3 Pairs and Lists

3.1 Pairs of Numbers

Each constructor of an inductive type can take any number of parameters—none (as with \texttt{true} and \texttt{0}), one (as with \texttt{S}), or more than one:

\[
\text{Inductive natprod : Set :=}
\]
\[
\text{pair : nat \to nat \to natprod.}
\]

This declaration can be read: “There is just one way to construct a pair of numbers: by applying the constructor \texttt{pair} to two arguments of type \texttt{nat}.”

Here are some simple function definitions illustrating pattern matching on two-argument constructors:

\[
\text{Definition fst (p : natprod) : nat :=}
\]
\[
\text{match p with}
\]
\[
| \text{pair x y} => x \\
\text{end.}
\]

\[
\text{Definition snd (p : natprod) : nat :=}
\]
\[
\text{match p with}
\]
\[
| \text{pair x y} => y \\
\text{end.}
\]

Since pairs are used quite a bit, it is nice to be able to write them with the standard mathematical notation \((x, y)\) instead of \texttt{pair x y}. We can instruct Coq to allow this with a \texttt{Notation} declaration.

\[
\text{Notation "(x , y)" := (pair x y).}
\]

The new notation is supported both in expressions like \texttt{fst (3,4)} and in pattern matches:
Definition swap_pair (p : natprod) : natprod :=
 match p with
 | (x, y) => (y, x)
 end.

3.1.1 **Exercise [★★]**: Prove `snd_fst_is_swap` in `Lists.v`.

3.1.2 **Exercise [★★, Optional]**: Prove `fst_swap_is_snd` in `Lists.v`.

3.2 Lists of Numbers

Generalizing the definition of pairs a little, we can describe the type of lists of numbers like this: “A list can be either the empty list or else a pair of a number and another list.”

Inductive natlist : Set :=
 | nil : natlist
 | cons : nat → natlist → natlist.

For example, here is a three-element list:

Definition l_123 := cons 1 (cons 2 (cons nil)).

As with pairs, it is more convenient to write lists in familiar mathematical notation. The following two declarations allow us to use `::` as an infix `cons` operator and square brackets as an “outfix” notation for constructing lists.

Notation "x :: l" := (cons x l)
 (at level 60, right associativity).
Notation "[x , .. , y]" := (cons x .. (cons y nil) ..).

It is not necessary to fully understand the second line of the first declaration (or any of the right-hand side of the second), but in case you are interested, here is roughly what’s going on. The `right associativity` annotation tells Coq how to parenthesize expressions involving several uses of `::` so that, for example, the next three declarations mean exactly the same thing:

Definition l_123′ := 1 :: (2 :: (3 :: nil)).
Definition l_123″ := 1 :: 2 :: 3 :: nil.
Definition l_123‴ := [1,2,3].

The `at level 60` part tells Coq how to parenthesize expressions that involve both `::` and some other infix operator. For example, if we define `+` as infix notation for the `plus` function at level 50,
Notation "\[x + y\] := (plus x y)
(at level 50, left associativity).

then + will bind tighter than :, and \(1 + 2 :: [3]\) will be parsed correctly as \((1 + 2) :: [3]\) rather than \(1 + (2 :: [3])\). The second declaration introduces the standard square-brackets notation for lists; its right-hand side illustrates Coq’s syntax for declaring n-ary notations and translating them to nested sequences of binary constructors.

A number of functions are useful for manipulating lists. For example, the \(\text{repeat}\) function takes a number \(n\) and a \(\text{count}\) and returns a list of length \(\text{count}\) where every element is \(n\).

\[
\text{Fixpoint repeat } (n \text{ count : nat}) \{\text{struct count}\} : \text{natlist} :=
\text{match count with}
\mid 0 \Rightarrow \text{nil}
\mid S \text{ count'} \Rightarrow n :: (\text{repeat } n \text{ count'})
\text{end.}
\]

The \(\text{length}\) function calculates the length of a list.

\[
\text{Fixpoint length } (l:\text{natlist}) \{\text{struct } l\} : \text{nat} :=
\text{match } l \text{ with}
\mid \text{nil} \Rightarrow 0
\mid h :: t \Rightarrow S \text{ (length } t\)
\text{end.}
\]

The \(\text{app}\) function concatenates two lists.

\[
\text{Fixpoint app } (l1 l2 : \text{natlist}) \{\text{struct } l1\} : \text{natlist} :=
\text{match } l1 \text{ with}
\mid \text{nil} \Rightarrow l2
\mid h :: t \Rightarrow h :: (\text{app } t \text{ l2})
\text{end.}
\]

In fact, \(\text{app}\) will be used so pervasively in some parts of what follows that it is convenient to have an infix operator for it.

Notation "\[x ++ y\] := (app x y)
(right associativity, at level 60).

Here are two more small examples. The \(\text{hd}\) function returns the first element (the “head”) of the list, while \(\text{tl}\) ("tail") returns everything but the first element.

\[
\text{Definition hd } (l:\text{natlist}) : \text{nat} :=
\text{match } l \text{ with}
\mid \text{nil} \Rightarrow 0
\mid h :: t \Rightarrow h
\text{end.}
\]
| nil => 0 (* arbitrarily *)
| h :: t => h
end.

Definition tl (l:natlist) : natlist :=
match l with
| nil => nil
| h :: t => t
end.

3.2.1 Exercise [★★, Optional]: A bag (or multiset) is a set where each element can appear any finite number of times. One reasonable implementation of bags is to represent a bag of numbers as a list.

Definition bag := natlist.

Stubs for several bag-manipulating functions (count, union, etc.) can be found in Lists.v. Complete them.

3.3 Reasoning About Lists

Just as with numbers, simple facts about list-processing functions can sometimes be proved entirely by simplification. For example, simplification is enough for this theorem...

Theorem nil_app : forall l:natlist,
 [] ++ l = l.
... because the [] is substituted into the match position in the definition of app, allowing the match itself to be simplified. Also like numbers, it is sometimes helpful to perform case analysis on the possible shapes (empty or non-empty) of an unknown list.

Theorem tl_length_pred : forall l:natlist,
 pred (length l) = length (tl l).
Proof.
 intros l. destruct l as ([] n l').
 Case "l = nil".
 reflexivity.
 Case "l = cons n l'".
 reflexivity. □

Notice that the as annotation on the destruct tactic here introduces two names, n and l’, corresponding to the fact that the cons constructor for lists takes two arguments (the head and tail of the list it is constructing).
Usually, though, interesting theorems about lists require induction for their proofs.

Proofs by induction over non-numeric data types are perhaps a little less familiar than natural number induction, but the basic idea is equally simple. Each inductive declaration defines a set of data values that can be built up from the declared constructors: a number can be either 0 or S applied to a number; a boolean can be either true or false; a list can be either nil or cons applied to a number and a list. Moreover, applications of the declared constructors to one another are the only possible shapes that elements of an inductively defined set can have, and this fact directly gives rise to a way of reasoning about inductively defined sets: a number is either 0 or else it is S applied to some smaller number; a list is either nil or else it is cons applied to some number and some smaller list; etc. So, if we have in mind some proposition P that mentions a list l and we want to argue that P holds for all lists, we can reason as follows. First, show that P is true of l when l is nil. Then show that P is true of l when l is cons n l' for some number n and some smaller list l', assuming that P is true for l'. Since larger lists can only be built up from smaller ones, stopping eventually with nil, these two things together establish the truth of P for all lists l.

For example, the associativity of the ++ operation can be shown by induction on l:

```coq
Theorem ass_app : forall l1 l2 l3 : natlist, l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3.

Proof.
intros l1 l2 l3. induction l1 as [| n l1'].
Case "l1 = nil".
  reflexivity.
Case "l1 = cons n l1'".
  simpl. rewrite → IHl1'. reflexivity. □
```

Again, this Coq proof is not especially illuminating as a static written document—it is easy to see what’s going on if you are reading the proof in an interactive Coq session and you can see the current goal and context at each point, but this state is not visible in the written-down parts of the Coq proof. A human-readable (informal) proof needs to include more explicit—in particular, it helps the reader a lot to be reminded exactly what the induction hypothesis is in the second case.

3.3.1 Theorem: For all $l1$, $l2$, and $l3$,

$$l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3.$$
Proof: By induction on \(l \).

- First, suppose \(l = [] \). We must show

 \[
 [] ++ (12 ++ 13) = ([] ++ 12) ++ 13,
 \]

 which follows directly from the definition of ++.

- Next, suppose \(l = n::l' \), with

 \[
 l' ++ 12 ++ 13 = (l' ++ 12) ++ 13
 \]

 (the induction hypothesis). We must show

 \[
 (n :: l') ++ 12 ++ 13 = ((n :: l') ++ 12) ++ 13.
 \]

 By the definition of ++, this follows from

 \[
 n :: (l' ++ 12 ++ 13) = n :: ((l' ++ 12) ++ 13),
 \]

 which is immediate from the induction hypothesis. \(\Box \)

3.3.2 Exercise [★]: Complete the definitions of \texttt{nonzeros}, \texttt{oddmembers} and \texttt{countoddmembers} in Listings.v.

3.3.3 Exercise [★★]: Complete the definition of \texttt{alternate}. This exercise illustrates the fact that it sometimes requires a little extra thought to satisfy Coq’s requirement that all \texttt{Fixpoint} definitions be “obviously terminating.” There is an easy way to write the \texttt{alternate} function using just a single \texttt{match...end}, but Coq will not accept it as obviously terminating. Look for a slightly more verbose solution with two nested \texttt{match...end} constructs. Note that each \texttt{match} must be terminated by an \texttt{end}.

For a slightly more involved example of an inductive proof over lists, suppose we define a “cons on the right” function \texttt{snoc} like this...

Fixpoint \texttt{snoc} \((l:natlist) \ (v:nat) \ {\text{struct} \ l} \ : \ {\text{natlist}}\) :=

\[
\begin{align*}
\text{match } l \text{ with} \\
| \text{nil} & \Rightarrow [v] \\
| h :: t & \Rightarrow h :: (\text{snoc} \ t \ v)
\end{align*}
\]

... and use it to define a list-reversing function \texttt{rev} line this:

Fixpoint \texttt{rev} \((l:natlist) \ {\text{struct} \ l} \ : \ {\text{natlist}}\) :=

\[
\begin{align*}
\text{match } l \text{ with} \\
| \text{nil} & \Rightarrow \text{nil} \\
| h :: t & \Rightarrow \text{snoc} \ (\text{rev} \ t) \ h
\end{align*}
\]

end.
We can now prove that reversing a list doesn’t change it’s length as follows. First we prove a lemma relating \texttt{length} and \texttt{snoc}.

\subsection*{3.3.4 Lemma:} For all numbers \(n\) and lists \(l\),
\[
\text{length} \ (\text{snoc} \ l \ n) = S \ (\text{length} \ l).
\]

\textit{Proof:} By induction on \(l\).
- First, suppose \(l = []\). We must show
 \[
 \text{length} \ (\text{snoc} \ [] \ n) = S \ (\text{length} \ []),
 \]
 which follows directly from the definitions of \texttt{length} and \texttt{snoc}.
- Next, suppose \(l = n'::l'\), with
 \[
 \text{length} \ (\text{snoc} \ l' \ n) = S \ (\text{length} \ l').
 \]
 We must show
 \[
 \text{length} \ (\text{snoc} \ (n'::l') \ n) = S \ (\text{length} \ (n'::l')).
 \]
 By the definitions of \texttt{length} and \texttt{snoc}, this follows from
 \[
 S \ (\text{length} \ (\text{snoc} \ l' \ n)) = S \ (S \ (\text{length} \ l')),
 \]
 which is immediate from the induction hypothesis. \(\square\)

Now we can use this lemma to prove the fact we wanted about \texttt{length} and \texttt{rev}.

\subsection*{3.3.5 Theorem:} For all lists \(l\),
\[
\text{length} \ (\text{rev} \ l) = \text{length} \ l.
\]

\textit{Proof:} By induction on \(l\).
- First, suppose \(l = []\). We must show
 \[
 \text{length} \ (\text{rev} \ []) = \text{length} \ [],
 \]
 which follows directly from the definitions of \texttt{length} and \texttt{rev}.\[\]
• Next, suppose \(l = n::l'\), with
\[
\text{length } (\text{rev } l') = \text{length } l'.
\]

We must show
\[
\text{length } (\text{rev } (n::l')) = \text{length } (n::l').
\]

By the definition of \(\text{rev} \), this follows from
\[
\text{length } (\text{snoc } (\text{rev } l') n) = S (\text{length } l'),
\]
which, by the previous lemma, is the same as
\[
S (\text{length } (\text{rev } l')) = S (\text{length } l').
\]

This is immediate from the induction hypothesis. \(\square\)

Obviously, the style of these proofs is rather longwinded and pedantic. After we’ve seen a few of them, we might begin to find it easier to follow proofs that give a little less detail overall (since we can easily work them out in our own minds or on scratch paper if necessary) and just highlight the non-obvious steps. In this more compressed style, the above proof might look more like this:

3.3.6 **Theorem:** For all lists \(l \),
\[
\text{length } (\text{rev } l) = \text{length } l.
\]

Proof: First, observe that
\[
\text{length } (\text{snoc } l n) = S (\text{length } l)
\]
for any \(l \). This follows by a straightforward induction on \(l \).

The main property now follows by another straightforward induction on \(l \), using the observation together with the induction hypothesis in the case where \(l = n'::l' \). \(\square\)

Which style is preferable in a given situation depends on the sophistication of the expected audience and on how similar the proof at hand is to ones that the audience will already be familiar with. The more pedantic style is usually a safe fallback.

3.3.7 **Exercise [★★]:** Find the section marked “A bunch of exercises” in Lists.v and complete all the proofs you find there.
3.4 Options

3.3.8 Exercise [★★]: (1) Find a non-trivial equational property involving ;:, snoc, and ++. (2) Prove it. Fill in your theorem and proof in the file Lists.v just after the string “Design exercise.”

3.3.9 Exercise [★☆, Optional]: If you did Exercise 3.2.1, then prove the theorems count_member_nonzero and remove_decreases_count in Lists.v.

3.4 Options

Here is another type definition that is quite useful in day-to-day programming:

Inductive natoption : Set :=
 | Some : nat → natoption
 | None : natoption.

We can use natoption as a way of returning “error codes” from functions. For example, suppose we want to write a function that returns the \(n \)th element of some list. If we give it type \(\text{nat} \rightarrow \text{natlist} \rightarrow \text{nat} \), then we’ll have to return some number when the list is too short!

Fixpoint index_bad (n:nat) (l:natlist) {struct l} { nat } :=
 match l with
 | nil => 42 (* arbitrary! *)
 | a :: l' => match beq_nat n O with
 | true => a
 | false => index_bad (pred n) l'
 end.

On the other hand, if we give it type \(\text{nat} \rightarrow \text{natlist} \rightarrow \text{natoption} \), then we can return None when the list is too short and Some a when the list has enough members and \(a \) appears at position \(n \).

Fixpoint index (n:nat) (l:natlist) {struct l} : natoption :=
 match l with
 | nil => None
 | a :: l' => match beq_nat n O with
 | true => Some a
 | false => index (pred n) l'
 end.
Example test_index1 : index 0 [4,5,6,7] = Some 4.
Example test_index2 : index 3 [4,5,6,7] = Some 7.
Example test_index3 : index 10 [4,5,6,7] = None.

This example is also an opportunity to introduce one more small feature of Coq’s programming language: conditional expressions.

Fixpoint index’ (n:nat) (l:natlist) {struct l} : natoption :=
 match l with
 | nil => None
 | a :: l’ => if beq_nat n O then Some a else index (pred n) l’
end.

Coq’s conditionals are exactly like those in every other language, with one small generalization. Since the boolean type is not built in, Coq actually allows conditional expressions over any inductively defined type with exactly two constructors. The guard is considered “true” if it evaluates to the first constructor in the Inductive definition and “false” if it evaluates to the second.

3.4.1 EXERCISE [★★]: Complete the definition of hd_opt in Lists.v.

3.4.2 EXERCISE [★★]: Prove option_elim_hd in Lists.v.

3.4.3 EXERCISE [★★]: Define a function beq_natlist for comparing lists of numbers for equality. Prove that beq_natlist l l yields true for every list l. (Stubs are provided in Lists.v.)

3.5 The apply Tactic

This section still needs to be written. Please have a look at the corresponding material in Lists.v, where you’ll find plenty of descriptive text...

3.5.1 EXERCISE [★★]: Prove silly_ex in Lists.v without using the simpl tactic.

3.5.2 EXERCISE [★★★]: Prove rev_exercise1 and beq_nat_sym in Lists.v.

3.5.3 EXERCISE [★★★]: Provide an informal proof of beq_nat_sym in Lists.v.

3.5.4 EXERCISE [★]: Briefly explain the difference between the tactics apply and rewrite. Are there situations where either one can be applied?
3.6 Varying the Induction Hypothesis

One subtlety in these inductive proofs is worth noticing here. For example, look back at the proof of the app_ass theorem. The induction hypothesis (in the second subgoal generated by the induction tactic) is

\[11' ++ 12 ++ 13 = (11' ++ 12) ++ 13.\]

(Note that, because we’ve defined ++ to be right associative, the expression on the left of the = is the same as writing \(11' ++ (12 ++ 13)\).) That is it makes a statement about \(11'\) together with the particular lists \(12\) and \(13\). The lists \(12\) and \(13\), which were introduced into the context by the intros at the top of the proof, are “held constant” in the induction hypothesis. If we set up the proof slightly differently by introducing just \(n\) into the context at the top, then we get an induction hypothesis that makes a stronger claim:

\[\forall 1213, 11' ++ 12 ++ 13 = (11' ++ 12) ++ 13.\]

(Use Coq to see the difference for yourself.) In the present case, the difference between the two proofs is minor, since the definition of the ++ function just examines its first argument and doesn’t do anything interesting with its second argument. But we’ll soon come to situations where setting up the induction hypothesis one way or the other can make the difference between a proof working and failing.

3.6.1 Exercise [★★]: Finish the proof of ass_app at the end of Lists.v.

3.7 Additional Exercises

3.7.1 Exercise [★]: Briefly explain the difference between the tactics destruct and induction. [Make sure that the answer is given in the text! Also, perhaps the solution belongs at the end of the book rather than in the Listssol.v file?]