CMSC724: Data Warehouses

Amol Deshpande

University of Maryland, College Park

April 28, 2008
Outline

1. Overview
2. Variant Indexes
3. Data Cubes/Dynamat (Slides borrowed from Nick)
Data Warehouses

- A (usually) stand-alone system that integrates data from everywhere
 - Read-only, updated at night
 - Geared toward business analytics, data mining etc...
Data Warehouses

- A (usually) stand-alone system that integrates data from everywhere
 - Read-only, updated at night
 - Geared toward business analytics, data mining etc...
- Heavily used and heavily optimized
 1. Materialized views (summary tables, data cubes)
 2. New types of indexes
 3. New join techniques geared toward “star” (or “snowflake”) schemas
 4. Compressed storage techniques
- Key observation: Read-only, so updating not an issue
OLAP operations include rollup (increasing the level of aggregation) and drill-down (decreasing the level of aggregation). OLAP operations over these special data structures.

Data warehouses might be implemented on standard or commercial DBMS targeted for OLTP. It is for all these reasons that data warehouses are implemented separately from operational databases.

Figure 1 shows a typical data warehousing architecture. In Section 2, we describe a typical data warehousing architecture, and the process of designing and operating a warehouse. In Sections 3-7, we review relevant architecture, and the process of designing and operating a warehouse; and for periodically refreshing the warehouse to reflect updates at the sources and to purge data from the warehouse; and for loading data into the data warehouse. In Section 8 with a brief mention of these issues.

There still are many open research problems. We conclude in Section 3 with a brief mention of these issues. Research in data warehousing is fairly recent, and has focused primarily on query processing and view maintenance issues.

There is more to building and maintaining a data warehouse than choosing a database management system. There are many other issues in data warehousing, for instance, data marts. Data marts enable faster roll out, since they do not require enterprise-wide consensus, but they may lead to complex integration problems in the long run, if a complete business model is not developed.

These data marts enable faster roll out, since they do not require enterprise-wide consensus, but they may lead to complex integration problems in the long run, if a complete business model is not developed.

There are many reasons that data warehouses are implemented separately from operational databases. Operational databases store only current data. Decision support usually requires data that might be missing from the operational databases, that is, historical data. Predictions require historical data, whereas operational databases; for instance, understanding trends or making decisions in every category. We encourage the interested reader to look beyond this paper to get a good source of references on data warehousing and OLAP architecture, and the process of designing and operating a warehouse.

There are many reasons that data warehouses are implemented separately from operational databases.

Software vendors offer many tools for implementing and maintaining data warehouses. It includes tools for extracting data from multiple operational databases and external sources; for cleaning, transforming and integrating this data; for loading data into the data warehouse. In each case, we point out what is different from traditional database technology, and we intend to provide comprehensive descriptions of all products and vendors. Finally, we mention representative products. In this paper, we do not mention representative products.
Data Warehouses

- **Extract-Transform-Load (ETL)**
 - Data cleaning, auditing, integrity constraints
 - Semantic heterogeneity
 - Issues like entity resolution, schema mapping/matching, cleaning etc..

- **Load/Refresh:**
 - Typically done periodically
 - Batch loading, so can heavily optimize the indexes
 - E.g. If using a B+-tree, bulk-loading can result in much better indexes, than inserting one at a time
 - **Refresh:**
 - Usually done incrementally, at night or something

- **Real-time analysis?** Typically not done today
The multidimensional data model grew out of the view of business data popularized by PC spreadsheet programs that were extensively used by business analysts. The spreadsheet applications were popularly used for database design in OLTP systems where efficiency in querying and in loading data (including incremental loads) are important.

We shall briefly discuss some of the popular operations that are supported by the multidimensional spreadsheet applications. One such operation is rollup. In this section, we describe the design of relational database systems where efficiency in querying and in loading data can be crudely summarized as that of supporting spreadsheet-like applications. Indeed, the Essbase product of Arbor Corporation uses Microsoft Excel as the front-end tool for its multidimensional warehousing applications. One such operation is rollup. Doing a further group-by on one of the dimensions is called drill-down.

Data Warehouses: Star Schema

Figure 3 shows an example of a star schema. The database consists of a single fact table and a single table for each dimension. Each tuple in the fact table consists of a pointer (foreign key - often using a generated key for efficiency) to each of the dimensions that provide its multidimensional coordinates, and stores the numeric measures for those coordinates. Each dimension uses a generated key for efficiency. Snowflake schemas provide a refinement of star schemas. Snowflake schemas do not explicitly provide support for attribute hierarchies.

Other popular operators include slice_and_dice sales data for a specific product to create a projection of the data on a subset of dimensions for selected values of the other dimensions. For example, we can reduce the dimensionality of the data, i.e., taking a converse of rollup. Other operators related to pivoting are the converse of rollup. The drill-down operation is possible to roll-up the sales data, perhaps already aggregated doing a further group-by on one of the dimensions. Thus, it is reducible to ranking or sorting, and defining computed attributes.

Figure 3. A Star Schema.
Figure 4. A Snowflake Schema.
Star and Snowflake Schemas

- The Facts table is HUGE
 - Dimension tables relatively small
- Strong key-foreign key dependencies
 - Each fact table tuple joins with exactly one tuple from each dimension table
 - Critical in optimizations

Almost all queries are of the form:
- Join the Facts table with some of the dimension tables
-Selections on the dimension table attributes (e.g. state = 'MD')
- Possibly selection on the fact table
- Group by on some of the dimension table attributes (e.g. ProdName)
- Aggregate on a main Facts table attribute (e.g. quantity)
Star and Snowflake Schemas

- The Facts table is HUGE
 - Dimension tables relatively small
- Strong key-foreign key dependencies
 - Each fact table tuple joins with exactly one tuple from each dimension table
 - Critical in optimizations
- Almost all queries are of the form:
 - Join the Facts table with some of the dimension tables
 - Selections on the dimension table attributes (e.g. state = 'MD')
 - Possibly selection on the fact table
 - Group by on some of the dimension table attributes (e.g. ProdName)
 - Aggregate on a main Facts table attribute (e.g. quantity)
Coordinated to ensure consistency of derived data and indices with the base data.

Refresh

Refreshing a warehouse... analysis). Often, it is desirable to have built-in knowledge of calendars and other aspects of the time dimension.

Figure: Multi-dimensional Data (From Chaudhuri, Dayal; SIGMOD Record, 1997)
Data Warehouses: Multi-dimensional Data

- **OLAP**: On-line Analytical Processing
 - Contrast with: OLTP (transaction processing)
- **ROLAP**: Relational OLAP
 - OLAP built on top of relational databases (standard now)
- **MOLAP**: Multi-dimensional OLAP
 - Specialized database that stores data in multi-dimensional arrays
 - Makes it easier to support Data Cube type queries
- A hybrid between the two commonly used
SALES

<table>
<thead>
<tr>
<th>Model Year</th>
<th>Color</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy 1990</td>
<td>red</td>
<td>5</td>
</tr>
<tr>
<td>Chevy 1990</td>
<td>white</td>
<td>87</td>
</tr>
<tr>
<td>Chevy 1990</td>
<td>blue</td>
<td>62</td>
</tr>
<tr>
<td>Chevy 1991</td>
<td>red</td>
<td>54</td>
</tr>
<tr>
<td>Chevy 1991</td>
<td>white</td>
<td>95</td>
</tr>
<tr>
<td>Chevy 1991</td>
<td>blue</td>
<td>49</td>
</tr>
<tr>
<td>Chevy 1992</td>
<td>red</td>
<td>31</td>
</tr>
<tr>
<td>Chevy 1992</td>
<td>white</td>
<td>54</td>
</tr>
<tr>
<td>Chevy 1992</td>
<td>blue</td>
<td>71</td>
</tr>
<tr>
<td>Ford 1990</td>
<td>red</td>
<td>64</td>
</tr>
<tr>
<td>Ford 1990</td>
<td>white</td>
<td>62</td>
</tr>
<tr>
<td>Ford 1990</td>
<td>blue</td>
<td>63</td>
</tr>
<tr>
<td>Ford 1991</td>
<td>red</td>
<td>52</td>
</tr>
<tr>
<td>Ford 1991</td>
<td>white</td>
<td>9</td>
</tr>
<tr>
<td>Ford 1991</td>
<td>blue</td>
<td>55</td>
</tr>
<tr>
<td>Ford 1992</td>
<td>red</td>
<td>27</td>
</tr>
<tr>
<td>Ford 1992</td>
<td>white</td>
<td>62</td>
</tr>
<tr>
<td>Ford 1992</td>
<td>blue</td>
<td>39</td>
</tr>
</tbody>
</table>

DATA CUBE

<table>
<thead>
<tr>
<th>Model Year</th>
<th>Color</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>942</td>
</tr>
<tr>
<td>chevy</td>
<td>ALL</td>
<td>510</td>
</tr>
<tr>
<td>ford</td>
<td>ALL</td>
<td>432</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>343</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>314</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>285</td>
</tr>
<tr>
<td>ALL ALL</td>
<td>red</td>
<td>165</td>
</tr>
<tr>
<td>ALL ALL</td>
<td>white</td>
<td>273</td>
</tr>
<tr>
<td>ALL ALL</td>
<td>blue</td>
<td>339</td>
</tr>
<tr>
<td>chevy</td>
<td>1990</td>
<td>154</td>
</tr>
<tr>
<td>chevy</td>
<td>1991</td>
<td>199</td>
</tr>
<tr>
<td>chevy</td>
<td>1992</td>
<td>157</td>
</tr>
<tr>
<td>ford</td>
<td>1990</td>
<td>189</td>
</tr>
<tr>
<td>ford</td>
<td>1991</td>
<td>116</td>
</tr>
<tr>
<td>ford</td>
<td>1992</td>
<td>128</td>
</tr>
<tr>
<td>chevy ALL</td>
<td>red</td>
<td>91</td>
</tr>
<tr>
<td>chevy ALL</td>
<td>white</td>
<td>236</td>
</tr>
<tr>
<td>chevy ALL</td>
<td>blue</td>
<td>183</td>
</tr>
<tr>
<td>ford ALL</td>
<td>red</td>
<td>144</td>
</tr>
<tr>
<td>ford ALL</td>
<td>white</td>
<td>133</td>
</tr>
<tr>
<td>ford ALL</td>
<td>blue</td>
<td>156</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>69</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>149</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>125</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>107</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>104</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>59</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>116</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>110</td>
</tr>
</tbody>
</table>
Outline

1. Overview
2. Variant Indexes
3. Data Cubes/Dynamat (Slides borrowed from Nick)
Specialized indexes for supporting summary aggregate queries

Different types of indexes:
- Traditional Value-List Indexes
- Bitmap Indexes
- Projection Indexes
 - Very similar to Column-based storage (much research last few years)
- Bit-sliced Indexes
- Join Indexes

Key observation: Read-only database, so can build as many indexes as you want
Value-List/Bitmap Index

- Key idea: Given a property over a domain, the following two are interchangeable and complementary
 - a list of values
 - a bitmap over the domain
Key idea: Given a **property** over a domain, the following two are interchangeable and complementary
- a **list of values**
- a **bitmap** over the domain

In our case:
- **Domain:** The set of all RIDs
- **Property:** A predicate $R.a = 'Sports'$

If the number of RID that satisfy the property is:
- **small:** store as a list of RIDs
- **large:** store as a bitmap over the RIDs

B-tree Root Node for department

```
'clothes' 'china' ... 'sports' ...
```

```
'sports' 101101... 'sports' 01011...
```
Each disk page can store 48K bits, so must partition the Facts table into 48K row partitions

So

Each B+-Tree page contains a portion of the bitmap over the RIDs
Each disk page can store 48K bits, so must partition the Facts table into 48K row partitions

So
- Each B+-Tree page contains a portion of the bitmap over the RIDs

If the number of 1’s is small, convert to an RID-list
- The tipping point is when the number of 1’s is < 1/32 of the size.
 - At that point, the RID-list exactly fits in the disk page
 - \((48000/32 = 1500, 1500 \times 4 = 6K)\)
- This is always true regardless of the page size

Segmentation also helps with space storage... if an entire segment is all 0’s, don’t store it
Selections on the table return bitmaps

- AND, OR, NOT very fast on bitmaps
- Result called a Foundset: B_f (the domain is the Facts Table)

Next step: Aggregate (recall almost all queries compute aggregates)

- Can perform directly on the bitmap in some cases (COUNT)
- Otherwise use projection indexes
- OR use a bit-sliced index
shcount: count the number of ones in the binary representation

Algorithm 2.1. Performing COUNT with a Bitmap
/* Assume B1[] is a short int array overlaying a Foundset Bitmap */
count = 0;
for (i = 0; i < SHNUM; i++)
 count += shcount[B1[i]];
/* add count of bits for next short int */

Figure: Bitmap Index
Other Indexes

- **Projection Indexes**
 - Simply a list of the values for one attribute for all values
 - Like the leaf-level in a B+-tree (except no pointers)
 - Each page contains same number of values (so easier to identify the value for a specific tuple)
Other Indexes

- **Projection Indexes**
 - Simply a list of the values for one attribute for all values
 - Like the leaf-level in a B+-tree (except no pointers)
 - Each page contains same number of values (so easier to identify the value for a specific tuple)

- **Bit-sliced Index**
 - A set of bitmaps, one for each “position” in the binary representation of the values
 - Makes more sense for numerical/ordinal attributes
 - Can be used for computing aggregates like SUM

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>Value-List Index</th>
<th>Projection Index</th>
<th>Bit-Sliced Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT</td>
<td>Not needed</td>
<td>Not needed</td>
<td>Not needed</td>
</tr>
<tr>
<td>SUM</td>
<td>Not bad</td>
<td>Good</td>
<td>Best</td>
</tr>
<tr>
<td>AVG (SUM/COUNT)</td>
<td>Not bad</td>
<td>Good</td>
<td>Best</td>
</tr>
<tr>
<td>MAX and MIN</td>
<td>Best</td>
<td>Slow</td>
<td>Slow</td>
</tr>
<tr>
<td>MEDIAN, N-TILE</td>
<td>Usually Best</td>
<td>Not Useful</td>
<td>Sometimes Best²</td>
</tr>
<tr>
<td>Column-Product</td>
<td>Very Slow</td>
<td>Best</td>
<td>Very Slow</td>
</tr>
</tbody>
</table>

Table 3.5. Tabulation of Performance by Index Type for
Other Indexes

- **Bitmap Join Index**
 - A bitmap index on the Facts table on a *dimension attribute*
 - Recall that each Facts table tuple joins with exactly one tuple from any dimension table
 - So each Facts table tuple has a unique value for a dimension attribute
 - In the example, might build a bitmap index on attribute "STATE" on Fact table
 - Using Bitmap Join Index, can evaluate predicates directly on the Fact table
 - *Grouping* also more efficient
Other Indexes

- Clustering
 - Can get better performance by appropriately clustering the Fact table
- Groupset Indexes
 - For better grouping performance
Other Indexes

- Clustering
 - Can get better performance by appropriately clustering the Fact table

- Groupset Indexes
 - For better grouping performance

- Many other optimizations commonly found in Data Warehouses
Other issues

- Using monetary cost as the metric
 - Useful in the real-world (see the 5-minute rule paper by Gray, Graefe in the Redbook)

- Bloom Filters
 - Can’t use them here... there is no “check” at the end to make sure the results are accurate

- Data Mining
 - Typically done outside the database, so the indexes don’t really help

- Applicability to operational databases
 - Not much... these techniques require too many indexes
 - An update would require changing all of those... prohibitive
Outline

1. Overview

2. Variant Indexes

3. Data Cubes/Dynamat (Slides borrowed from Nick)
OLAP-The Data Analysis Cycle

- User extracts data from database with query
- Then visualizes, analyzes data with desktop tools
The Data Cube

[Gray, Bosworth, Layman, Pirahesh ICDE 96]

- summarize multidimensional data for trend analysis

<table>
<thead>
<tr>
<th>Table 1: Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (UCT)</td>
</tr>
<tr>
<td>27/11/94:1500</td>
</tr>
</tbody>
</table>

- groupby with statistical functions (avg, min, max, count, sum) aggregates over table sub-groups

```sql
select avg(temp) from weather
select time, altitude from weather
group by time, altitude
```

- results in a new table

```sql
select location, sum(units) from inventory
group by location
having nation = "USA";
```
Problems with SQL Groupbys

- Histograms (aggregation over computed categories)

```sql
SELECT day, nation, MAX(Temp)
FROM Weather
GROUP BY CUBE
```

<table>
<thead>
<tr>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (UCT)</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>96/6/1:1500</td>
</tr>
<tr>
<td>96/6/7:1500</td>
</tr>
</tbody>
</table>

Many more rows like the ones above and below
Problems with SQL Groupbys

- drill-down and roll-up

```
SELECT Model, ALL, ALL, SUM(Sales)
FROM Sales
WHERE Model = 'Chevy'
GROUP BY Model
UNION
SELECT Model, Year, ALL, SUM(Sales)
FROM Sales
WHERE Model = 'Chevy'
GROUP BY Model, Year
UNION
SELECT Model, Year, Color, SUM(Sales)
FROM Sales
WHERE Model = 'Chevy'
GROUP BY Model, Year, Color;
```

```
Table 3: Sales Roll Up by Model by Year by Color

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Sales by Model by Year</th>
<th>Sales by Model by Year</th>
<th>Sales by Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>black</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>white</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>black</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>white</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>115</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>290</td>
<td></td>
</tr>
</tbody>
</table>
```

```
Table 4: Sales Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>black</td>
<td>50</td>
</tr>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>white</td>
<td>40</td>
</tr>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>ALL</td>
<td>90</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>black</td>
<td>85</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>white</td>
<td>115</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>ALL</td>
<td>200</td>
</tr>
<tr>
<td>Chevy</td>
<td>ALL</td>
<td>ALL</td>
<td>290</td>
</tr>
</tbody>
</table>
```

Not relational (null values in the keys)
More problems with Groupbys

- roll-up is asymmetric (e.g. does not aggregate by year or by color alone
- cross-tabulation (spreadsheets)

![Table 5: Chevy Sales Cross Tab](image)

<table>
<thead>
<tr>
<th></th>
<th>1994</th>
<th>1995</th>
<th>total (ALL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>black</td>
<td>50</td>
<td>85</td>
<td>135</td>
</tr>
<tr>
<td>white</td>
<td>40</td>
<td>115</td>
<td>155</td>
</tr>
<tr>
<td>total (ALL)</td>
<td>90</td>
<td>200</td>
<td>290</td>
</tr>
</tbody>
</table>

- even if SQL syntax can be devised, a 6D cross-tab requires 64 groupby queries to generate it and 64 scans and sorts of the data

◆ most of these are not relational expressions but are in many report writers
CUBE:
A Relational Aggregate Operator Generalizing Group By

Aggregate
- **Sum**

Group By (with total)
- **By Color**
 - RED
 - WHITE
 - BLUE
- **Sum**

Cross Tab
- *Chevy Ford By Color*
- **RED**
- **WHITE**
- **BLUE**
- **By Make**
- **Sum**

The Data Cube and The Sub-Space Aggregates
- **By Make**
- **By Color**
- **Sum**

- **By Color & Year**
- **CHEVY FORD**
- **By Make & Year**
- **By Make & Color**

© N. Roussopoulos 2007 Database Management Systems
Idea: N-dimensional Cube
Each Attribute is a Dimension

• N-dimensional Aggregate (sum(), max(), ...)
 ◆ fits relational model exactly:
 ➞ $a_1, a_2, ..., a_N, f(*)$

• Super-aggregate over $N-1$ Dimensional sub-cubes
 ➞ ALL, $a_2, ..., a_N, f(*)$
 ➞ $a_3, ALL, a_3, ..., a_N, f(*)$
 ➞ ...
 ➞ $a_1, a_2, ..., ALL, f(*)$
 ◆ this is the $N-1$ Dimensional cross-tab.

• Super-aggregate over $N-2$ Dimensional sub-cubes
 ➞ ALL, ALL, $a_3, ..., a_N, f(*)$
 ➞ ...
 ➞ $a_1, a_2, ..., ALL, ALL, f(*)$
Division of labor
Computation vs Visualization

• Relational system builds CUBE relation
 ◆ aggregation best done close to data
 ◆ filtering of data is possible
 ◆ Cube computation may be recursive
 ➔ (e.g., percent of total, quartile,)

• Visualization System displays/explores the cube
An Example

SALES Model

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy</td>
<td>1990</td>
<td>red</td>
<td>5</td>
</tr>
<tr>
<td>Chevy</td>
<td>1990</td>
<td>white</td>
<td>87</td>
</tr>
<tr>
<td>Chevy</td>
<td>1990</td>
<td>blue</td>
<td>62</td>
</tr>
<tr>
<td>Chevy</td>
<td>1991</td>
<td>red</td>
<td>54</td>
</tr>
<tr>
<td>Chevy</td>
<td>1991</td>
<td>white</td>
<td>95</td>
</tr>
<tr>
<td>Chevy</td>
<td>1991</td>
<td>blue</td>
<td>49</td>
</tr>
<tr>
<td>Chevy</td>
<td>1992</td>
<td>red</td>
<td>31</td>
</tr>
<tr>
<td>Chevy</td>
<td>1992</td>
<td>white</td>
<td>54</td>
</tr>
<tr>
<td>Chevy</td>
<td>1992</td>
<td>blue</td>
<td>71</td>
</tr>
<tr>
<td>Ford</td>
<td>1990</td>
<td>red</td>
<td>64</td>
</tr>
<tr>
<td>Ford</td>
<td>1990</td>
<td>white</td>
<td>62</td>
</tr>
<tr>
<td>Ford</td>
<td>1990</td>
<td>blue</td>
<td>63</td>
</tr>
<tr>
<td>Ford</td>
<td>1991</td>
<td>red</td>
<td>52</td>
</tr>
<tr>
<td>Ford</td>
<td>1991</td>
<td>white</td>
<td>9</td>
</tr>
<tr>
<td>Ford</td>
<td>1991</td>
<td>blue</td>
<td>55</td>
</tr>
<tr>
<td>Ford</td>
<td>1992</td>
<td>red</td>
<td>27</td>
</tr>
<tr>
<td>Ford</td>
<td>1992</td>
<td>white</td>
<td>62</td>
</tr>
<tr>
<td>Ford</td>
<td>1992</td>
<td>blue</td>
<td>39</td>
</tr>
</tbody>
</table>

DATA CUBE Model

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>ALL</td>
<td>942</td>
</tr>
<tr>
<td>chevy</td>
<td>ALL</td>
<td>ALL</td>
<td>510</td>
</tr>
<tr>
<td>ford</td>
<td>ALL</td>
<td>ALL</td>
<td>432</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>ALL</td>
<td>343</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>ALL</td>
<td>314</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>ALL</td>
<td>285</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>red</td>
<td>165</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>white</td>
<td>273</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>blue</td>
<td>339</td>
</tr>
<tr>
<td>chevy</td>
<td>1990</td>
<td>ALL</td>
<td>154</td>
</tr>
<tr>
<td>chevy</td>
<td>1991</td>
<td>ALL</td>
<td>199</td>
</tr>
<tr>
<td>chevy</td>
<td>1992</td>
<td>ALL</td>
<td>157</td>
</tr>
<tr>
<td>ford</td>
<td>1990</td>
<td>ALL</td>
<td>189</td>
</tr>
<tr>
<td>ford</td>
<td>1991</td>
<td>ALL</td>
<td>116</td>
</tr>
<tr>
<td>ford</td>
<td>1992</td>
<td>ALL</td>
<td>128</td>
</tr>
<tr>
<td>chevy</td>
<td>ALL</td>
<td>red</td>
<td>91</td>
</tr>
<tr>
<td>chevy</td>
<td>ALL</td>
<td>white</td>
<td>236</td>
</tr>
<tr>
<td>chevy</td>
<td>ALL</td>
<td>blue</td>
<td>183</td>
</tr>
<tr>
<td>ford</td>
<td>ALL</td>
<td>red</td>
<td>144</td>
</tr>
<tr>
<td>ford</td>
<td>ALL</td>
<td>white</td>
<td>133</td>
</tr>
<tr>
<td>ford</td>
<td>ALL</td>
<td>blue</td>
<td>156</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>red</td>
<td>69</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>white</td>
<td>149</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>blue</td>
<td>125</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>red</td>
<td>107</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>white</td>
<td>104</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>blue</td>
<td>104</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>red</td>
<td>59</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>white</td>
<td>116</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>blue</td>
<td>110</td>
</tr>
</tbody>
</table>
Summary of the Cube

- CUBE operator generalizes relational aggregates
- Needs ALL value to denote sub-cubes
 - ALL values represent aggregation sets
- Needs generalization of user-defined aggregates
- Decorations and abstractions are interesting
- Computation has interesting optimizations
- Relationship to “rest of SQL” not fully worked out.
Materialized Views

- CUBE is a user abstraction
- How do we store/maintain/query it?
 - Option 1: Compute the entire CUBE over all possible attributes
 - Not feasible... too large
 - Maintenance cost will be formidable
Materialized Views

- CUBE is a user abstraction
- How do we store/maintain/query it?
 - Option 1: Compute the entire CUBE over all possible attributes
 - Not feasible... too large
 - Maintenance cost will be formidable
 - Option 2: Compute from scratch
 - Don’t materialize anything... go straight to the source table for every query
 - Too much query latency
Materialized Views

- CUBE is a user abstraction
- How do we store/maintain/query it?
 - Option 1: Compute the entire CUBE over all possible attributes
 - Not feasible... too large
 - Maintenance cost will be formidable
 - Option 2: Compute from scratch
 - Don’t materialize anything... go straight to the source table for every query
 - Too much query latency
 - Option 3: Materialize a portion of the CUBE
 - Keep the most commonly required portions around
 - Try to answer all queries using that
Cube=\{\text{Materialized Views}\} \\
[\text{Harinarayan, Rajaraman, Ullman 96}]

- each groupby creates a "summary table" which is a materialized view with some dressing
- storing these summary tables speed up cube queries
- what to store and what not
- TPC-D example for sale analysis

1. part, supplier, customer (6M, i.e., 6 million rows)
2. part, customer (6M)
3. part, supplier (0.8M)
4. supplier, customer (6M)
5. part (0.2M)
6. supplier (0.01M)
7. customer (0.1M)
8. none (1)
The Lattice Organization

• the query sales groupby part will be answered at
 ▪ p - cost of scanning 0.2M records
 ▪ pc - -""- 6.0M -""
 ▪ psc - -""- 6.0M -""

• select the views that minimize overall query performance
 ▪ need a good query model
 ▪ need a good optimization criterion
Views grow exponentially

• in general 2^{*N} subspaces

Figure 8: Combined lattice.
DynaMat
Yannis Kotidis, Nick Roussopoulos (Sigmod 1999)

• Conventional Data Warehouse
 ▪ pre-computed set view is static (too hard to select and adjust)
 ▪ usually selected by an administrator

• DynaMat proposed a framework for automatic management of views
 ▪ Unifies view selection & view refresh
 ▪ Amortizes generation and maintenance cost over multiple uses of cached results

• Techniques
 ▪ DynaMat caches the results of every query
 ▪ Each incoming query is evaluated against the cached results to see if any of those can be used
 ▪ The captured set is updated within an update cycle to the extent possible
DynaMat Architecture

Online Operation

- Try to match each query from the view pool (Fragment Locator)
 - Fragments are either single value predicates or complete ranges
 - A Directory Index is maintained for efficient searches
- On the fly decide whether to cache the result in the pool (Admission Control Entity)
Materialized Range Fragments

- Materialized Results are restricted to one of:
 a) a full Range \(R_i = \{\text{min}_d, \text{max}_d\} \)
 b) a single value for \(d_i \)
 c) an empty range denotes a dimension that is not present in the query
- SQL queries are mapped to MR queries that are answered by cached MRFs
- MRFs are coarser than query results (expanded when necessary)
- No combination of MRFs are used to answer a query (more costly especially when MRFs are too small and/or overlap)
- An R-tree based index is used to identify possible MRFs that can answer the query—among those, the best fit is chosen
- The use of MRFs makes matching efficient.