CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Design

Department of Computer Science
University of Maryland, College Park
Few Things About Projects

• Remember that we take academic integrity very seriously. We have software tools that allow us to:
 • Compare all students projects (even across sections)
 • Changing variable names, and spacing is something our tools recognize
• You should try to submit your project often
 • Even though through CVS you can get previous project versions, using the submit server is easier
About JUnit Tests

• Remember: you need to bring StudentTest to office hours
• Study public tests so you understand what they are testing
• Expected results are in the actual tests or in text files that are part of your project
• You can add output statements so you can see the your program results

```java
public void testSumBasic() {
    /* test code goes here */
    output += result[result.length-1];
    /* We don't need to print the result */
    /* Just to show we can see results from our code */
    System.out.println(output);

    assertEquals("1,3,6,10,15,21", output);
}
```

• Be careful and don’t modify public test (copy test to StudentTest file)
• You can step through tests using the debugger
Applying Object-Oriented Design

• Look at objects participating in system
 • Find **nouns** in problem statement (requirements & specifications)
 • Noun may represent class/variables needed in design
 • Relationships (e.g., “has” or “belongs to”) may represent fields

• Look at interactions between objects
 • Find **verbs** in problem statement
 • Verb may represent message between objects

• Design classes accordingly
 • Determine relationship between classes
 • Find state & methods needed for each class
Classes

- A class or interface defines and describes a set of objects
- It describes a set of methods or messages that the object responds to
 - Not only the name and signature of the method, but the contract the method respects
- Classes also provide/describe fields and method implementations
1) Finding Classes

- Thermostat uses dial setting to control a heater to maintain constant temperature in room

- Nouns
 - Thermostat
 - Dial setting
 - Heater
 - Temperature
 - Room

- Analyze each noun
 - Does noun represent class needed in design?
 - Noun may be outside system
 - Noun may describe state in class
Analyzing Nouns

- Thermostat
 - Central class in model
- Dial setting
 - State in class (Thermostat)
- Heater
 - Class in model
- Room
 - Class in model
- Temperature
 - State in class (Room)
2) Finding Messages

- Thermostat uses dial setting to control a heater to maintain constant temperature in room

- Verbs
 - Uses
 - Control
 - Maintain

- Analyze each verb
 - Does verb represent interaction between objects?

- For each interaction
 - Assign methods to classes to perform interaction
Analyzing Verbs

• Uses
 • “Thermostat uses dial setting…”
 • \(\Rightarrow \) Thermostat.setDesiredTemp(int degrees)

• Control
 • “To control a heater…”
 • \(\Rightarrow \) Heater.turnOn()
 • \(\Rightarrow \) Heater.turnOff()

• Maintain
 • “To maintain constant temperature in room”
 • \(\Rightarrow \) Room.getTemperature()
Example Messages

Thermostat

Room

Heater

getTemperature()

setDesiredTemp()

turnOn()
turnOff()
Resulting Classes

• Thermostat
 • State – dialSetting
 • Methods – setDesiredTemp()

• Heater
 • State – heaterOn
 • Methods – turnOn(), turnOff()

• Room
 • State – temp
 • Methods – getTemperature()
is-a vs. has-a

• Say we have two classes: Engine and Car
• Two possible designs
 • A Car object has a reference to an Engine object
 • has-a
 • The Car class is a subtype of Engine
 • is-a
Prefer Composition over Inheritance

- Generally, prefer composition/delegation (has-a) to subtyping (is-a)
 - Subtyping is very powerful, but easy to overuse and can create confusion and lead to mistakes
- Using is-a restricts you from having a car with more than one engine, or with no engine
- Tempting to use subtyping in places where it doesn’t really make conceptual sense to avoid having to delegate methods
 - Don’t
Forms of Inheritance

- Extension
 - Adds new functionality to subclass
 - In Java → new method
- Limitation
 - Restricts behavior of subclass
 - In Java → override method, throw exception
- Combination
 - Inherits features from multiple superclasses
 - Also called multiple inheritance
 - Not possible in Java
 - In Java → implement interface instead
Multiple Inheritance Example

- Combination
 - AlarmClockRadio has two parent classes
 - State & behavior from both Radio & AlarmClock

![Diagram showing multiple inheritance example]

Superclasses

Radio

AlarmClock

AlarmClockRadio