Data flow analysis needs to represent facts at every program point.

What if there are a lot of facts and a lot of program points? Potentially takes a lot of space/time.

Most likely, we’re keeping track of irrelevant facts.

Motivation

Example

- \(x = 3 \)

- \(y = a + b \)
- \(x = 3 \)

- \(z = 2 * y \)
- \(w = y + z \)

- \(a > b \)
- \(y = a - b \)

- \(y = y * 10 \)
- \(w = w + y \)

- \(z = w + x \)
- \(z = w + x \)
- \(z = w + x \)
- \(z = w + x \)
- \(z = w + x \)

Sparse Representation

- Instead, we’d like to use a sparse representation.
 - Only propagate facts about \(x \) where they’re needed.

- Enter static single assignment form.
 - Each variable is defined (assigned to) exactly once.
 - But may be used multiple times.
Example: SSA

- Add SSA edges from definitions to uses
 - No intervening statements use/define variable
 - Safe to propagate only along SSA edges

What About Joins?

- Add \(\Phi \) functions/nodes to model joins
 - Intuitively, takes meet of arguments
 - At code generation time, need to eliminate \(\Phi \) nodes

Constant Propagation Revisited

- Initialize facts at each program point
 - \(C(n) := \text{top} \)
- Add all SSA edges to the worklist
- While the worklist isn’t empty,
 - Remove an edge \((x, y)\) from the worklist
 - \(C(y) := C(y) \meet C(x) \)
 - Add SSA edges from \(y \) if \(C(y) \) changed

Def-Use Chains vs. SSA

- Alternative: Don’t do renaming; instead, compute simple def-use chains (reaching definitions)
 - Propagate facts along def-use chains
- Drawback: Potentially quadratic size
Def-Use Chains vs. SSA (cont’d)

case (...)
of 0: a := 1;
1: a := 2;
2: a := 3;
end

Def-Use Chains

\[
\begin{align*}
& \text{a := 1} \\
& \text{a := 2} \\
& \text{a := 3} \\
& \text{b := a} \\
& \text{c := a} \\
& \text{d := a} \\
\end{align*}
\]

SSA Form

\[
\begin{align*}
& \text{a_1 := 1} \\
& \text{a_2 := 2} \\
& \text{a_3 := 3} \\
& \text{a_4 := (a_1, a_2, a_3)} \\
& \text{b_1 := a_4} \\
& \text{c_1 := a_4} \\
& \text{d_1 := a_4} \\
\end{align*}
\]

Quadratic vs. (in practice) linear behavior

Conditional Constant Propagation

- So far, we assume that all branches can be taken
 - But what if some branches are never taken in practice?
 - Debugging code that can be enabled/disabled at run time
 - Macro expanded code with constants
 - Optimizations

- Idea: use constant propagation to decide which branches might be taken
 - Fits in neatly with SSA form

Nodes versus Edges

- So far, we’ve been hazy about whether data flow facts are associated with nodes or edges
 - Advantage of nodes: may be fewer of them
 - Advantage of edges: can trace differences on multiple paths to same node

- For this problem, we’ll associate facts with edges

Conditional Execution

- Keep track of whether edges may be executed
 - Some may not be because they’re on not-taken branch
 - Initially, assume no edges taken
 - At joins, don’t propagate information from not-taken in-edges

- Side comment: Notice that we always, always start with the optimistic assumption
 - We need proof that a pessimistic fact holds
 - We’re computing a greatest fixpoint
Computing SSA Form

- Step 1: Compute the dominance frontier
- Step 2: Use dominance frontier to place Φ nodes
 - Naive, impractical step 2: put a Φ function for every variable at the beginning of every block
 - Better: If node X contains assignment to a, put Φ function for a in dominance frontier of X
 - Adding Φ fn may require introducing additional Φ fn
- Step 3: Rename variables so only one definition per name

Dominators

- Let X and Y be nodes in the CFG
 - Assume single entry point Entry
- X dominates Y (written $X \succeq Y$) if
 - X appears on every path from Entry to Y
- Write $X \succ Y$ when X dominates Y but $X \neq Y$
 - Note \succeq is reflexive

Dominator Tree

- The dominator relationship forms a tree
 - Edge from parent to child = parent dominates child
 - Note: edges are not same as CFG edges!
Computing Dominator Tree

- Standard algorithm due to Lengauer and Tarjan

- Runs in time $O(E \alpha(E, N))$
 - $E = \#$ of edges, $N = \#$ of nodes
 - where $\alpha(\cdot)$ is the inverse Ackerman’s function
 - Very slow growing; effectively constant in practice

- Algorithm quite difficult to understand
 - But lots of pseudo-code available

Why Are Dominators Useful?

- Computing static single assignment form
- Computing control dependencies
- Identify loops in CFG
 - All nodes X dominated by entry node H, where X can reach H, and there is exactly one back edge (head dominates tail) in loop

Where do Φ Functions Go?

- We need a Φ function at node Z if
 - Two non-null CFG paths that both define v
 - Such that both paths start at two distinct nodes and end at Z

Dominance Frontiers: Illustration

Dominated by X

Dominance Frontier of X
Dominance Frontiers

- Y is in the dominance frontier of X iff
 - There exists a path from X to Exit through Y such that Y is the first node not strictly dominated by X
- Equivalently:
 - Y is the first node where a path from X to Exit and a path from Entry to Exit (not going through X) meet
- Equivalently:
 - X dominates a predecessor of Y
 - X does not strictly dominate Y

Example

Computing Dominance Frontiers

- Two components to DF(X):
 - DF_{local}(X) = \{Y \in \text{succ}(X) \mid X \nleq Y\}
 - Any child of X not (strictly) dominated by X is in DF(X)
 - Let Z be such that idom(Z) = X
 - idom(Z) is the parent of Z in the dominator tree
 - DF_{up}(Z) = \{Y \in \text{DF}(Z) \mid X \nleq Y\}
 - Nodes from DF(Z) that are not strictly dominated by X are also in DF(X)

Why Is This Sufficient?

- Suppose Y \in DF(X)
 - Then there is a U \in \text{pred}(Y) such that X \geq U, X \nleq Y
 - If U = X, then U \notin DF_{local}(X) = \{Y \in \text{succ}(X) \mid X \nleq Y\}
 - X/U
 - Otherwise U \neq X
 - Then there is a node Z such that idom(Z) = X and Z \geq U
 - Possibly Z = U
 - Since X \nleq Y, Z \nleq Y, hence Y \in DF(Z)
 - Therefore Y \in DF_{up}(Z) = \{Y \in \text{DF}(Z) \mid X \nleq Y\}
Algorithm

- Let $sdom(X) = \{Y \mid X > Y\}$
- In a postorder traversal on dominator tree
 - $DF(X) = succ(X) - sdom(X)$
 - I.e., $DF(X) = DF_{local}(X)$
 - For each Z such that $idom(Z) = X$
 - $DF(X) = DF(X) \cup (DF(Z) - sdom(X))$
 - I.e., $DF(X) = DF(X) \cup DF_{up}(Z)$

Equivalent Algorithm

- In a postorder traversal on dominator tree
 - $DF(X) = succ(X)$
 - For each Z such that $idom(Z) = X$
 - $DF(X) = DF(X) \cup DF(Z)$
 - $DF(X) = DF(X) - sdom(X)$
 - There’s another equivalent algorithm that runs in $O(E + |DF|)$

Computing SSA Form

- Step 1: Compute the dominance frontier
- Step 2: Use dominance frontier to place Φ nodes
- Step 3: Rename variables so only one definition per name

Step 2: Placing Φ Functions for v

- Let S be the set of nodes that define v
- Need to place Φ function in every node in $DF(S)$
 - Recall, those are all the places where the definition of v in S and some other definition of v may meet
 - But a Φ function adds another definition of v!
 - $v := \Phi(v, \ldots, v)$
 - So, iterate
 - $DF_1 = DF(S)$
 - $DF_{i+1} = DF(S \cup DF_i)$
Step 3: Renaming Variables

- Top-down (DFS) traversal of dominator tree
 - At definition of v, push new # for v onto the stack
 - When leaving node with definition of v, pop stack
 - Intuitively: Works because there’s a Φ function, hence a new definition of v, just beyond region dominated by definition

- Can be done in $O(E+|DF|)$ time
 - Linear in size of CFG with Φ functions

Eliminating Φ Functions

- Basic idea: Φ represents facts that value of join may come from different paths
 - So just set along each possible path

- Copies performed at Φ fns may not be useful
 - Joined value may not be used later in the program
 - (So why leave it in?)

- Use dead code elimination to kill useless Φs

- Subsequent register allocation will map the (now very large) number of variables onto the actual set of machine register
Efficiency in Practice

- Claimed:
 - SSA grows linearly with size of program
 - No correlation between ratio and program size

<table>
<thead>
<tr>
<th>Package name</th>
<th>Statements in all procedures</th>
<th>Statements per procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EISPACK</td>
<td>7,034</td>
<td>22 89 327</td>
<td>Dense matrix eigenvectors and values</td>
</tr>
<tr>
<td>FLOPS</td>
<td>2,054</td>
<td>9 54 251</td>
<td>Flow past an airfoil</td>
</tr>
<tr>
<td>SPICE</td>
<td>14,003</td>
<td>8 43 753</td>
<td>Circuit simulation</td>
</tr>
<tr>
<td>Totals</td>
<td>23,181</td>
<td>8 55 753</td>
<td>221 PORTTRAN procedures</td>
</tr>
</tbody>
</table>

Arrays

- Need to handle array accesses

- Problem: How do we know whether $A[i], A[j]$, and $B[k]$ are all distinct?
 - Could have $A=B$, e.g., `foo(int A[], int B[])` ... `foo(a,a)`
 - Could have $i=j$

- History: significant research on determining array dependencies, for parallelizing compilers

Arrays (cont’d)

- One possibility: make arrays immutable
 - Then don’t need to worry about updates to them
 - $*: := A(i);$
 - $A(i) := V;$
 - $*: := A(k) + 2;$
 - $*: := T + 2;$

- Update(A, j, V) makes a copy of A
 - Then try to collapse unnecessary copies

- Convincing?
Structures

- Can treat structures as sets of variables

\[
\begin{align*}
* & := A.f; \quad A.g := V; \quad * := A.f + A.g \\
* & := X; \quad \quad \quad Y := V; \quad \quad \quad * := X + Y
\end{align*}
\]

- Problems?

Pointers

- For each statement \(S \), let
 - \(\text{MustMod}(S) \) = variables always modified by \(S \)
 - \(\text{MayMod}(S) \) = variables sometimes modified by \(S \)
 - So if \(v \notin \text{MayMod}(S) \), then \(S \) must not modify \(v \)
 - \(\text{MayUse}(S) \) = variables sometimes used by \(S \)
- Then assume that statement \(S \)
 - writes to \(\text{MayMod}(S) \)
 - reads \(\text{MayUse}(S) \cup (\text{MayMod}(S) - \text{MustMod}(S)) \)
- Convincing? We’ll talk more about pointers later

Control Dependence

- \(Y \) is control dependent on \(X \) if whether \(Y \) is executed depends on a test at \(X \)

\[
\begin{array}{c}
X \\
A \\
B \\
C
\end{array}
\]

- \(A, B, \) and \(C \) are control dependent on \(X \)

Postdominators and Control

- \(Y \) postdominates \(X \) if every path from \(X \) to \(\text{Exit} \) contains \(Y \)
 - I.e., if \(X \) is executed, then \(Y \) is always executed
- Then, \(Y \) is control dependent on \(X \) if
 - There is a path \(X \rightarrow Z_1 \rightarrow \cdots \rightarrow Z_n \rightarrow Y \) such that \(Y \) postdominates all \(Z_i \) and
 - \(Y \) does not postdominate \(X \)
 - I.e., there is some path from \(X \) on which \(Y \) is always executed, and there is some path on which \(Y \) is not executed
Dominance Frontiers, Take 2

- Postdominators are just dominators on the CFG with the edges reversed

- To see what \(Y \) is control dependent on, we want to find the \(X \)s such that in the reverse CFG
 - There is a path \(X \leftarrow Z_1 \leftarrow \cdots \leftarrow Z_n \leftarrow Y \) where
 - for all \(i, Y \geq Z_i \) and
 - \(Y \searrow X \)
 - i.e., we want to find \(DF(Y) \) in the reverse CFG!