What is an Abstraction?

- A property from some domain

Example Abstraction

Concrete values: sets of integers

Abstract values

Concretization function γ maps each abstract value to concrete values it represents

Abstraction is Imprecise

Concrete values: sets of integers

Abstract values

Abstraction function α maps each concrete set to the best abstract value
Composing α and γ

$\gamma \alpha$

Concrete values: sets of integers

Abstract values

Abstraction followed by concretization is sound but imprecise

α and γ Form a Galois Insertion

- α and γ are monotonic
 - Recall: f is monotonic if $x \leq y \Rightarrow f(x) \leq f(y)$
 - Also called “order preserving”
- $S \subseteq \gamma(\alpha(S))$ for any concrete set S
- $\alpha(\gamma(A)) = A$ for any abstract element A

Next up: Abstract interpretation in action
- We’ll develop an abstract interpretation of a simple language and prove it correct using these ideas

Source Language

- Integers and multiplication
 - $e ::= i \mid e * e$

- Standard semantics of the program
 - $\text{Eval} : e \rightarrow \text{Int}$
 - $\text{Eval}(i) = i$
 - $\text{Eval}(e_1 * e_2) = \text{Eval}(e_1) \times \text{Eval}(e_2)$

Abstraction

- Define an abstract semantics that computes only the sign of the result

<table>
<thead>
<tr>
<th>\times</th>
<th>$+$</th>
<th>0</th>
<th>$-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+$</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$-$</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
</tr>
</tbody>
</table>

$\text{AEval} : e \rightarrow \{-, 0, +\}$

$\text{AEval}(i) = \begin{cases}
 + & i > 0 \\
 0 & i = 0 \\
 - & i < 0
\end{cases}$

$\text{AEval}(e_1 * e_2) = \text{AEval}(e_1) \times \text{AEval}(e_2)$
\textbf{Soundness}

- We can show our abstraction correctly predicts the sign of an expression
- Proof: by structural induction on e
 - $\text{Eval}(e) > 0$ iff $\text{AEval}(e) = +$
 - $\text{Eval}(e) = 0$ iff $\text{AEval}(e) = 0$
 - $\text{Eval}(e) < 0$ iff $\text{AEval}(e) = -$

\textbf{Another Approach to Soundness}

- Natural concretization function
\[
\begin{align*}
\gamma(+) &= \{ i \mid i > 0 \} \\
\gamma(0) &= \{ 0 \} \\
\gamma(-) &= \{ i \mid i < 0 \}
\end{align*}
\]
- Note: This presentation is slightly non-standard
 - Usually defined in terms of execution traces

\textbf{Soundness (cont’d)}

- Our abstraction is sound if
 - $\text{Eval}(e) \in \gamma(\text{AEval}(e))$
- Soundness proof: later

\textbf{Adding Unary Negation}

- $e ::= i \mid e \ast e \mid -e$
- $\text{Eval}(-e) = -\text{Eval}(e)$
- $\text{AEval}(e) = -\text{AEval}(e)$

\[
\begin{array}{c|cccc}
- & + & 0 & - \\
\hline
+ & 0 & - & + \\
0 & - & 0 & +
\end{array}
\]
- No problems
Adding Addition

- $e ::= i \mid e \cdot e \mid -e \mid e + e$

- $Eval(e_1 + e_2) = Eval(e_1) + Eval(e_2)$
- $AEval(e_1 + e_2) = AEval(e_1) + AEval(e_2)$

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>0</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>?</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Our abstract domain is not closed under addition

Solution

- Add an abstract value to represent any integer
- Finding closed domain often key design problem

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>0</th>
<th>-</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>0</th>
<th>-</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>0</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>⊥</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>0</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

Other operations also need to handle T

Two Ways to Lose Information

- OK: Abstraction still precise enough
 - $Eval((5 * 5) + 6) = 31$
 - $AEval((5*5) + 6) = (+ \times +) \pm + = +$
 - Abstractly, we don’t know which value we computed
 - …but we don’t care, since we only want the sign

- Not so good: “Don’t know” values
 - $Eval((1 + 2) + -3) = 0$
 - $AEval((1 + 2) + -3) = (+ \pm +) \pm - = +\pm - = T$
 - We also don’t know which value we computed
 - …and we can’t even figure out its sign

Adding Integer Division

- What happens when we divide by zero?
 - The result is not an integer (it’s undefined)
 - If we divide each integer in a set by 0, the result is the empty set

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>0</th>
<th>-</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>0</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>⊥</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>0</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
Adding Integer Division (cont’d)

- We need to extend other abstract operations to work on \(\perp \).
- Every operation involving \(\perp \) results in \(\perp \).
 - All operations are strict in \(\perp \):
 \[
 \begin{align*}
 \perp \times a &= \perp \\
 a \times \perp &= \perp \\
 \perp + a &= \perp \\
 a + \perp &= \perp \\
 a - \perp &= \perp
 \end{align*}
 \]

Abstraction and Concretization

- Concretization function \(\Upsilon \):
 \[
 \begin{align*}
 \Upsilon(\top) &= \text{all integers} \\
 \Upsilon(+) &= \{ i \mid i > 0 \} \\
 \Upsilon(0) &= \{ 0 \} \\
 \Upsilon(-) &= \{ i \mid i < 0 \} \\
 \Upsilon(\perp) &= \emptyset
 \end{align*}
 \]
- Abstraction function maps concrete values (sets of integers) to smallest valid abstract element
 \[
 \alpha(S) = \begin{cases}
 \perp & \exists i \in S, i < 0 \\
 0 & \exists i \in S, i = 0 \\
 \perp & \exists i \in S, i > 0 \\
 \perp & \text{otherwise}
 \end{cases}
 \]

The Abstract Domain

- Look, Ma, a lattice!
- We’ve got:
 - A set of elements \(\{ \perp, +, 0, -, \top \} \)
 - A relation \(\leq \) that is
 - Reflexive
 - Anti-symmetric
 - Transitive
 - And
 - The least upper bound (lub, \(\sqcup \)) and greatest lower bound (glb, \(\sqcap \)) exists for any pair of elements
 - So it’s a lattice

Definition

- An abstract interpretation consists of
 - A concrete domain \(S \) and an abstract domain \(A \)
 - Concretization and abstraction functions that form a Galois insertion [of \(A \) into \(S \)]
 - A (sound) abstract semantic function
 - Recall: \(\alpha \) and \(\Upsilon \) form a Galois insertion if
 - \(\alpha \) and \(\Upsilon \) are monotone
 - \(S \subseteq \gamma(\alpha(S)) \) or \(\text{id} \leq \gamma \alpha \) for any concrete set \(S \)
 - \(A = \alpha(\gamma(A)) \) or \(\text{id} = \alpha \gamma \) for any abstract element \(A \)
Soundness, Again

\[\text{AEval} \{ \perp, +, 0, -, T \} \]
\[\gamma \downarrow \alpha \]
\[\text{Eval} \]
\[i \in S \]

- Our abstraction is sound if
 - \(\text{Eval}(e) \in \gamma(\text{AEval}(e)) \)
- Soundness proof: next

Conditions for Correctness

- We can show that if
 - \(\alpha \) and \(\gamma \) form a Galois insertion
 - And abstract operations \(\text{op} \) are locally correct
 - \(\gamma(\text{op}(a_1, ..., a_n)) \supseteq \text{op}(\gamma(a_1), ..., \gamma(a_n)) \)
 - Note: We’ve extended \(\text{op} \) pointwise to sets
 - I.e., if \(S \) and \(T \) are sets, \(S + T = \{s + t | s \in S, t \in T\} \)
- Then the abstract interpretation is sound

Proof: Show \(\text{Eval}(e) \in \gamma(\text{AEval}(e)) \)

- By structural induction on expressions
 - Base cases: an integer \(i \), so \(\text{Eval}(i) = i \)
 - if \(i < 0 \) then \(\gamma(\text{AEval}(i)) = \gamma(\cdot) = \{ j | j < 0 \} \)
 - Other cases similar
 - Induction: for any operation
 \[\text{Eval}(e_1 \text{ op } e_2) = \gamma(\text{AEval}(e_1)) \text{ op } \gamma(\text{AEval}(e_2)) \]
 - by definition of \(\text{AEval} \)
 by local correctness of \(\text{op} \)
 by definition of \(\text{AEval} \)

Another Proof of Correctness

- We can define correctness in terms of abstraction rather than concretization
 - \(\text{Eval}(e) \in \gamma(\text{AEval}(e)) \) iff \(\alpha(\{\text{Eval}(e)\}) \subseteq \text{AEval}(e) \)
- Equivalence proof:
 - (\(\Rightarrow \)) Assume \(\text{Eval}(e) \in \gamma(\text{AEval}(e)) \)
 - I.e., \(\{\text{Eval}(e)\} \subseteq \gamma(\text{AEval}(e)) \)
 - Then \(\alpha(\{\text{Eval}(e)\}) \leq \alpha(\gamma(\text{AEval}(e))) \) by monotonicity
 - And \(\alpha(\{\text{Eval}(e)\}) \leq \text{AEval}(e) \) since \(\text{id} = \alpha \gamma \)
Correctness Proof (cont’d)

- Showing
 - \(\text{Eval}(e) \in \gamma(\text{AEval}(e)) \) iff \(\alpha(\{\text{Eval}(e)\}) \leq \text{AEval}(e) \)
 - \((\iff) \) Assume \(\alpha(\{\text{Eval}(e)\}) \leq \text{AEval}(e) \)
 - Then \(\gamma(\alpha(\{\text{Eval}(e)\})) \subseteq \gamma(\text{AEval}(e)) \) by monotonicity
 - Then \(\{\text{Eval}(e)\} \subseteq \gamma(\text{AEval}(e)) \) since \(\text{id} \leq \gamma \alpha \)
 - I.e., \(\text{Eval}(e) \in \gamma(\text{AEval}(e)) \)

An Alternate Abstract Domain

- That domain wasn’t the only choice, of course

Relationship to Data Flow Analysis

- Abstract interpretation was invented partially to find a firm semantic foundation for data flow analysis
 - Precise relationship between concrete domain (program executions) and abstract domain (data flow facts)
 - Generic correctness proof
 - Caveat: Data flow typically uses meet, abstract interpretation typically uses join

Acceleration: Widening

- Given monotone transfer functions
 - Finite height lattice \(\Rightarrow \) termination

- What if
 - Height is finite but large?
 - Height is infinite

- “Solution”: Widening
 - Every so often, replace \(A \) by \(A' > A \)
 - This is safe (conservative, sound)
 - But apply when? where?
Limitations

• Focus is on correctness
 - Not much insight into efficient algorithms

• Theory is completely general
 - What are good choices for modeling data structures and the heap? Higher-order functions? Objects?

• Forwards vs. backwards distinction
 - Permeates literature on abstract interpretation
 - But theory doesn’t require it

Conclusions

• Cousot and Cousot paper(s) seminal work(s)
• The theory of abstract interpretation is often confused with using it to construct tool (e.g., data flow analysis)

• Slogan:
 - Finite lattices + monotonic functions = program analysis