d_{B,C} - d_{A,C}) \rightarrow \frac{1}{2} (d_{A,B} + r_B - r_A)$
 - $c = \frac{1}{2} (d_{B,C} + d_{A,C} - d_{A,B}) \rightarrow \frac{1}{2} (d_{B,C} + d_{A,C} - d_{A,B})$

Tree Construction – Neighbor-Joining

- **Approach**
 - To find closest pair of neighbors
 - Reduce branch length for a node by (approximately) the average distance of the node from all other nodes
 - Find smallest distance between nodes (after reduction)

- **Definitions**
 For all pairs of nodes A & B in set of all nodes L, let
 - $d_{A,B} =$ distance between A,B
 - $R_X = \Sigma d_{X,N}$ where $N \in L$ (total distance from X to all N)
 - $r_X = R_X / (|L| - 2)$, where $|L| =$ # of nodes
 (normalized divergence from X to all other nodes)
 - $D_{A,B} = d_{A,B} - (r_A + r_B)$ (rate-corrected distance)

- **Key property** – 2 nodes w/ minimum D are always neighbors!
Tree Construction – Neighbor-Joining

Algorithm [Saitou & Nei 1987, Studier & Keppler 1988]

1. Begin with star tree & all sequences as nodes in L
2. Find pair of nodes \(A \) & \(B \) \(\in \) L with minimum \(D_{A,B} \)
3. Create & insert new join (node \(K \)) w/ branch lengths
 - \(d_{A,K} = \frac{1}{2} (d_{A,B} + r_A - r_B) \)
 - \(d_{B,K} = \frac{1}{2} (d_{A,B} + r_B - r_A) \)
4. For remaining nodes \(C \in L \), update distance to \(K \) as
 - \(d_{K,C} = \frac{1}{2} (d_{A,C} + d_{B,C} - d_{A,B}) \)
5. Insert \(K \) and remove \(A, B \) from \(L \)
6. Repeat steps 2–5 until only two nodes left

Tree Construction Example – Neighbor Joining

(Rate-corrected) distance matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>---</td>
<td>8</td>
<td>7</td>
<td>12</td>
<td>13.5</td>
</tr>
<tr>
<td>B</td>
<td>-21</td>
<td>---</td>
<td>9</td>
<td>14</td>
<td>15.5</td>
</tr>
<tr>
<td>C</td>
<td>-20</td>
<td>-20</td>
<td>---</td>
<td>11</td>
<td>13.5</td>
</tr>
<tr>
<td>D</td>
<td>-20</td>
<td>-20</td>
<td>-21</td>
<td>---</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Rate-corrected distances

\[
D_{A,B} = d_{A,B} - (r_A + r_B) = 8 - (13.5 + 15.5) = -21
\]

\[
D_{A,C} = d_{A,C} - (r_A + r_C) = 7 - (13.5 + 13.5) = -20
\]

\[
D_{A,D} = d_{A,D} - (r_A + r_D) = 12 - (13.5 + 18.5) = -20
\]

\[
D_{B,C} = d_{B,C} - (r_B + r_C) = 9 - (15.5 + 13.5) = -20
\]

\[
D_{B,D} = d_{B,D} - (r_B + r_D) = 14 - (15.5 + 18.5) = -20
\]

\[
D_{C,D} = d_{C,D} - (r_C + r_D) = 11 - (13.5 + 18.5) = -21
\]
Tree Construction Example – Neighbor Joining

(Rate-corrected) distance matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8</td>
<td>7</td>
<td>12</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>-21</td>
<td>9</td>
<td>14</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-20</td>
<td>-20</td>
<td>-21</td>
<td>13.5</td>
<td>18.5</td>
</tr>
<tr>
<td>D</td>
<td>-20</td>
<td>-20</td>
<td>-21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edge lengths for A,B

\[d_{A,K1} = \frac{1}{2} (d_{A,B} + r_A - r_B) = \frac{1}{2} (8 + 13.5 - 15.5) = 3 \]
\[d_{B,K1} = \frac{1}{2} (d_{A,B} + r_B - r_A) = \frac{1}{2} (8 + 15.5 - 13.5) = 5 \]

Distances to K_1

\[d_{K1,C} = \frac{1}{2} (d_{A,C} + d_{B,C} - d_{A,B}) = \frac{1}{2} (7 + 9 - 8) = 4 \]
\[d_{K1,D} = \frac{1}{2} (d_{A,D} + d_{B,D} - d_{A,B}) = \frac{1}{2} (12 + 14 - 8) = 9 \]

Normalized divergence:

\[\sum d / (|L| - 2) = \sum d / 2 \]

Rate-corrected distances

\[D_{C,D} = d_{C,D} - (r_C + r_D) = 11 - (15 + 20) = -24 \]
\[D_{C,K1} = d_{C,K1} - (r_C + r_{K1}) = 4 - (15 + 13) = -24 \]
\[D_{D,K1} = d_{D,K1} - (r_D + r_{K1}) = 9 - (20 + 13) = -24 \]
Tree Construction Example – Neighbor Joining

(Rate-corrected) distance matrix

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
<th>K₁</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>—</td>
<td>11</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>D</td>
<td>-24</td>
<td>—</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>K₁</td>
<td>-24</td>
<td>-24</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

averaged distance = \(\frac{\sum d}{|L| - 2} \) = \(\frac{\sum d}{1} \)

Edge lengths for C, D
\(d_{C,K₂} = \frac{1}{2} (d_{C,D} + r_C - r_D) = \frac{1}{2} (11 + 15 - 20) = 3 \)
\(d_{D,K₂} = \frac{1}{2} (d_{C,D} + r_D - r_C) = \frac{1}{2} (11 + 20 - 15) = 8 \)

Distances to K₂
\(d_{K₂,K₁} = \frac{1}{2} (d_{K₁,C} + d_{K₁,D} - d_{C,D}) = \frac{1}{2} (4 + 9 - 11) = 1 \)

Tree Construction Example – Neighbor Joining

(Rate-corrected) distance matrix

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
<th>K₁</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>—</td>
<td>11</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>D</td>
<td>-24</td>
<td>—</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>K₁</td>
<td>-24</td>
<td>-24</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

averaged distance = \(\frac{\sum d}{|L| - 2} \) = \(\frac{\sum d}{1} \)

Edge lengths for C, K₁
\(d_{C,K₂} = \frac{1}{2} (d_{C,K₁} + r_C - r_K₁) = \frac{1}{2} (4 + 15 - 13) = 3 \)
\(d_{K₁,K₂} = \frac{1}{2} (d_{C,K₁} + r_K₁ - r_C) = \frac{1}{2} (4 + 13 - 15) = 1 \)

Distances to K₂
\(d_{K₂,D} = \frac{1}{2} (d_{D,C} + d_{D,K₁} - d_{C,K₁}) = \frac{1}{2} (11 + 9 - 4) = 8 \)
Tree Construction Example – Neighbor Joining

(Rate-corrected) distance matrix

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
<th>K₁</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>—</td>
<td>11</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>D</td>
<td>-24</td>
<td>—</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>K₁</td>
<td>-24</td>
<td>-24</td>
<td>—</td>
<td>13</td>
</tr>
</tbody>
</table>

Averaged distance = \(\frac{\sum d}{|L| - 2} = \frac{\sum d}{1} \)

Edge lengths for D, K₁
\[d_{D,K₂} = \frac{1}{2} (d_{D,K₁} + r_D - r_K₁) = \frac{1}{2} (9 + 20 - 13) = 8 \]
\[d_{K₁,K₂} = \frac{1}{2} (d_{D,K₁} + r_K₁ - r_D) = \frac{1}{2} (9 + 13 - 20) = 1 \]

Distances to K₂
\[d_{K₂,C} = \frac{1}{2} (d_{C,D} + d_{C,K₁} - d_{D,K₁}) = \frac{1}{2} (11 + 4 - 9) = 3 \]

Original tree

Neighbor-joining tree

Except for missing root, finds same tree topology
Tree Construction – Distance Methods

Inserting root
- Neighbor-joining terminates w/ 2 nodes, outputs unrooted tree
- If need to select root
 - Find *outgroup* node known to be more distant, insert root nearby, or
 - Find longest consecutive sequence of edges, insert root near middle (assumes evolution rates comparable)

![Diagram showing tree construction]

Complexity
- Distance-based methods much faster than other methods
- Commonly used in multiple sequence alignment
 - UPGMA – PILEUP
 - Neighbor-joining – CLUSTALW

Problems
- Both UPGMA & neighbor-joining are greedy heuristics
- Possible to be trapped in local maxima (no backtracking)
- Output is a single tree, even if many equal-cost alternatives

May use as starting point
- Tree generated provides upper bound for branch-and-bound
- Initial tree for probabilistic branch-swapping techniques
Tree Construction – Maximum Parsimony

- **Maximum parsimony** [Fitch 1971]
 - Minimize number of sequence changes in tree
 - Assume fewest changes (mutations) = most likely (evolution)

- **Informative site**
 - Position with useful change information (for parsimony)
 - I.e., # of changes in position dependent on tree chosen
 - Must have \(\geq 2 \) different bases / residues, such that each base / residue appears in \(\geq 2 \) sequences

<table>
<thead>
<tr>
<th>Seq1</th>
<th>A</th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>G</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq2</td>
<td>A</td>
<td>G</td>
<td>C</td>
<td>C</td>
<td>G</td>
<td>T</td>
<td>G</td>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>Seq3</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Seq4</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>G</td>
</tr>
</tbody>
</table>

Informative Sites

Most parsimonious tree
- Tree with fewest total # of changes at informative sites

<table>
<thead>
<tr>
<th>Informative Sites</th>
<th>GGA</th>
<th>GGA</th>
<th>ACA</th>
<th>GGA</th>
<th>GGA</th>
<th>GGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>G</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sites Changed
- Tree 1 = 4
- Tree 2 = 6
- Tree 3 = 5
Tree Construction – Maximum Parsimony

- **Algorithm**
 - Generate all possible tree topologies
 - Count number of changes required
 - Select tree with minimum # changes
 - Use branch-and-bound to reduce search
 - Search trees with increasing # of leaves
 - Abandon subtree when # changes \geq best completed tree

- **Characteristics**
 - Computationally expensive
 - Analyze only informative sites
 - Misleading if rates of changes vary among branches
 - Evolution is not always parsimonious

Tree Construction – Maximum Likelihood

- **Goal**
 - Given the probability $P(x|y,t)$ for a sequence y to evolve (mutate) to sequence x along an edge of length t (time)
 - Find tree that has highest probability of taking place

- **Mutation probabilities**
 - Amino acids: PAM [Dayhoff+ 1978]

- **Algorithm**
 - Search over all tree topologies & sequence assignments
 - For each topology & assignment, search all branch lengths

- **Characteristics**
 - Very computationally expensive
Tree Construction – Issues

- **Selecting tree construction algorithm**
 - If strong sequence similarity \rightarrow maximum parsimony
 - If clearly recognizable sequence similarity \rightarrow distance methods
 - Otherwise \rightarrow maximum likelihood

- **Determining statistical significance**
 - Multiple tree shapes possible
 - Find probability that tree shape is as described
 - Sample by "bootstrapping" [Efron & Tibshirani 1993]
 - Generate artificial data set by repeatedly selecting random columns of alignment (pseudo-alignment) with replacement
 - Build tree for pseudo-alignments many (1000+) times
 - Frequency phylogenetic feature appears \rightarrow confidence level

Phylogenetics – Issues

- **Gene trees vs species trees**
 - Gene duplication can complicate phylogenetic analysis
 - Paralogues (duplicated genes) do not fit in evolutionary tree

- **Choice of target sequence type**
 - Ribosomal RNA (slowest change / mutation rate)
 - Use for very long-term evolutionary studies, spanning species boundaries & biological kingdoms
 - DNA / RNA (fastest change / mutation rate)
 - Use for short-term studies of closely-related species
 - Contains more evolutionary information than protein
 - Protein (medium change / mutation rate)
 - Use for wide species comparisons
 - More reliable alignment than DNA
Plylogenetics Summary

- **Phylogenetic prediction**
 - Infer evolutionary relationships from shared features
 - May have application to sequence alignment, epidemiology

- **Phylogenetic trees**
 - May be ultrametric and / or additive

- **Tree construction**
 - Inexpensive distance-based (UPGMA, neighbor-joining)
 - Expensive (exhaustive) tree searches (parsimony, likelihood)

- **Assessing phylogenetic trees**
 - Algorithms always produce some tree (of varying accuracy)
 - Expert biology knowledge to assess correctness / significance

Where Are We Now?

- **Bioinformatics topics covered**
 - Molecular biology background
 - Pairwise sequence alignment
 - Multiple sequence alignment
 - Phylogenetics

- **Remaining bioinformatics topics**
 - Protein structure prediction
 - Gene assembly and prediction
 - Microarrays & expressed sequence tag (EST) analysis
 - Sequence / structure database search & organization

- **High performance computing...**
More Bioinformatics Terms

◆ Functional genomics
 - Identify function of genes in organism

◆ Comparative genomics
 - Identify genes
 ● Related to other genes in organism
 ● Related to genes in other species
 - Create evolutionary history of related genes
 - Locate insertions, deletions, substitutions occurring in evolution

◆ Proteomics
 - Identify & characterize all gene products (proteins) in organism

◆ Structural proteomics
 - Identify or predict 3D structure of all proteins in organism

More Bioinformatics Terms

◆ Pharmacogenomics
 - Application of genomic approaches to identify drug targets
 ● Searching genomes for potential drug receptors
 ● Examining characteristic gene expression in pathogens & hosts during infection for diagnostics or therapy targets
 - Cataloguing & processing info on pharmacology & genetics

◆ Pharmacogenetics
 - Identifying genetic causes for individualized drug responses
 ● Identify genetic variation (e.g., SNPs) characteristic of particular patient response profiles
 ● Use to improve administration & development of therapies
 ● Identify receptive patient subsets, optimize drug dosages

◆ Lots of data mining…
More Bioinformatics Terms

- **Medical informatics**
 - Techniques to improve usefulness & management of medical information
 - Emphasis on structures and algorithms for the manipulation of medical data, rather than understanding the data itself
 - Mostly databases & data integration, little bioinformatics

Popular Bioinformatics Resources

- **Software tools**
 - Sequence search – BLAST
 - Sequence analysis – EMBOSS, Staden
 - Structure prediction – THREADER, PHD
 - Molecular imaging / modeling – RasMol, WHATIF

- **Public databases**
 - Nucleotides – GenBank
 - Proteins – Protein DataBank (PDB)
 - Biological papers – PubMed