Commonly-used programming languages are large and complex:
- ANSI C99 standard: 538 pages
- ANSI C++ standard: 714 pages
- Java language specification 2.0: 505 pages

Not good vehicles for understanding language features or explaining program analysis.

Goal

- Develop a “core language” that has
 - The essential features
 - No overlapping constructs
 - And none of the cruft
 - Extra features of full language can be defined in terms of the core language (“syntactic sugar”)
- Lambda calculus
 - Standard core language for single-threaded procedural programming
 - Often with added features (e.g., state); we’ll see that later

Lambda Calculus is Practical!

- An 8-bit microcontroller (Zilog Z8 encore board w/4KB SRAM) computing 1 + 1 using Church numerals in the Lambda calculus

Tim Fraser
Origins of Lambda Calculus

- Invented in 1936 by Alonzo Church (1903-1995)
 - Princeton Mathematician
 - Lectures of lambda calculus published in 1941
 - Also know for
 - Church’s Thesis
 - All effective computation is expressed by recursive (decidable) functions, i.e., in the lambda calculus
 - Church’s Theorem
 - First order logic is undecidable

Lambda Calculus

- Syntax:
 \[e ::= x \text{ variable} \]
 \[| \lambda x.e \text{ function abstraction} \]
 \[| e e \text{ function application} \]

 • Only constructs in pure lambda calculus
 - Functions take functions as arguments and return functions as results
 - I.e., the lambda calculus supports higher-order functions

Semantics

- To evaluate \((\lambda x.e) e2\)
 - Bind \(x\) to \(e2\)
 - Evaluate \(e1\)
 - Return the result of the evaluation

- This is called “beta-reduction”
 - \((\lambda x.e) e2 \rightarrow_{\beta} e1[e2/x]\)
 - \((\lambda x.e) e2\) is called a redex
 - We’ll usually omit the beta

Three Conveniences

- Syntactic sugar for local declarations
 - let \(x = e1\) in \(e2\) is short for \((\lambda x.e2) e1\)

- Scope of \(\lambda\) extends as far to the right as possible
 - \(\lambda x.\lambda y.x y\) is \(\lambda x.(\lambda y.(x y))\)

- Function application is left-associative
 - \(x y z\) is \((x y) z\)
Scoping and Parameter Passing

- Beta-reduction is not yet precise
 - \((\lambda x.e1) e2 \rightarrow e1[e2/x]\)
 - what if there are multiple \(x\)’s?

- Example:
 - let \(x = a\) in
 - let \(y = \lambda z.x\) in
 - let \(x = b\) in \(y\ x\)
 - which \(x\)’s are bound to \(a\), and which to \(b\)?

Free Variables and Alpha Conversion

- The set of free variables of a term is

 \[FV(x) = \{x\} \]

 \[FV(\lambda x.e) = FV(e) - \{x\} \]

 \[FV(e_1 e_2) = FV(e_1) \cup FV(e_2) \]

- A term \(e\) is closed if \(FV(e) = \emptyset\)

- A variable that is not free is bound

Static (Lexical) Scope

- Just like most languages, a variable refers to the closest definition

- Make this precise using variable renaming
 - The term
 - let \(x = a\) in let \(y = \lambda z.x\) in let \(x = b\) in \(y\ x\)
 - is “the same” as
 - let \(x = a\) in let \(y = \lambda z.x\) in let \(w = b\) in \(y\ w\)
 - Variable names don’t matter

Alpha Conversion

- Terms are equivalent up to renaming of bound variables
 - \(\lambda x.e = \lambda y.(e[y/x])\) if \(y \notin FV(e)\)

- This is often called alpha conversion, and we will use it implicitly whenever we need to avoid capturing variables when we perform substitution
Substitution

- Formal definition:
 - $x[e/x] = e$
 - $z[e/x] = z$ if $z \neq x$
 - $(e_1 e_2)[e/x] = (e_1[e/x] e_2[e/x])$
 - $(\lambda z. e_1)[e/x] = \lambda z. (e_1[e/x])$ if $z \neq x$ and $z \notin FV(e)$

- Example:
 - $(\lambda x. y. x) x = (\lambda w. y. w) x \rightarrow y x$
 - (We won’t write alpha conversion down in the future)

A Note on Substitutions

- People write substitution many different ways
 - $e_1[e_2/x]$
 - $e_1[x \leftarrow e_2]$
 - $[x/e_2]e_1$
 - and more...

- But they all mean the same thing

Multi-Argument Functions

- We can’t (yet) write multi-argument functions
 - E.g., a function of two arguments $\lambda(x, y).e$
 - Trick: Take arguments one at a time
 - $\lambda x. \lambda y. e$
 - This is a function that, given argument x, returns a function that, given argument y, returns e
 - $(\lambda x. \lambda y. e) a b \rightarrow (\lambda y. e[a/x]) b \rightarrow e[a/x][b/y]$
 - This is often called **Currying** and can be used to represent functions with any # of arguments

Booleans

- $true = \lambda x. \lambda y. x$
- $false = \lambda x. \lambda y. y$
- if a then b else c = a b c

- Example:
 - if true then b else c $\rightarrow (\lambda x. \lambda y. x) b c \rightarrow (\lambda y. b) c \rightarrow b$
 - if false then b else c $\rightarrow (\lambda x. \lambda y. y) b c \rightarrow (\lambda y. y) c \rightarrow c$
Combinators

- Any closed term is also called a **combinator**
 - So **true** and **false** are both combinators

- Other popular combinators
 - \(I = \lambda x.x \)
 - \(S = \lambda x.\lambda y.x \)
 - \(K = \lambda x.\lambda y.\lambda z. x \, (y \, z) \)
 - Can also define calculi in terms of combinators
 - E.g., the SKI calculus
 - Turns out the SKI calculus is also Turing complete

Pairs

- \((a, b) = \lambda x.\text{if } x \text{ then } a \text{ else } b \)
- \(\text{fst} = \lambda p.p \, \text{true} \)
- \(\text{snd} = \lambda p.p \, \text{false} \)

- Then
 - \(\text{fst} \, (a, b) \rightarrow^* a \)
 - \(\text{snd} \, (a, b) \rightarrow^* b \)

Natural Numbers (Church)

- \(0 = \lambda x.\lambda y.y \)
- \(1 = \lambda x.\lambda y.x \, y \)
- \(2 = \lambda x.\lambda y.\lambda z. x \, (y \, (x \, z)) \)
 - i.e., \(n = \lambda x.\lambda y.\text{<apply } x \text{ n times to } y> \)
 - \(\text{succ} = \lambda z.\lambda x.\lambda y.\lambda z. x \, (z \, x \, y) \)
 - \(\text{iszero} = \lambda z.\lambda x.(\lambda y.\text{false}) \, \text{true} \)

Natural Numbers (Scott)

- \(0 = \lambda x.\lambda y.x \)
- \(1 = \lambda x.\lambda y.y \, 0 \)
- \(2 = \lambda x.\lambda y.y \, 1 \)
 - i.e., \(n = \lambda x.\lambda y.y \, (n-1) \)
 - \(\text{succ} = \lambda z.\lambda x.\lambda y.y \, z \)
 - \(\text{pred} = \lambda z.z \, 0 \, (\lambda x.x) \)
 - \(\text{iszero} = \lambda z.z \, \text{true} \, (\lambda x.\text{false}) \)
A Nondeterministic Semantics

\[(\lambda x.e_1) e_2 \rightarrow e_1[e_2/x] \]

\[e \rightarrow e' \]

\[(\lambda x.e) \rightarrow (\lambda x.e') \]

\[e \rightarrow e' \]

\[e_2 \rightarrow e_2' \]

\[e_1 e_2 \rightarrow e_1'e_2' \]

- Why are these semantics non-deterministic?

The Church-Rosser Theorem

- Lemma (The Diamond Property):
 - If \(a \rightarrow b \) and \(a \rightarrow c \), there exists \(d \) such that \(b \rightarrow^* d \) and \(c \rightarrow^* d \)

- Church-Rosser Theorem:
 - If \(a \rightarrow^* b \) and \(a \rightarrow^* c \), there exists \(d \) such that \(b \rightarrow^* d \) and \(c \rightarrow^* d \)

- Proof: By diamond property

- Church-Rosser is also called confluence

Example

- We can apply reduction anywhere in a term
 - \((\lambda x.(\lambda y.y) x) ((\lambda z.w) x) \rightarrow \lambda x.(x ((\lambda z.w) x) \rightarrow \lambda x.x w \)

- \((\lambda x.(\lambda y.y) x) ((\lambda z.w) x) \rightarrow \lambda x.(\lambda y.y x (w)) \rightarrow \lambda x.x w \)

- Does the order of evaluation matter?
Normal Form

• A term is in normal form if it cannot be reduced
 ▪ Examples: $\lambda x.x, \lambda x.\lambda y.z$

• By Church-Rosser Theorem, every term reduces to at most one normal form
 ▪ Warning: All of this applies only to the pure lambda calculus with non-deterministic evaluation
 ▪ Notice that for our application rule, the argument need not be in normal form

Beta-Equivalence

• Let $=_{\beta}$ be the reflexive, symmetric, and transitive closure of \rightarrow
 ▪ E.g., $(\lambda x.x) \ y \rightarrow y \leftarrow (\lambda z.\lambda w.z) \ y \ y$, so all three are beta equivalent

• If $a =_{\beta} b$, then there exists c such that $a \rightarrow^* c$ and $b \rightarrow^* c$
 ▪ Proof: Consequence of Church-Rosser Theorem

• In particular, if $a =_{\beta} b$ and both are normal forms, then they are equal

Not Every Term Has a Normal Form

• Consider
 ▪ $\Delta = \lambda x.x \ x$
 ▪ Then $\Delta \ \Delta \rightarrow \Delta \ \Delta \rightarrow \cdots$

• In general, self application leads to loops
 ▪ ...which is good if we want recursion

A Fixpoint Combinator

• Also called a paradoxical combinator
 ▪ $Y = \lambda f.\lambda x.f (x \ x)) (\lambda x.f (x \ x))$
 ▪ Note: There are many versions of this combinator

• Then $Y \ F =_{\beta} F (Y \ F)$
 ▪ $Y \ F = (\lambda f.\lambda x.f (x \ x)) (\lambda x.f (x \ x)) \ F$
 ▪ $\rightarrow (\lambda x.F (x \ x)) (\lambda x.F (x \ x))$
 ▪ $\rightarrow F ((\lambda x.F (x \ x)) (\lambda x.F (x \ x)))$
 ▪ $\leftarrow F (Y \ F)$
Example

- Fact $n = \text{if } n = 0 \text{ then } 1 \text{ else } n \cdot \text{fact}(n-1)$
- Let $G = \lambda f. \text{<body of factorial>}$
 - I.e., $G = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n*f(n-1)$
- Y G $1 = \beta$ G $(Y$ G $)$ 1
 - $= \beta$ $(\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n*f(n-1))$ $(Y$ G $)$ 1
 - $= \beta$ if $1 = 0 \text{ then } 1 \text{ else } 1^*(G$ $(Y$ G $))$ 0
 - $= \beta$ if $1 = 0 \text{ then } 1 \text{ else } 1^* ((\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n*f(n-1))$ $(Y$ G $))$ 0
 - $= \beta$ if $1 = 0 \text{ then } 1 \text{ else } 1^* (if$ $0 = 0 \text{ then } 1 \text{ else } 0^* ((Y$ G $))$ 0
 - $= \beta$ $1^*1 = 1$

In Other Words

- The Y combinator “unrolls” or “unfolds” its argument an infinite number of times
 - Y $G = G$ $(Y$ $G) = G$ $(G$ $(Y$ $G)) = G$ $(G$ $(G$ $(Y$ $G)))) = ...$
 - G needs to have a “base case” to ensure termination
- But, only works because we’re call-by-name
 - Different combinator(s) for call-by-value
 - $Z = \lambda f. (\lambda x.f(\lambda y.x x y)) (\lambda x.f(\lambda y.x x y))$
 - Why is this a fixed-point combinator? How does its difference from Y make it work for call-by-value?

Encodings

- Encodings are fun
- They show language expressiveness
- In practice, we usually add constructs as primitives
 - Much more efficient
 - Much easier to perform program analysis on and avoid silly mistakes with
 - E.g., our encodings of true and 0 are exactly the same, but we may want to forbid mixing booleans and integers

Lazy vs. Eager Evaluation

- Our non-deterministic reduction rule is fine for theory, but awkward to implement
- Two deterministic strategies:
 - Lazy: Given $(\lambda x.e_1) e_2$, do not evaluate e_2 if x does not “need” e_1
 - Also called left-most, call-by-name, call-by-need, applicative, normal-order (with slightly different meanings)
 - Eager: Given $(\lambda x.e_1) e_2$, always evaluate e_2 fully before applying the function
 - Also called call-by-value
Lazy Operational Semantics

\[
(\lambda x. e_1) \rightarrow (\lambda x. e_1)
\]

\[
e_1 \rightarrow \lambda x. e \quad e_2 \rightarrow e'
\]

\[
e_1 \quad e_2 \rightarrow e'
\]

- The rules are deterministic and **big-step**
 - The right-hand side is reduced “all the way”
- The rules do not reduce under \(\lambda \)
- The rules are normalizing:
 - If \(a \) is closed and there is a normal form \(b \) such that \(a \rightarrow^* b \), then \(a \rightarrow^d \) for some \(d \)

Eager (Big-Step) Op. Semantics

\[
(\lambda x. e_1) \rightarrow^e (\lambda x. e_1)
\]

\[
e_1 \rightarrow^e \lambda x. e \quad e_2 \rightarrow^e e' \quad e'[e'[x]] \rightarrow^e e''
\]

\[
e_1 \quad e_2 \rightarrow^e e''
\]

- This big-step semantics is also deterministic and does not reduce under \(\lambda \)
- But it is not normalizing
 - Example: \(\text{let } x = \Delta \Delta \text{ in } (\lambda y. y) \)

Lazy vs. Eager in Practice

- Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with “infinite” objects
 - Main example: Haskell
- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side effects
 - Main examples: Most languages (C, Java, ML, etc.)

Functional Programming

- The \(\lambda \) calculus is a prototypical functional programming language:
 - Lots of higher-order functions
 - No side-effects
- In practice, many functional programming languages are “impure” and permit side-effects
 - But you’re supposed to avoid using them
Functional Programming Today

- Two main camps:
 - Haskell – Pure, lazy functional language; no side effects
 - ML (SML/NJ, OCaml) – Call-by-value, with side effects

- Still around: LISP, Scheme
 - Disadvantage/advantage: No static type systems

Influence of Functional Programming

- Functional ideas in many other languages
 - Garbage collection was first designed with Lisp; most languages often rely on a GC today
 - Generics in Java/C++ came from polymorphism in ML and from type classes in Haskell
 - Higher-order functions and closures (used widely in Ruby; proposed extension to Java) are pervasive in all functional languages
 - Many data abstraction principles of OO came from ML’s module system
 - …

Call-by-Name Example

OCaml

```ocaml
let cond p x y = if p then x else y
let rec loop () = loop ()
let z = cond true 42 (loop ())
```

Haskell

```haskell
cond p x y = if p then x else y
loop () = loop ()
z = cond True 42 (loop ()
```

- Infinite loop at call
- 3rd argument never used by `cond`, so never invoked

Two Cool Things to Do with CBN

- Build control structures with functions
  ```
  cond p x y = if p then x else y
  ```

- “Infinite” data structures
  ```
  integers n = n:(integers (n+1))
take 10 (integers 0) (* infinite loop in cbv *)
  ```