CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Single Source Shortest Path Algorithm

Department of Computer Science
University of Maryland, College Park
Single Source Shortest Path

- Common graph problems
 - Problem 1 → Find path from X to Y with lowest edge weight
 - Problem 2 → Find path from X to any Y with lowest edge weight
- Notice this is not the same as the Traveling Salesman Problem
- Useful for many applications
 - Shortest route in map (Similar to GPS)
 - Lowest cost trip
 - Most efficient internet route
- Dijkstra’s algorithm solves problem 2
 - Can also be used to solve problem 1
 - Would use different algorithm if only interested in a single destination
Shortest Path – Dijkstra’s Algorithm

- Maintain
 - Nodes with known shortest path from start ⇒ S
 - Cost of shortest path to node K from start ⇒ C[K]
 - Only for paths through nodes in S
 - Predecessor to K on shortest path ⇒ P[K]
 - Updated whenever new (lower) C[K] discovered
 - Remembers actual path with lowest cost
Shortest Path – Intuition for Dijkstra’s

- At each step in the algorithm
 - Shortest paths are known for nodes in S
 - Store in $C[K]$ length of shortest path to node K (for all paths through nodes in S)
 - Add to S next closest node
Shortest Path – Intuition for Dijkstra’s

• Update distance to J after adding node K
 • Previous shortest path to K already in C[K]
 • Possibly shorter path to J by going through node K
 • Compare C[J] with C[K] + weight of (K,J), update C[J] if needed
Shortest Path – Dijkstra’s Algorithm

S = ∅
P[] = none for all nodes
C[start] = 0, C[] = ∞ for all other nodes

while (not all nodes in S)

 find node K not in S with smallest C[K]
 add K to S

 for each node J not in S adjacent to K

 if (C[K] + cost of (K,J) < C[J])

 C[J] = C[K] + cost of (K,J)
 P[J] = K

Optimal solution computed with greedy algorithm
Dijkstra’s Shortest Path Example

- Initial state
- $S = \emptyset$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- Find shortest paths starting from node 1
- \(S = 1 \)

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>(\infty)</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>(\infty)</td>
<td>none</td>
</tr>
<tr>
<td>4</td>
<td>(\infty)</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>(\infty)</td>
<td>none</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- Update $C[K]$ for all neighbors of 1 not in $\{ S \}$
- $S = \{ 1 \}$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>

$C[2] = \min (\infty, C[1] + (1,2)) = \min (\infty, 0 + 5) = 5$

$C[3] = \min (\infty, C[1] + (1,3)) = \min (\infty, 0 + 8) = 8$
Djikstra’s Shortest Path Example

- Find node K with smallest $C[K]$ and add to S
- $S = \{ 1, 2 \}$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- Update $C[K]$ for all neighbors of 2 not in S
- $S = \{ 1, 2 \}$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>

$C[3] = \min (8, C[2] + (2,3)) = \min (8, 5 + 1) = 6$

$C[4] = \min (\infty, C[2] + (2,4)) = \min (\infty, 5 + 10) = 15$
Dijkstra’s Shortest Path Example

- Find node K with smallest $C[K]$ and add to S
- $S = \{ 1, 2, 3 \}$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- Update $C[K]$ for all neighbors of 3 not in S
- $\{ S \} = 1, 2, 3$

\[
C[4] = \min (15, C[3] + (3,4)) = \min (15, 6 + 3) = 9
\]
Dijkstra’s Shortest Path Example

• Find node K with smallest C[K] and add to S
• \(\{ S \} = 1, 2, 3, 4 \)

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

• Update C[K] for all neighbors of 4 not in S
• S = { 1, 2, 3, 4 }

\[
C[5] = \min (\infty, C[4] + (4,5)) = \min (\infty, 9 + 9) = 18
\]
Dijkstra’s Shortest Path Example

- Find node \(K \) with smallest \(C[K] \) and add to \(S \)
- \(S = \{ 1, 2, 3, 4, 5 \} \)

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- All nodes in S, algorithm is finished
- $S = \{ 1, 2, 3, 4, 5 \}$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

• Find shortest path from start to K
 • Start at K
 • Trace back predecessors in P[]
• Example paths (in reverse)
 • 2 → 1
 • 3 → 2 → 1
 • 4 → 3 → 2 → 1
 • 5 → 4 → 3 → 2 → 1

<table>
<thead>
<tr>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
</tr>
</tbody>
</table>
About Dijkstra’s Algorithm

• You always select the next node with the lowest cost
 • Not necessarily adjacent to the last one processed
• What if you have a value not reachable from the start vertex? What is the cost?
• What is there is a node with an edge pointing to itself?
• What if there are two nodes with the same cost? Which one to select next?
• What if while processing a node, one of the adjacent nodes belongs to the set S?
• What happens if the edge costs are negative?
 • Use Bellman-Ford algorithm
• Notice you can stop Dijkstra’s once you have computed the path/cost to the node of interest
• Big O using min-priority queue $O(|E| + |V| \log |V|)$
Apply Dijkstra’s algorithm using B as the starting (source) node. Indicate the cost and predecessor for each node in the graph after processing 1, 2 and 3 nodes (B and 2 other nodes) have been added to the set of processed nodes. Remember to update the appropriate table entries after processing the 3rd node added. An empty table entry implies an infinite cost or no predecessor. Note: points will be deducted if you simply fill in the entire table instead showing the table at the first three steps.

Answer:

After processing 1 node:

<table>
<thead>
<tr>
<th>Node</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Predecessor</td>
<td>B</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After processing 2 nodes:

<table>
<thead>
<tr>
<th>Node</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>22</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Predecessor</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After processing 3 nodes:

<table>
<thead>
<tr>
<th>Node</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>2</td>
<td>0</td>
<td>11</td>
<td>5</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>Predecessor</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>
Java Priority Queue

- A priority queue could be used during the implementation of Dijkstra’s algorithm (although you don’t need too).
- Java Priority Queue
 - http://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html
- **Example**: PriorityQueueCode.zip