Due at the start of class Wednesday, Feb 9, 2011.

Problem 1. Run the stable marriage algorithm on the following instance to create a stable marriage. Show all your steps.

Instance: There are 4 men, \(m_1, m_2, m_3, m_4 \) and 4 women, \(w_1, w_2, w_3, w_4 \). Following are the preference lists for the 4 men:

- \(m_1 : [w_1, w_2, w_4, w_3] \)
- \(m_2 : [w_1, w_4, w_2, w_3] \)
- \(m_3 : [w_1, w_2, w_3, w_4] \)
- \(m_4 : [w_4, w_3, w_1, w_2] \)

Preference list for the women are as follow:

- \(w_1 : [m_2, m_3, m_1, m_4] \)
- \(w_2 : [m_3, m_1, m_2, m_4] \)
- \(w_3 : [m_4, m_2, m_1, m_3] \)
- \(w_4 : [m_2, m_4, m_1, m_3] \)

Problem 2. Give an instance of the stable marriage problem where there are multiple stable marriages. Show at least two different stable marriages and show how you computed them.

Problem 3. Compute the GCD of 51 and 136. Show all the steps of Euclid’s algorithm.

Problem 4. Research the name “Atanasoff” and discuss his contributions to Computing.

Problem 5. Implement a program in Ruby to compute Factorial of \(N \). Factorial\((N)\) for an integer \(N > 0 \), is defined as the product of \(N \cdot (N - 1) \cdot (N - 2) \cdot \ldots \cdot 1 \). You have to run the program on linuxlab and then show us some sample outputs.