Data Flow Analysis

Abstract Syntax Tree (AST)

- Programs are written in text
 - I.e., sequences of characters
 - Awkward to work with

- First step: Convert to structured representation
 - Use lexer (like flex) to recognize tokens
 - Sequences of characters that make words in the language
 - Use parser (like bison) to group words structurally
 - And, often, to produce AST

Compiler Structure

- Source code parsed to produce AST
- AST transformed to CFG
- Data flow analysis operates on control flow graph (and other intermediate representations)

Abstract Syntax Tree Example

```
x := a + b;
y := a * b;
while (y > a) {
  a := a + 1;
  x := a + b
}
x := a + b;
y := a * b;
while (y > a) {
  a := a + 1;
  x := a + b
}
```
ASTs

• ASTs are abstract
 - They don’t contain all information in the program
 - E.g., spacing, comments, brackets, parentheses
 - Any ambiguity has been resolved
 - E.g., \(a + b + c\) produces the same AST as \((a + b) + c\)

• For more info, see CMSC 430
 - In this class, we will generally begin at the AST level

Disadvantages of ASTs

• AST has many similar forms
 - E.g., for, while, repeat...until
 - E.g., if, ?, switch

• Expressions in AST may be complex, nested
 - \((42 \times y) + (z > 5 ? 12 \times z : z + 20)\)

• Want simpler representation for analysis
 - ...at least, for dataflow analysis

Control-Flow Graph (CFG)

• A directed graph where
 - Each node represents a statement
 - Edges represent control flow

• Statements may be
 - Assignments \(x := y \text{ op } z\) or \(x := \text{ op } z\)
 - Copy statements \(x := y\)
 - Branches \(\text{goto L or if } x \text{ relop } y \text{ goto L}\)
 - etc.

Control-Flow Graph Example

\[
\begin{align*}
x &:= a + b; \\
y &:= a \times b; \\
\text{while } (y > a) \\& \\
\{ a &:= a + 1; \\
x &:= a + b \\
\}
\end{align*}
\]
Variations on CFGs

- We usually don’t include declarations (e.g., int x;)
 - But there’s usually something in the implementation

- May want a unique entry and exit node
 - Won’t matter for the examples we give

- May group statements into basic blocks
 - A sequence of instructions with no branches into or out of the block

Control-Flow Graph w/Basic Blocks

- Can lead to more efficient implementations
- But more complicated to explain, so...
 - We’ll use single-statement blocks in lecture today

Graph Example with Entry and Exit

x := a + b;
y := a * b;
while (y > a) {
 a := a + 1;
x := a + b
}

CFG vs. AST

- CFGs are much simpler than ASTs
 - Fewer forms, less redundancy, only simple expressions
- But...AST is a more faithful representation
 - CFGs introduce temporaries
 - Lose block structure of program
- So for AST,
 - Easier to report error + other messages
 - Easier to explain to programmer
 - Easier to unpars to produce readable code
Data Flow Analysis

- A framework for proving facts about programs
- Reasons about lots of little facts
- Little or no interaction between facts
 - Works best on properties about how program computes
- Based on all paths through program
 - Including infeasible paths

Data Flow Facts

- Is expression e available?
 - Facts:
 - $a + b$ is available
 - $a \times b$ is available
 - $a + 1$ is available

Available Expressions

- An expression e is available at program point p if
 - e is computed on every path to p, and
 - the value of e has not changed since the last time e was computed on the paths to p
- Optimization
 - If an expression is available, need not be recomputed
 - (At least, if it's still in a register somewhere)

Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x := a + b$</td>
<td>$a + b$</td>
<td></td>
</tr>
<tr>
<td>$y := a \times b$</td>
<td>$a \times b$</td>
<td></td>
</tr>
<tr>
<td>$a := a + 1$</td>
<td>$a + 1, a + b, a \times b$</td>
<td></td>
</tr>
</tbody>
</table>

entry

exit
Computing Available Expressions

Terminology

- A joint point is a program point where two branches meet

- Available expressions is a forward must problem
 - Forward = Data flow from in to out
 - Must = At join point, property must hold on all paths that are joined

Data Flow Equations

- Let s be a statement
 - $\text{succ}(s) = \{ \text{immediate successor statements of } s \}$
 - $\text{pred}(s) = \{ \text{immediate predecessor statements of } s \}$
 - $\text{In}(s) = \text{program point just before executing } s$
 - $\text{Out}(s) = \text{program point just after executing } s$

- $\text{In}(s) = \bigcap_{s' \in \text{pred}(s)} \text{Out}(s')$

- $\text{Out}(s) = \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s))$

Liveness Analysis

- A variable v is live at program point p if
 - v will be used on some execution path originating from p...
 - before v is overwritten

- Optimization
 - If a variable is not live, no need to keep it in a register
 - If variable is dead at assignment, can eliminate assignment
Data Flow Equations

• Available expressions is a forward must analysis
 ▪ Data flow propagate in same dir as CFG edges
 ▪ Expr is available only if available on all paths

• Liveness is a backward may problem
 ▪ To know if variable live, need to look at future uses
 ▪ Variable is live if used on some path

\[\text{Out}(s) = \bigcup_{s' \in \text{succ}(s)} \text{In}(s') \]

\[\text{In}(s) = \text{Gen}(s) \cup (\text{Out}(s) - \text{Kill}(s)) \]

Gen and Kill

• What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x := a + b)</td>
<td>(a, b)</td>
<td>(x)</td>
</tr>
<tr>
<td>(y := a \times b)</td>
<td>(a, b)</td>
<td>(y)</td>
</tr>
<tr>
<td>(y > a)</td>
<td>(a, y)</td>
<td></td>
</tr>
<tr>
<td>(a := a + 1)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
</tbody>
</table>

Computing Live Variables

\{a, b\}
\{x, a, b\}
\{xy\} \{a, b\}
\{y, a, b\}
\{x, y, a, b\}

Very Busy Expressions

• An expression \(e \) is very busy at point \(p \) if
 ▪ On every path from \(p \), expression \(e \) is evaluated before the value of \(e \) is changed

• Optimization
 ▪ Can hoist very busy expression computation

• What kind of problem?
 ▪ Forward or backward? \(\text{backward} \)
 ▪ May or must? \(\text{must} \)
Reaching Definitions

- A definition of a variable \(v \) is an assignment to \(v \)
- A definition of variable \(v \) reaches point \(p \) if
 - There is no intervening assignment to \(v \)

- Also called def-use information

What kind of problem?
- Forward or backward? \textit{forward}
- May or must? \textit{may}

Space of Data Flow Analyses

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reaching definitions</td>
<td>Available expressions</td>
</tr>
<tr>
<td>Backward</td>
<td>Live variables</td>
<td>Very busy expressions</td>
</tr>
</tbody>
</table>

Most data flow analyses can be classified this way
- A few don’t fit: bidirectional analysis
- Lots of literature on data flow analysis

Data Flow Facts and Lattices

- Typically, data flow facts form a lattice
 - Example: Available expressions
 - \(\top \) “top”
 - \(\bot \) “bottom”

Partial Orders

- A partial order is a pair \((P, \leq)\) such that
 - \(\leq \subseteq P \times P \)
 - \(\leq \) is reflexive: \(x \leq x \)
 - \(\leq \) is anti-symmetric: \(x \leq y \) and \(y \leq x \Rightarrow x = y \)
 - \(\leq \) is transitive: \(x \leq y \) and \(y \leq z \Rightarrow x \leq z \)
Lattices

A partial order is a lattice if \(\cap \) and \(\cup \) are defined on any set:

- \(\cap \) is the **meet** or **greatest lower bound** operation:
 \(x \cap y \leq x \) and \(x \cap y \leq y \)
 - if \(z \leq x \) and \(z \leq y \), then \(z \leq x \cap y \)

- \(\cup \) is the **join** or **least upper bound** operation:
 \(x \leq x \cup y \) and \(y \leq x \cup y \)
 - if \(x \leq z \) and \(y \leq z \), then \(x \cup y \leq z \)

Lattices (cont’d)

- A finite partial order is a lattice if meet and join exist for every pair of elements
- A lattice has unique elements \(\bot \) and \(\top \) such that
 - \(x \cap \bot = \bot \) \(x \cup \bot = x \)
 - \(x \cap \top = x \) \(x \cup \top = \top \)
- In a lattice, \(x \leq y \) iff \(x \cap y = x \)
 \(x \leq y \) iff \(x \cup y = y \)
- A partial order is a **complete lattice** if meet and join are defined on any set \(S \subseteq P \)

Forward Must Data Flow Algorithm

Out(s) = Top for all statements s
// Slight acceleration: Could set Out(s) = Gen(s) U (Top - Kill(s))

\(W := \{ \text{all statements} \} \)
(worklist)

repeat
 Take s from W
 In(s) := \(\cap s' \in \text{pred}(s) \text{Out}(s') \)
 temp := Gen(s) U (In(s) - Kill(s))
 if (temp != Out(s)) {
 Out(s) := temp
 }
 W := W U succ(s)

until W = \(\emptyset \)

Monotonicity

A function \(f \) on a partial order is **monotonic** if

\(x \leq y \Rightarrow f(x) \leq f(y) \)

- Easy to check that operations to compute In and Out are monotonic
 - In(s) := \(\cap s' \in \text{pred}(s) \text{Out}(s') \)
 \(a \text{ function } f_s(In(s)) \)
 - temp := Gen(s) U (In(s) - Kill(s))
 - Putting these two together,
 - temp := \(f_s(\cap s' \in \text{pred}(s) \text{Out}(s')) \)
Useful Lattices

• \((2^S, \subseteq)\) forms a lattice for any set \(S\)
 - \(2^S\) is the powerset of \(S\) (set of all subsets)

• If \((S, \leq)\) is a lattice, so is \((S, \geq)\)
 - i.e., lattices can be flipped

• The lattice for constant propagation

Termination

• We know the algorithm terminates because
 - The lattice has finite height
 - The operations to compute \(I_n\) and \(O_u\) are monotonic
 - On every iteration, we remove a statement from the worklist and/or move down the lattice

Forward Data Flow, Again

\[
\text{Out}(s) = \text{Top} \quad \text{for all statements } s
\]
\[
W := \{ \text{all statements} \} \quad \text{(worklist)}
\]
repeat
 Take \(s\) from \(W\)
 temp := \(\{ s' \in \text{pred}(s) \mid \text{Out}(s') \} \) (\(s\), monotonic transfer fn)
 if (temp \(!=\) Out(s)) {
 Out(s) := temp
 W := W \cup \text{succ}(s)
 }
until \(W = \emptyset\)

Lattices \((P, \leq)\)

• Available expressions
 - \(P = \) sets of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - \(\text{Top} = \) set of all expressions

• Reaching Definitions
 - \(P = \) set of definitions (assignment statements)
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} = \) empty set
Fixpoints

- We always start with Top
 - Every expression is available, no defns reach this point
 - Most optimistic assumption
 - Strongest possible hypothesis
 - = true of fewest number of states
- Revise as we encounter contradictions
 - Always move down in the lattice (with meet)
- Result: A greatest fixpoint

Lattices \((P, \leq)\), cont’d

- Live variables
 - \(P = \) sets of variables
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - Top = empty set
- Very busy expressions
 - \(P = \) set of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - Top = set of all expressions

Forward vs. Backward

\[
\text{Out}(s) = \top \quad \text{for all } s \\
W := \{ \text{all statements} \} \\
\text{repeat} \\
\quad \text{Take } s \text{ from } W \\
\quad \text{temp} := f_s (\cap s' \in \text{pred}(s) \text{ Out}(s')) \\
\quad \text{if (temp } \neq \text{ Out}(s)) \{ \\
\quad \quad \text{Out}(s) := \text{temp} \\
\quad \quad W := W \cup \text{succ}(s) \\
\quad \}\ \\
\text{until } W = \emptyset
\]

\[
\text{In}(s) = \top \quad \text{for all } s \\
W := \{ \text{all statements} \} \\
\text{repeat} \\
\quad \text{Take } s \text{ from } W \\
\quad \text{temp} := f_s (\cap s' \in \text{succ}(s) \text{ In}(s')) \\
\quad \text{if (temp } \neq \text{ In}(s)) \{ \\
\quad \quad \text{In}(s) := \text{temp} \\
\quad \quad W := W \cup \text{pred}(s) \\
\quad \}\ \\
\text{until } W = \emptyset
\]

Termination Revisited

- How many times can we apply this step:
 - \(\text{temp} := f_s (\cap s' \in \text{pred}(s) \text{ Out}(s'))\)
 - if (temp } \neq \text{ Out}(s)) \{ ... \}
 - Claim: \(\text{Out}(s)\) only shrinks
 - Proof: \(\text{Out}(s)\) starts out as top
 - So \(\text{temp}\) must be \(\leq\) than \(\top\) after first step
 - Assume \(\text{Out}(s')\) shrinks for all predecessors \(s'\) of \(s\)
 - Then \(\cap s' \in \text{pred}(s) \text{ Out}(s')\) shrinks
 - Since \(f_s\) monotonic, \(f_s (\cap s' \in \text{pred}(s) \text{ Out}(s'))\) shrinks
Termination Revisited (cont’d)

• A descending chain in a lattice is a sequence
 - \(x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \ldots \)
• The height of a lattice is the length of the longest descending chain in the lattice

Then, dataflow must terminate in \(O(nk) \) time

- \(n \) = # of statements in program
- \(k \) = height of lattice
- assumes meet operation takes \(O(1) \) time

Least vs. Greatest Fixpoints

• Dataflow tradition: Start with Top, use meet
 - To do this, we need a meet semilattice with top
 - complete meet semilattice = meets defined for any set
 - finite height ensures termination
 - Computes greatest fixpoint

• Denotational semantics tradition: Start with Bottom, use join
 - Computes least fixpoint

Distributive Data Flow Problems

• By monotonicity, we also have
 \[f(x \sqcap y) \leq f(x) \sqcap f(y) \]

• A function \(f \) is distributive if
 \[f(x \sqcap y) = f(x) \sqcap f(y) \]

Benefit of Distributivity

• Joins lose no information

\[k(h(f(T) \sqcap g(T))) = \]
\[k(h(f(T)) \sqcap h(g(T))) = \]
\[k(h(f(T))) \sqcap k(h(g(T))) = \]
Accuracy of Data Flow Analysis

- Ideally, we would like to compute the meet over all paths (MOP) solution:
 - Let f_s be the transfer function for statement s
 - If p is a path $\{s_1, ..., s_n\}$, let $f_p = f_n; ...; f_1$
 - Let $\text{path}(s)$ be the set of paths from the entry to s

\[
\text{MOP}(s) = \bigcap_{p \in \text{path}(s)} f_p(\top)
\]

- If a data flow problem is distributive, then solving the data flow equations in the standard way yields the MOP solution

What Problems are Distributive?

- Analyses of how the program computes
 - Live variables
 - Available expressions
 - Reaching definitions
 - Very busy expressions

- All Gen/Kill problems are distributive

A Non-Distributive Example

- Constant propagation

```
\begin{array}{c}
x := 1 \\
\downarrow \\
y := 2
\end{array}
\quad
\begin{array}{c}
x := 2 \\
\downarrow \\
y := 1
\end{array}
```

- In general, analysis of what the program computes is not distributive

Practical Implementation

- Data flow facts = assertions that are true or false at a program point

- Represent set of facts as bit vector
 - Fact, represented by bit i
 - Intersection = bitwise and, union = bitwise or, etc

- “Only” a constant factor speedup
 - But very useful in practice
Basic Blocks

- A basic block is a sequence of statements s.t.
 - No statement except the last in a branch
 - There are no branches to any statement in the block except the first

- In practical data flow implementations,
 - Compute Gen/Kill for each basic block
 - Compose transfer functions
 - Store only In/Out for each basic block
 - Typical basic block ~5 statements

Order Matters

- Assume forward data flow problem
 - Let $G = (V, E)$ be the CFG
 - Let k be the height of the lattice

- If G acyclic, visit in topological order
 - Visit head before tail of edge
 - Running time $O(|E|)$
 - No matter what size the lattice

Order Matters — Cycles

- If G has cycles, visit in reverse postorder
 - Order from depth-first search
 - Let $Q = \text{max} \# \text{ back edges on cycle-free path}$
 - Nesting depth
 - Back edge is from node to ancestor on DFS tree

- Then if $\forall x. f(x) \leq x$ (sufficient, but not necessary)
 - Running time is $O((Q + 1)|E|)$
 - Note direction of req’t depends on top vs. bottom

Flow-Sensitivity

- Data flow analysis is flow-sensitive
 - The order of statements is taken into account
 - I.e., we keep track of facts per program point

- Alternative: Flow-insensitive analysis
 - Analysis the same regardless of statement order
 - Standard example: types
 - `/\ast \times : \text{int} /\ast x := ... /\ast \times : \text{int} /\ast`
Terminology Review

- Must vs. May
 - (Not always followed in literature)
- Forwards vs. Backwards
- Flow-sensitive vs. Flow-insensitive
- Distributive vs. Non-distributive

Another Approach: Elimination

- Recall in practice, one transfer function per basic block
 - Why not generalize this idea beyond a basic block?
 - “Collapse” larger constructs into smaller ones, combining data flow equations
 - Eventually program collapsed into a single node!
 - “Expand out” back to original constructs, rebuilding information

Lattices of Functions

- Let \((P, \leq)\) be a lattice
- Let \(M\) be the set of monotonic functions on \(P\)
- Define \(f \leq f \circ g\) if for all \(x\), \(f(x) \leq g(x)\)
- Define the function \(f \sqcap g\) as
 - \((f \sqcap g)(x) = f(x) \sqcap g(x)\)
- Claim: \((M, \leq)\) forms a lattice

Elimination Methods: Conditionals

\[
\begin{align*}
\text{Out}(\text{if}) &= f_{\text{if}}(\text{In}(\text{ite})) \\
\text{Out}(\text{then}) &= (f_{\text{then}} \circ f_{\text{if}})(\text{In}(\text{ite})) \\
\text{Out}(\text{else}) &= (f_{\text{else}} \circ f_{\text{if}})(\text{In}(\text{ite}))
\end{align*}
\]
Elimination Methods: Loops

\[f_{\text{while}} = f_{\text{head}} \sqcap \]
\[f_{\text{head}} \circ f_{\text{body}} \circ f_{\text{head}} \sqcap \]
\[f_{\text{head}} \circ f_{\text{body}} \circ f_{\text{head}} \circ f_{\text{body}} \circ f_{\text{head}} \sqcap \cdots \]

Elimination Methods: Loops (cont’d)

- Let \(f^i = f \circ f \circ \ldots \circ f \) (i times)
 - \(f^0 = id \)
- Let \(g(j) = \bigcap_{i \in [0..j]} (f_{\text{head}} \circ f_{\text{body}})^i \circ f_{\text{head}} \)
- Need to compute limit as \(j \) goes to infinity
 - Does such a thing exist?
 - Observe: \(g(j+1) \leq g(j) \)

Height of Function Lattice

- Assume underlying lattice \((P, \leq) \) has finite height
 - What is height of lattice of monotonic functions?
 - Claim: finite (see homework)
- Therefore, \(g(j) \) converges

Non-Reducible Flow Graphs

- Elimination methods usually only applied to reducible flow graphs
 - Ones that can be collapsed
 - Standard constructs yield only reducible flow graphs
- Unrestricted goto can yield non-reducible graphs
Comments

- Can also do backwards elimination
 - Not quite as nice (regions are usually single entry but often not single exit)
- For bit-vector problems, elimination efficient
 - Easy to compose functions, compute meet, etc.
- Elimination originally seemed like it might be faster than iteration
 - Not really the case

Data Flow Analysis and Functions

- What happens at a function call?
 - Lots of proposed solutions in data flow analysis literature
- In practice, only analyze one procedure at a time

Consequences

- Call to function kills all data flow facts
- May be able to improve depending on language, e.g., function call may not affect locals

More Terminology

- An analysis that models only a single function at a time is **intraprocedural**
- An analysis that takes multiple functions into account is **interprocedural**
- An analysis that takes the whole program into account is...guess?

- Note: **global** analysis means “more than one basic block,” but still within a function

Data Flow Analysis and The Heap

- Data Flow is good at analyzing local variables
 - But what about values stored in the heap?
 - Not modeled in traditional data flow
- In practice: \(*x := e \)
 - Assume all data flow facts killed (!)
 - Or, assume write through \(x \) may affect any variable whose address has been taken
- In general, hard to analyze pointers
Data Flow Analysis and Optimization

- Moore’s Law: Hardware advances double computing power every 18 months.
- Proebsting’s Law: Compiler advances double computing power every 18 years.
 - Not so much bang for the buck!

DF Analysis and Defect Detection

- LCLint - Evans et al. (UVa)
- METAL - Engler et al. (Stanford, now Coverity)
- ESP - Das et al. (MSR)
- FindBugs - Hovemeyer, Pugh (Maryland)
 - For Java. The first three are for C.
- Many other one-shot projects
 - Memory leak detection
 - Security vulnerability checking (tainting, info. leaks)